DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Header

Mercurial (5b81998bb7ab)

VCS Links

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023
/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2; c-file-offsets: ((substatement-open . 0)) -*- */
/* This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */

#include <stdlib.h>

#include "nsVoidArray.h"
#include "nsQuickSort.h"
#include "prbit.h"
#include "nsISupportsImpl.h" // for nsTraceRefcnt
#include "nsAlgorithm.h"

/**
 * Grow the array by at least this many elements at a time.
 */
static const int32_t kMinGrowArrayBy = 8;
static const int32_t kMaxGrowArrayBy = 1024;
static const int32_t kAutoClearCompactSizeFactor = 4;

/**
 * This is the threshold (in bytes) of the mImpl struct, past which
 * we'll force the array to grow geometrically
 */
static const int32_t kLinearThreshold = 24 * sizeof(void *);

/**
 * Compute the number of bytes requires for the mImpl struct that will
 * hold |n| elements.
 */
#define SIZEOF_IMPL(n_) (sizeof(Impl) + sizeof(void *) * ((n_) - 1))


/**
 * Compute the number of elements that an mImpl struct of |n| bytes
 * will hold.
 */
#define CAPACITYOF_IMPL(n_) ((((n_) - sizeof(Impl)) / sizeof(void *)) + 1)

#if DEBUG_VOIDARRAY
#define MAXVOID 10

class VoidStats {
public:
  VoidStats();
  ~VoidStats();

};

static int sizesUsed; // number of the elements of the arrays used
static int sizesAlloced[MAXVOID]; // sizes of the allocations.  sorted
static int NumberOfSize[MAXVOID]; // number of this allocation size (1 per array)
static int AllocedOfSize[MAXVOID]; // number of this allocation size (each size for array used)
static int MaxAuto[MAXVOID];      // AutoArrays that maxed out at this size
static int GrowInPlace[MAXVOID];  // arrays this size that grew in-place via realloc

// these are per-allocation  
static int MaxElements[2000];     // # of arrays that maxed out at each size.

// statistics macros
#define ADD_TO_STATS(x,size) do {int i; for (i = 0; i < sizesUsed; i++) \
                                  { \
                                    if (sizesAlloced[i] == (int)(size)) \
                                    { ((x)[i])++; break; } \
                                  } \
                                  if (i >= sizesUsed && sizesUsed < MAXVOID) \
                                  { sizesAlloced[sizesUsed] = (size); \
                                    ((x)[sizesUsed++])++; break; \
                                  } \
                                } while (0)

#define SUB_FROM_STATS(x,size) do {int i; for (i = 0; i < sizesUsed; i++) \
                                    { \
                                      if (sizesAlloced[i] == (int)(size)) \
                                      { ((x)[i])--; break; } \
                                    } \
                                  } while (0)


VoidStats::VoidStats()
{
  sizesUsed = 1;
  sizesAlloced[0] = 0;
}

VoidStats::~VoidStats()
{
  int i;
  for (i = 0; i < sizesUsed; i++)
  {
    printf("Size %d:\n",sizesAlloced[i]);
    printf("\tNumber of VoidArrays this size (max):     %d\n",NumberOfSize[i]-MaxAuto[i]);
    printf("\tNumber of AutoVoidArrays this size (max): %d\n",MaxAuto[i]);
    printf("\tNumber of allocations this size (total):  %d\n",AllocedOfSize[i]);
    printf("\tNumber of GrowsInPlace this size (total): %d\n",GrowInPlace[i]);
  }
  printf("Max Size of VoidArray:\n");
  for (i = 0; i < (int)(sizeof(MaxElements)/sizeof(MaxElements[0])); i++)
  {
    if (MaxElements[i])
      printf("\t%d: %d\n",i,MaxElements[i]);
  }
}

// Just so constructor/destructor's get called
VoidStats gVoidStats;
#endif

void
nsVoidArray::SetArray(Impl *newImpl, int32_t aSize, int32_t aCount)
{
  // old mImpl has been realloced and so we don't free/delete it
  NS_PRECONDITION(newImpl, "can't set size");
  mImpl = newImpl;
  mImpl->mCount = aCount;
  mImpl->mSize = aSize;
}

// This does all allocation/reallocation of the array.
// It also will compact down to N - good for things that might grow a lot
// at times,  but usually are smaller, like JS deferred GC releases.
bool nsVoidArray::SizeTo(int32_t aSize)
{
  uint32_t oldsize = GetArraySize();

  if (aSize == (int32_t) oldsize)
    return true; // no change

  if (aSize <= 0)
  {
    // free the array if allocated
    if (mImpl)
    {
      free(reinterpret_cast<char *>(mImpl));
      mImpl = nullptr;
    }
    return true;
  }

  if (mImpl)
  {
    // We currently own an array impl. Resize it appropriately.
    if (aSize < mImpl->mCount)
    {
      // XXX Note: we could also just resize to mCount
      return true;  // can't make it that small, ignore request
    }

    char* bytes = (char *) realloc(mImpl,SIZEOF_IMPL(aSize));
    Impl* newImpl = reinterpret_cast<Impl*>(bytes);
    if (!newImpl)
      return false;

#if DEBUG_VOIDARRAY
    if (mImpl == newImpl)
      ADD_TO_STATS(GrowInPlace,oldsize);
    ADD_TO_STATS(AllocedOfSize,SIZEOF_IMPL(aSize));
    if (aSize > mMaxSize)
    {
      ADD_TO_STATS(NumberOfSize,SIZEOF_IMPL(aSize));
      if (oldsize)
        SUB_FROM_STATS(NumberOfSize,oldsize);
      mMaxSize = aSize;
      if (mIsAuto)
      {
        ADD_TO_STATS(MaxAuto,SIZEOF_IMPL(aSize));
        SUB_FROM_STATS(MaxAuto,oldsize);
      }
    }
#endif
    SetArray(newImpl, aSize, newImpl->mCount);
    return true;
  }

  if ((uint32_t) aSize < oldsize) {
    // No point in allocating if it won't free the current Impl anyway.
    return true;
  }

  // just allocate an array
  // allocate the exact size requested
  char* bytes = (char *) malloc(SIZEOF_IMPL(aSize));
  Impl* newImpl = reinterpret_cast<Impl*>(bytes);
  if (!newImpl)
    return false;

#if DEBUG_VOIDARRAY
  ADD_TO_STATS(AllocedOfSize,SIZEOF_IMPL(aSize));
  if (aSize > mMaxSize)
  {
    ADD_TO_STATS(NumberOfSize,SIZEOF_IMPL(aSize));
    if (oldsize && !mImpl)
      SUB_FROM_STATS(NumberOfSize,oldsize);
    mMaxSize = aSize;
  }
#endif
  if (mImpl)
  {
#if DEBUG_VOIDARRAY
    ADD_TO_STATS(MaxAuto,SIZEOF_IMPL(aSize));
    SUB_FROM_STATS(MaxAuto,0);
    SUB_FROM_STATS(NumberOfSize,0);
    mIsAuto = true;
#endif
    // We must be growing an nsAutoVoidArray - copy since we didn't
    // realloc.
    memcpy(newImpl->mArray, mImpl->mArray,
                  mImpl->mCount * sizeof(mImpl->mArray[0]));
  }

  SetArray(newImpl, aSize, mImpl ? mImpl->mCount : 0);
  // no memset; handled later in ReplaceElementAt if needed
  return true;
}

bool nsVoidArray::GrowArrayBy(int32_t aGrowBy)
{
  // We have to grow the array. Grow by kMinGrowArrayBy slots if we're
  // smaller than kLinearThreshold bytes, or a power of two if we're
  // larger.  This is much more efficient with most memory allocators,
  // especially if it's very large, or of the allocator is binned.
  if (aGrowBy < kMinGrowArrayBy)
    aGrowBy = kMinGrowArrayBy;

  uint32_t newCapacity = GetArraySize() + aGrowBy;  // Minimum increase
  uint32_t newSize = SIZEOF_IMPL(newCapacity);

  if (newSize >= (uint32_t) kLinearThreshold)
  {
    // newCount includes enough space for at least kMinGrowArrayBy new
    // slots. Select the next power-of-two size in bytes above or
    // equal to that.
    // Also, limit the increase in size to about a VM page or two.
    if (GetArraySize() >= kMaxGrowArrayBy)
    {
      newCapacity = GetArraySize() + XPCOM_MAX(kMaxGrowArrayBy,aGrowBy);
      newSize = SIZEOF_IMPL(newCapacity);
    }
    else
    {
      PR_CEILING_LOG2(newSize, newSize);
      newCapacity = CAPACITYOF_IMPL(1u << newSize);
    }
  }
  // frees old mImpl IF this succeeds
  if (!SizeTo(newCapacity))
    return false;

  return true;
}

nsVoidArray::nsVoidArray()
  : mImpl(nullptr)
{
  MOZ_COUNT_CTOR(nsVoidArray);
#if DEBUG_VOIDARRAY
  mMaxCount = 0;
  mMaxSize = 0;
  mIsAuto = false;
  ADD_TO_STATS(NumberOfSize,0);
  MaxElements[0]++;
#endif
}

nsVoidArray::nsVoidArray(int32_t aCount)
  : mImpl(nullptr)
{
  MOZ_COUNT_CTOR(nsVoidArray);
#if DEBUG_VOIDARRAY
  mMaxCount = 0;
  mMaxSize = 0;
  mIsAuto = false;
  MaxElements[0]++;
#endif
  SizeTo(aCount);
}

nsVoidArray& nsVoidArray::operator=(const nsVoidArray& other)
{
  int32_t otherCount = other.Count();
  int32_t maxCount = GetArraySize();
  if (otherCount)
  {
    if (otherCount > maxCount)
    {
      // frees old mImpl IF this succeeds
      if (!GrowArrayBy(otherCount-maxCount))
        return *this;      // XXX The allocation failed - don't do anything

      memcpy(mImpl->mArray, other.mImpl->mArray, otherCount * sizeof(mImpl->mArray[0]));
      mImpl->mCount = otherCount;
    }
    else
    {
      // the old array can hold the new array
      memcpy(mImpl->mArray, other.mImpl->mArray, otherCount * sizeof(mImpl->mArray[0]));
      mImpl->mCount = otherCount;
      // if it shrank a lot, compact it anyways
      if ((otherCount*2) < maxCount && maxCount > 100)
      {
        Compact();  // shrank by at least 50 entries
      }
    }
#if DEBUG_VOIDARRAY
     if (mImpl->mCount > mMaxCount &&
         mImpl->mCount < (int32_t)(sizeof(MaxElements)/sizeof(MaxElements[0])))
     {
       MaxElements[mImpl->mCount]++;
       MaxElements[mMaxCount]--;
       mMaxCount = mImpl->mCount;
     }
#endif
  }
  else
  {
    // Why do we drop the buffer here when we don't in Clear()?
    SizeTo(0);
  }

  return *this;
}

nsVoidArray::~nsVoidArray()
{
  MOZ_COUNT_DTOR(nsVoidArray);
  if (mImpl)
    free(reinterpret_cast<char*>(mImpl));
}

bool nsVoidArray::SetCount(int32_t aNewCount)
{
  NS_ASSERTION(aNewCount >= 0,"SetCount(negative index)");
  if (aNewCount < 0)
    return false;

  if (aNewCount == 0)
  {
    Clear();
    return true;
  }

  if (uint32_t(aNewCount) > uint32_t(GetArraySize()))
  {
    int32_t oldCount = Count();
    int32_t growDelta = aNewCount - oldCount;

    // frees old mImpl IF this succeeds
    if (!GrowArrayBy(growDelta))
      return false;
  }

  if (aNewCount > mImpl->mCount)
  {
    // Make sure that new entries added to the array by this
    // SetCount are cleared to 0.  Some users of this assume that.
    // This code means we don't have to memset when we allocate an array.
    memset(&mImpl->mArray[mImpl->mCount], 0,
           (aNewCount - mImpl->mCount) * sizeof(mImpl->mArray[0]));
  }

  mImpl->mCount = aNewCount;

#if DEBUG_VOIDARRAY
  if (mImpl->mCount > mMaxCount &&
      mImpl->mCount < (int32_t)(sizeof(MaxElements)/sizeof(MaxElements[0])))
  {
    MaxElements[mImpl->mCount]++;
    MaxElements[mMaxCount]--;
    mMaxCount = mImpl->mCount;
  }
#endif

  return true;
}

int32_t nsVoidArray::IndexOf(void* aPossibleElement) const
{
  if (mImpl)
  {
    void** ap = mImpl->mArray;
    void** end = ap + mImpl->mCount;
    while (ap < end)
    {
      if (*ap == aPossibleElement)
      {
        return ap - mImpl->mArray;
      }
      ap++;
    }
  }
  return -1;
}

bool nsVoidArray::InsertElementAt(void* aElement, int32_t aIndex)
{
  int32_t oldCount = Count();
  NS_ASSERTION(aIndex >= 0,"InsertElementAt(negative index)");
  if (uint32_t(aIndex) > uint32_t(oldCount))
  {
    // An invalid index causes the insertion to fail
    // Invalid indexes are ones that add more than one entry to the
    // array (i.e., they can append).
    return false;
  }

  if (oldCount >= GetArraySize())
  {
    if (!GrowArrayBy(1))
      return false;
  }
  // else the array is already large enough

  int32_t slide = oldCount - aIndex;
  if (0 != slide)
  {
    // Slide data over to make room for the insertion
    memmove(mImpl->mArray + aIndex + 1, mImpl->mArray + aIndex,
            slide * sizeof(mImpl->mArray[0]));
  }

  mImpl->mArray[aIndex] = aElement;
  mImpl->mCount++;

#if DEBUG_VOIDARRAY
  if (mImpl->mCount > mMaxCount &&
      mImpl->mCount < (int32_t)(sizeof(MaxElements)/sizeof(MaxElements[0])))
  {
    MaxElements[mImpl->mCount]++;
    MaxElements[mMaxCount]--;
    mMaxCount = mImpl->mCount;
  }
#endif

  return true;
}

bool nsVoidArray::InsertElementsAt(const nsVoidArray& other, int32_t aIndex)
{
  int32_t oldCount = Count();
  int32_t otherCount = other.Count();

  NS_ASSERTION(aIndex >= 0,"InsertElementsAt(negative index)");
  if (uint32_t(aIndex) > uint32_t(oldCount))
  {
    // An invalid index causes the insertion to fail
    // Invalid indexes are ones that are more than one entry past the end of
    // the array (i.e., they can append).
    return false;
  }

  if (oldCount + otherCount > GetArraySize())
  {
    if (!GrowArrayBy(otherCount))
      return false;;
  }
  // else the array is already large enough

  int32_t slide = oldCount - aIndex;
  if (0 != slide)
  {
    // Slide data over to make room for the insertion
    memmove(mImpl->mArray + aIndex + otherCount, mImpl->mArray + aIndex,
            slide * sizeof(mImpl->mArray[0]));
  }

  for (int32_t i = 0; i < otherCount; i++)
  {
    // copy all the elements (destroys aIndex)
    mImpl->mArray[aIndex++] = other.mImpl->mArray[i];
    mImpl->mCount++;
  }

#if DEBUG_VOIDARRAY
  if (mImpl->mCount > mMaxCount &&
      mImpl->mCount < (int32_t)(sizeof(MaxElements)/sizeof(MaxElements[0])))
  {
    MaxElements[mImpl->mCount]++;
    MaxElements[mMaxCount]--;
    mMaxCount = mImpl->mCount;
  }
#endif

  return true;
}

bool nsVoidArray::ReplaceElementAt(void* aElement, int32_t aIndex)
{
  NS_ASSERTION(aIndex >= 0,"ReplaceElementAt(negative index)");
  if (aIndex < 0)
    return false;

  // Unlike InsertElementAt, ReplaceElementAt can implicitly add more
  // than just the one element to the array.
  if (uint32_t(aIndex) >= uint32_t(GetArraySize()))
  {
    int32_t oldCount = Count();
    int32_t requestedCount = aIndex + 1;
    int32_t growDelta = requestedCount - oldCount;

    // frees old mImpl IF this succeeds
    if (!GrowArrayBy(growDelta))
      return false;
  }

  mImpl->mArray[aIndex] = aElement;
  if (aIndex >= mImpl->mCount)
  {
    // Make sure that any entries implicitly added to the array by this
    // ReplaceElementAt are cleared to 0.  Some users of this assume that.
    // This code means we don't have to memset when we allocate an array.
    if (aIndex > mImpl->mCount) // note: not >=
    {
      // For example, if mCount is 2, and we do a ReplaceElementAt for
      // element[5], then we need to set three entries ([2], [3], and [4])
      // to 0.
      memset(&mImpl->mArray[mImpl->mCount], 0,
             (aIndex - mImpl->mCount) * sizeof(mImpl->mArray[0]));
    }
    
     mImpl->mCount = aIndex + 1;

#if DEBUG_VOIDARRAY
     if (mImpl->mCount > mMaxCount &&
         mImpl->mCount < (int32_t)(sizeof(MaxElements)/sizeof(MaxElements[0])))
     {
       MaxElements[mImpl->mCount]++;
       MaxElements[mMaxCount]--;
       mMaxCount = mImpl->mCount;
     }
#endif
  }

  return true;
}

// useful for doing LRU arrays
bool nsVoidArray::MoveElement(int32_t aFrom, int32_t aTo)
{
  void *tempElement;

  if (aTo == aFrom)
    return true;

  NS_ASSERTION(aTo >= 0 && aFrom >= 0,"MoveElement(negative index)");
  if (aTo >= Count() || aFrom >= Count())
  {
    // can't extend the array when moving an element.  Also catches mImpl = null
    return false;
  }
  tempElement = mImpl->mArray[aFrom];

  if (aTo < aFrom)
  {
    // Moving one element closer to the head; the elements inbetween move down
    memmove(mImpl->mArray + aTo + 1, mImpl->mArray + aTo,
            (aFrom-aTo) * sizeof(mImpl->mArray[0]));
    mImpl->mArray[aTo] = tempElement;
  }
  else // already handled aFrom == aTo
  {
    // Moving one element closer to the tail; the elements inbetween move up
    memmove(mImpl->mArray + aFrom, mImpl->mArray + aFrom + 1,
            (aTo-aFrom) * sizeof(mImpl->mArray[0]));
    mImpl->mArray[aTo] = tempElement;
  }

  return true;
}

void nsVoidArray::RemoveElementsAt(int32_t aIndex, int32_t aCount)
{
  int32_t oldCount = Count();
  NS_ASSERTION(aIndex >= 0,"RemoveElementsAt(negative index)");
  if (uint32_t(aIndex) >= uint32_t(oldCount))
  {
    return;
  }
  // Limit to available entries starting at aIndex
  if (aCount + aIndex > oldCount)
    aCount = oldCount - aIndex;

  // We don't need to move any elements if we're removing the
  // last element in the array
  if (aIndex < (oldCount - aCount))
  {
    memmove(mImpl->mArray + aIndex, mImpl->mArray + aIndex + aCount,
            (oldCount - (aIndex + aCount)) * sizeof(mImpl->mArray[0]));
  }

  mImpl->mCount -= aCount;
  return;
}

bool nsVoidArray::RemoveElement(void* aElement)
{
  int32_t theIndex = IndexOf(aElement);
  if (theIndex != -1)
  {
    RemoveElementAt(theIndex);
    return true;
  }

  return false;
}

void nsVoidArray::Clear()
{
  if (mImpl)
  {
    mImpl->mCount = 0;
  }
}

void nsVoidArray::Compact()
{
  if (mImpl)
  {
    // XXX NOTE: this is quite inefficient in many cases if we're only
    // compacting by a little, but some callers care more about memory use.
    int32_t count = Count();
    if (GetArraySize() > count)
    {
      SizeTo(Count());
    }
  }
}

// Needed because we want to pass the pointer to the item in the array
// to the comparator function, not a pointer to the pointer in the array.
struct VoidArrayComparatorContext {
  nsVoidArrayComparatorFunc mComparatorFunc;
  void* mData;
};

static int
VoidArrayComparator(const void* aElement1, const void* aElement2, void* aData)
{
  VoidArrayComparatorContext* ctx = static_cast<VoidArrayComparatorContext*>(aData);
  return (*ctx->mComparatorFunc)(*static_cast<void* const*>(aElement1),
                                 *static_cast<void* const*>(aElement2),
                                  ctx->mData);
}

void nsVoidArray::Sort(nsVoidArrayComparatorFunc aFunc, void* aData)
{
  if (mImpl && mImpl->mCount > 1)
  {
    VoidArrayComparatorContext ctx = {aFunc, aData};
    NS_QuickSort(mImpl->mArray, mImpl->mCount, sizeof(mImpl->mArray[0]),
                 VoidArrayComparator, &ctx);
  }
}

bool nsVoidArray::EnumerateForwards(nsVoidArrayEnumFunc aFunc, void* aData)
{
  int32_t index = -1;
  bool    running = true;

  if (mImpl) {
    while (running && (++index < mImpl->mCount)) {
      running = (*aFunc)(mImpl->mArray[index], aData);
    }
  }
  return running;
}

bool nsVoidArray::EnumerateForwards(nsVoidArrayEnumFuncConst aFunc,
                                    void* aData) const
{
  int32_t index = -1;
  bool    running = true;

  if (mImpl) {
    while (running && (++index < mImpl->mCount)) {
      running = (*aFunc)(mImpl->mArray[index], aData);
    }
  }
  return running;
}

bool nsVoidArray::EnumerateBackwards(nsVoidArrayEnumFunc aFunc, void* aData)
{
  bool    running = true;

  if (mImpl)
  {
    int32_t index = Count();
    while (running && (0 <= --index))
    {
      running = (*aFunc)(mImpl->mArray[index], aData);
    }
  }
  return running;
}

struct SizeOfElementIncludingThisData
{
  size_t mSize;
  nsVoidArraySizeOfElementIncludingThisFunc mSizeOfElementIncludingThis;
  nsMallocSizeOfFun mMallocSizeOf;
  void *mData;      // the arg passed by the user
};

static bool
SizeOfElementIncludingThisEnumerator(const void *aElement, void *aData)
{
  SizeOfElementIncludingThisData *d = (SizeOfElementIncludingThisData *)aData;
  d->mSize += d->mSizeOfElementIncludingThis(aElement, d->mMallocSizeOf, d->mData);
  return true;
}

size_t
nsVoidArray::SizeOfExcludingThis(
  nsVoidArraySizeOfElementIncludingThisFunc aSizeOfElementIncludingThis,
  nsMallocSizeOfFun aMallocSizeOf, void* aData) const
{
  size_t n = 0;
  // Measure the element storage.
  if (mImpl) {
    n += aMallocSizeOf(mImpl);
  }
  // Measure things pointed to by the elements.
  if (aSizeOfElementIncludingThis) { 
    SizeOfElementIncludingThisData data2 =
      { 0, aSizeOfElementIncludingThis, aMallocSizeOf, aData };
    EnumerateForwards(SizeOfElementIncludingThisEnumerator, &data2);
    n += data2.mSize;
  }
  return n;
}

//----------------------------------------------------------------------
// NOTE: nsSmallVoidArray elements MUST all have the low bit as 0.
// This means that normally it's only used for pointers, and in particular
// structures or objects.
nsSmallVoidArray::~nsSmallVoidArray()
{
  if (HasSingle())
  {
    // Have to null out mImpl before the nsVoidArray dtor runs.
    mImpl = nullptr;
  }
}

nsSmallVoidArray& 
nsSmallVoidArray::operator=(nsSmallVoidArray& other)
{
  int32_t count = other.Count();
  switch (count) {
    case 0:
      Clear();
      break;
    case 1:
      Clear();
      AppendElement(other.ElementAt(0));
      break;
    default:
      if (GetArraySize() >= count || SizeTo(count)) {
        *AsArray() = *other.AsArray();
      }
  }
    
  return *this;
}

int32_t
nsSmallVoidArray::GetArraySize() const
{
  if (HasSingle()) {
    return 1;
  }

  return AsArray()->GetArraySize();
}

int32_t
nsSmallVoidArray::Count() const
{
  if (HasSingle()) {
    return 1;
  }

  return AsArray()->Count();
}

void*
nsSmallVoidArray::FastElementAt(int32_t aIndex) const
{
  NS_ASSERTION(0 <= aIndex && aIndex < Count(), "nsSmallVoidArray::FastElementAt: index out of range");

  if (HasSingle()) {
    return GetSingle();
  }

  return AsArray()->FastElementAt(aIndex);
}

int32_t
nsSmallVoidArray::IndexOf(void* aPossibleElement) const
{
  if (HasSingle()) {
    return aPossibleElement == GetSingle() ? 0 : -1;
  }

  return AsArray()->IndexOf(aPossibleElement);
}

bool
nsSmallVoidArray::InsertElementAt(void* aElement, int32_t aIndex)
{
  NS_ASSERTION(!(NS_PTR_TO_INT32(aElement) & 0x1),
               "Attempt to add element with 0x1 bit set to nsSmallVoidArray");

  if (aIndex == 0 && IsEmpty()) {
    SetSingle(aElement);

    return true;
  }

  if (!EnsureArray()) {
    return false;
  }

  return AsArray()->InsertElementAt(aElement, aIndex);
}

bool nsSmallVoidArray::InsertElementsAt(const nsVoidArray &aOther, int32_t aIndex)
{
#ifdef DEBUG  
  for (int i = 0; i < aOther.Count(); i++) {
    NS_ASSERTION(!(NS_PTR_TO_INT32(aOther.ElementAt(i)) & 0x1),
                 "Attempt to add element with 0x1 bit set to nsSmallVoidArray");
  }
#endif

  if (aIndex == 0 && IsEmpty() && aOther.Count() == 1) {
    SetSingle(aOther.FastElementAt(0));
    
    return true;
  }

  if (!EnsureArray()) {
    return false;
  }

  return AsArray()->InsertElementsAt(aOther, aIndex);
}

bool
nsSmallVoidArray::ReplaceElementAt(void* aElement, int32_t aIndex)
{
  NS_ASSERTION(!(NS_PTR_TO_INT32(aElement) & 0x1),
               "Attempt to add element with 0x1 bit set to nsSmallVoidArray");

  if (aIndex == 0 && (IsEmpty() || HasSingle())) {
    SetSingle(aElement);
    
    return true;
  }

  if (!EnsureArray()) {
    return false;
  }

  return AsArray()->ReplaceElementAt(aElement, aIndex);
}

bool
nsSmallVoidArray::AppendElement(void* aElement)
{
  NS_ASSERTION(!(NS_PTR_TO_INT32(aElement) & 0x1),
               "Attempt to add element with 0x1 bit set to nsSmallVoidArray");

  if (IsEmpty()) {
    SetSingle(aElement);
    
    return true;
  }

  if (!EnsureArray()) {
    return false;
  }

  return AsArray()->AppendElement(aElement);
}

bool
nsSmallVoidArray::RemoveElement(void* aElement)
{
  if (HasSingle()) {
    if (aElement == GetSingle()) {
      mImpl = nullptr;
      return true;
    }
    
    return false;
  }

  return AsArray()->RemoveElement(aElement);
}

void
nsSmallVoidArray::RemoveElementAt(int32_t aIndex)
{
  if (HasSingle()) {
    if (aIndex == 0) {
      mImpl = nullptr;
    }
    
    return;
  }

  AsArray()->RemoveElementAt(aIndex);
}

void
nsSmallVoidArray::RemoveElementsAt(int32_t aIndex, int32_t aCount)
{
  if (HasSingle()) {
    if (aIndex == 0) {
      if (aCount > 0) {
        mImpl = nullptr;
      }
    }

    return;
  }

  AsArray()->RemoveElementsAt(aIndex, aCount);
}

void
nsSmallVoidArray::Clear()
{
  if (HasSingle()) {
    mImpl = nullptr;
  }
  else {
    AsArray()->Clear();
  }
}

bool
nsSmallVoidArray::SizeTo(int32_t aMin)
{
  if (!HasSingle()) {
    return AsArray()->SizeTo(aMin);
  }

  if (aMin <= 0) {
    mImpl = nullptr;

    return true;
  }

  if (aMin == 1) {
    return true;
  }

  void* single = GetSingle();
  mImpl = nullptr;
  if (!AsArray()->SizeTo(aMin)) {
    SetSingle(single);

    return false;
  }

  AsArray()->AppendElement(single);

  return true;
}

void
nsSmallVoidArray::Compact()
{
  if (!HasSingle()) {
    AsArray()->Compact();
  }
}

void
nsSmallVoidArray::Sort(nsVoidArrayComparatorFunc aFunc, void* aData)
{
  if (!HasSingle()) {
    AsArray()->Sort(aFunc,aData);
  }
}

bool
nsSmallVoidArray::EnumerateForwards(nsVoidArrayEnumFunc aFunc, void* aData)
{
  if (HasSingle()) {
    return (*aFunc)(GetSingle(), aData);
  }
  return AsArray()->EnumerateForwards(aFunc,aData);
}

bool
nsSmallVoidArray::EnumerateBackwards(nsVoidArrayEnumFunc aFunc, void* aData)
{
  if (HasSingle()) {
    return (*aFunc)(GetSingle(), aData);
  }
  return AsArray()->EnumerateBackwards(aFunc,aData);
}

bool
nsSmallVoidArray::EnsureArray()
{
  if (!HasSingle()) {
    return true;
  }

  void* single = GetSingle();
  mImpl = nullptr;
  if (!AsArray()->AppendElement(single)) {
    SetSingle(single);

    return false;
  }

  return true;
}