DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Implementation

Mercurial (5b81998bb7ab)

VCS Links

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780
/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim:set ts=2 sw=2 sts=2 et cindent: */
/* This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */

#ifndef nsTArray_h__
#define nsTArray_h__

#include "nsTArrayForwardDeclare.h"
#include "mozilla/Assertions.h"
#include "mozilla/TypeTraits.h"
#include "mozilla/Util.h"

#include <string.h>

#include "nsCycleCollectionNoteChild.h"
#include "nsAlgorithm.h"
#include "nscore.h"
#include "nsQuickSort.h"
#include "nsDebug.h"
#include "nsTraceRefcnt.h"
#include NEW_H

namespace JS {
template <class T>
class Heap;
} /* namespace JS */

//
// nsTArray is a resizable array class, like std::vector.
//
// Unlike std::vector, which follows C++'s construction/destruction rules,
// nsTArray assumes that your "T" can be memmoved()'ed safely.
//
// The public classes defined in this header are
//
//   nsTArray<T>,
//   FallibleTArray<T>,
//   nsAutoTArray<T, N>, and
//   AutoFallibleTArray<T, N>.
//
// nsTArray and nsAutoTArray are infallible; if one tries to make an allocation
// which fails, it crashes the program.  In contrast, FallibleTArray and
// AutoFallibleTArray are fallible; if you use one of these classes, you must
// check the return values of methods such as Append() which may allocate.  If
// in doubt, choose an infallible type.
//
// InfallibleTArray and AutoInfallibleTArray are aliases for nsTArray and
// nsAutoTArray.
//
// If you just want to declare the nsTArray types (e.g., if you're in a header
// file and don't need the full nsTArray definitions) consider including
// nsTArrayForwardDeclare.h instead of nsTArray.h.
//
// The template parameter (i.e., T in nsTArray<T>) specifies the type of the
// elements and has the following requirements:
//
//   T MUST be safely memmove()'able.
//   T MUST define a copy-constructor.
//   T MAY define operator< for sorting.
//   T MAY define operator== for searching.
//
// (Note that the memmove requirement may be relaxed for certain types - see
// nsTArray_CopyElements below.)
//
// For methods taking a Comparator instance, the Comparator must be a class
// defining the following methods:
//
//   class Comparator {
//     public:
//       /** @return True if the elements are equals; false otherwise. */
//       bool Equals(const elem_type& a, const Item& b) const;
//
//       /** @return True if (a < b); false otherwise. */
//       bool LessThan(const elem_type& a, const Item& b) const;
//   };
//
// The Equals method is used for searching, and the LessThan method is used for
// searching and sorting.  The |Item| type above can be arbitrary, but must
// match the Item type passed to the sort or search function.
//


//
// nsTArrayFallibleResult and nsTArrayInfallibleResult types are proxy types
// which are used because you cannot use a templated type which is bound to
// void as an argument to a void function.  In order to work around that, we
// encode either a void or a boolean inside these proxy objects, and pass them
// to the aforementioned function instead, and then use the type information to
// decide what to do in the function.
//
// Note that public nsTArray methods should never return a proxy type.  Such
// types are only meant to be used in the internal nsTArray helper methods.
// Public methods returning non-proxy types cannot be called from other
// nsTArray members.
//
struct nsTArrayFallibleResult
{
  // Note: allows implicit conversions from and to bool
  nsTArrayFallibleResult(bool result)
    : mResult(result)
  {}

  operator bool() {
    return mResult;
  }

private:
  bool mResult;
};

struct nsTArrayInfallibleResult
{
};

//
// nsTArray*Allocators must all use the same |free()|, to allow swap()'ing
// between fallible and infallible variants.
//

struct nsTArrayFallibleAllocatorBase
{
  typedef bool ResultType;
  typedef nsTArrayFallibleResult ResultTypeProxy;

  static ResultType Result(ResultTypeProxy result) {
    return result;
  }

  static bool Successful(ResultTypeProxy result) {
    return result;
  }

  static ResultTypeProxy SuccessResult() {
    return true;
  }

  static ResultTypeProxy FailureResult() {
    return false;
  }

  static ResultType ConvertBoolToResultType(bool aValue) {
    return aValue;
  }
};

struct nsTArrayInfallibleAllocatorBase
{
  typedef void ResultType;
  typedef nsTArrayInfallibleResult ResultTypeProxy;

  static ResultType Result(ResultTypeProxy result) {
  }

  static bool Successful(ResultTypeProxy) {
    return true;
  }

  static ResultTypeProxy SuccessResult() {
    return ResultTypeProxy();
  }

  static ResultTypeProxy FailureResult() {
    NS_RUNTIMEABORT("Infallible nsTArray should never fail");
    return ResultTypeProxy();
  }

  static ResultType ConvertBoolToResultType(bool aValue) {
    if (!aValue) {
      NS_RUNTIMEABORT("infallible nsTArray should never convert false to ResultType");
    }
  }
};

#if defined(MOZALLOC_HAVE_XMALLOC)
#include "mozilla/mozalloc_abort.h"

struct nsTArrayFallibleAllocator : nsTArrayFallibleAllocatorBase
{
  static void* Malloc(size_t size) {
    return moz_malloc(size);
  }

  static void* Realloc(void* ptr, size_t size) {
    return moz_realloc(ptr, size);
  }

  static void Free(void* ptr) {
    moz_free(ptr);
  }

  static void SizeTooBig() {
  }
};

struct nsTArrayInfallibleAllocator : nsTArrayInfallibleAllocatorBase
{
  static void* Malloc(size_t size) {
    return moz_xmalloc(size);
  }

  static void* Realloc(void* ptr, size_t size) {
    return moz_xrealloc(ptr, size);
  }

  static void Free(void* ptr) {
    moz_free(ptr);
  }

  static void SizeTooBig() {
    mozalloc_abort("Trying to allocate an infallible array that's too big");
  }
};

#else
#include <stdlib.h>

struct nsTArrayFallibleAllocator : nsTArrayFallibleAllocatorBase
{
  static void* Malloc(size_t size) {
    return malloc(size);
  }

  static void* Realloc(void* ptr, size_t size) {
    return realloc(ptr, size);
  }

  static void Free(void* ptr) {
    free(ptr);
  }

  static void SizeTooBig() {
  }
};

struct nsTArrayInfallibleAllocator : nsTArrayInfallibleAllocatorBase
{
  static void* Malloc(size_t size) {
    void* ptr = malloc(size);
    if (MOZ_UNLIKELY(!ptr)) {
      HandleOOM();
    }
    return ptr;
  }

  static void* Realloc(void* ptr, size_t size) {
    void* newptr = realloc(ptr, size);
    if (MOZ_UNLIKELY(!ptr && size)) {
      HandleOOM();
    }
    return newptr;
  }

  static void Free(void* ptr) {
    free(ptr);
  }

  static void SizeTooBig() {
    HandleOOM();
  }

private:
  static void HandleOOM() {
    fputs("Out of memory allocating nsTArray buffer.\n", stderr);
    MOZ_CRASH();
    MOZ_NOT_REACHED();
  }
};

#endif

// nsTArray_base stores elements into the space allocated beyond
// sizeof(*this).  This is done to minimize the size of the nsTArray
// object when it is empty.
struct NS_COM_GLUE nsTArrayHeader
{
  static nsTArrayHeader sEmptyHdr;

  uint32_t mLength;
  uint32_t mCapacity : 31;
  uint32_t mIsAutoArray : 1;
};

// This class provides a SafeElementAt method to nsTArray<T*> which does
// not take a second default value parameter.
template <class E, class Derived>
struct nsTArray_SafeElementAtHelper
{
  typedef E*       elem_type;
  typedef uint32_t index_type;

  // No implementation is provided for these two methods, and that is on
  // purpose, since we don't support these functions on non-pointer type
  // instantiations.
  elem_type& SafeElementAt(index_type i);
  const elem_type& SafeElementAt(index_type i) const;
};

template <class E, class Derived>
struct nsTArray_SafeElementAtHelper<E*, Derived>
{
  typedef E*       elem_type;
  typedef uint32_t index_type;

  elem_type SafeElementAt(index_type i) {
    return static_cast<Derived*> (this)->SafeElementAt(i, nullptr);
  }

  const elem_type SafeElementAt(index_type i) const {
    return static_cast<const Derived*> (this)->SafeElementAt(i, nullptr);
  }
};

// E is the base type that the smart pointer is templated over; the
// smart pointer can act as E*.
template <class E, class Derived>
struct nsTArray_SafeElementAtSmartPtrHelper
{
  typedef E*       elem_type;
  typedef uint32_t index_type;

  elem_type SafeElementAt(index_type i) {
    return static_cast<Derived*> (this)->SafeElementAt(i, nullptr);
  }

  const elem_type SafeElementAt(index_type i) const {
    return static_cast<const Derived*> (this)->SafeElementAt(i, nullptr);
  }
};

template <class T> class nsCOMPtr;

template <class E, class Derived>
struct nsTArray_SafeElementAtHelper<nsCOMPtr<E>, Derived> :
  public nsTArray_SafeElementAtSmartPtrHelper<E, Derived>
{
};

template <class T> class nsRefPtr;

template <class E, class Derived>
struct nsTArray_SafeElementAtHelper<nsRefPtr<E>, Derived> :
  public nsTArray_SafeElementAtSmartPtrHelper<E, Derived>
{
};

//
// This class serves as a base class for nsTArray.  It shouldn't be used
// directly.  It holds common implementation code that does not depend on the
// element type of the nsTArray.
//
template<class Alloc, class Copy>
class nsTArray_base
{
  // Allow swapping elements with |nsTArray_base|s created using a
  // different allocator.  This is kosher because all allocators use
  // the same free().
  template<class Allocator, class Copier>
  friend class nsTArray_base;

protected:
  typedef nsTArrayHeader Header;

public:
  typedef uint32_t size_type;
  typedef uint32_t index_type;

  // @return The number of elements in the array.
  size_type Length() const {
    return mHdr->mLength;
  }

  // @return True if the array is empty or false otherwise.
  bool IsEmpty() const {
    return Length() == 0;
  }

  // @return The number of elements that can fit in the array without forcing
  // the array to be re-allocated.  The length of an array is always less
  // than or equal to its capacity.
  size_type Capacity() const {
    return mHdr->mCapacity;
  }

#ifdef DEBUG
  void* DebugGetHeader() const {
    return mHdr;
  }
#endif

protected:
  nsTArray_base();

  ~nsTArray_base();

  // Resize the storage if necessary to achieve the requested capacity.
  // @param capacity     The requested number of array elements.
  // @param elemSize     The size of an array element.
  // @return False if insufficient memory is available; true otherwise.
  typename Alloc::ResultTypeProxy EnsureCapacity(size_type capacity, size_type elemSize);

  // Resize the storage to the minimum required amount.
  // @param elemSize     The size of an array element.
  // @param elemAlign    The alignment in bytes of an array element.
  void ShrinkCapacity(size_type elemSize, size_t elemAlign);

  // This method may be called to resize a "gap" in the array by shifting
  // elements around.  It updates mLength appropriately.  If the resulting
  // array has zero elements, then the array's memory is free'd.
  // @param start        The starting index of the gap.
  // @param oldLen       The current length of the gap.
  // @param newLen       The desired length of the gap.
  // @param elemSize     The size of an array element.
  // @param elemAlign    The alignment in bytes of an array element.
  void ShiftData(index_type start, size_type oldLen, size_type newLen,
                 size_type elemSize, size_t elemAlign);

  // This method increments the length member of the array's header.
  // Note that mHdr may actually be sEmptyHdr in the case where a
  // zero-length array is inserted into our array. But then n should
  // always be 0.
  void IncrementLength(uint32_t n) {
    if (mHdr == EmptyHdr()) {
      if (MOZ_UNLIKELY(n != 0)) {
        // Writing a non-zero length to the empty header would be extremely bad.
        MOZ_CRASH();
      }
    } else {
      mHdr->mLength += n;
    }
  }

  // This method inserts blank slots into the array.
  // @param index the place to insert the new elements. This must be no
  //              greater than the current length of the array.
  // @param count the number of slots to insert
  // @param elementSize the size of an array element.
  // @param elemAlign the alignment in bytes of an array element.
  bool InsertSlotsAt(index_type index, size_type count,
                       size_type elementSize, size_t elemAlign);

protected:
  template<class Allocator>
  typename Alloc::ResultTypeProxy
  SwapArrayElements(nsTArray_base<Allocator, Copy>& other,
                    size_type elemSize,
                    size_t elemAlign);

  // This is an RAII class used in SwapArrayElements.
  class IsAutoArrayRestorer {
    public:
      IsAutoArrayRestorer(nsTArray_base<Alloc, Copy> &array, size_t elemAlign);
      ~IsAutoArrayRestorer();

    private:
      nsTArray_base<Alloc, Copy> &mArray;
      size_t mElemAlign;
      bool mIsAuto;
  };

  // Helper function for SwapArrayElements. Ensures that if the array
  // is an nsAutoTArray that it doesn't use the built-in buffer.
  bool EnsureNotUsingAutoArrayBuffer(size_type elemSize);

  // Returns true if this nsTArray is an nsAutoTArray with a built-in buffer.
  bool IsAutoArray() const {
    return mHdr->mIsAutoArray;
  }

  // Returns a Header for the built-in buffer of this nsAutoTArray.
  Header* GetAutoArrayBuffer(size_t elemAlign) {
    MOZ_ASSERT(IsAutoArray(), "Should be an auto array to call this");
    return GetAutoArrayBufferUnsafe(elemAlign);
  }
  const Header* GetAutoArrayBuffer(size_t elemAlign) const {
    MOZ_ASSERT(IsAutoArray(), "Should be an auto array to call this");
    return GetAutoArrayBufferUnsafe(elemAlign);
  }

  // Returns a Header for the built-in buffer of this nsAutoTArray, but doesn't
  // assert that we are an nsAutoTArray.
  Header* GetAutoArrayBufferUnsafe(size_t elemAlign) {
    return const_cast<Header*>(static_cast<const nsTArray_base<Alloc, Copy>*>(this)->
                               GetAutoArrayBufferUnsafe(elemAlign));
  }
  const Header* GetAutoArrayBufferUnsafe(size_t elemAlign) const;

  // Returns true if this is an nsAutoTArray and it currently uses the
  // built-in buffer to store its elements.
  bool UsesAutoArrayBuffer() const;

  // The array's elements (prefixed with a Header).  This pointer is never
  // null.  If the array is empty, then this will point to sEmptyHdr.
  Header *mHdr;

  Header* Hdr() const {
    return mHdr;
  }

  Header** PtrToHdr() {
    return &mHdr;
  }

  static Header* EmptyHdr() {
    return &Header::sEmptyHdr;
  }
};

//
// This class defines convenience functions for element specific operations.
// Specialize this template if necessary.
//
template<class E>
class nsTArrayElementTraits
{
public:
  // Invoke the default constructor in place.
  static inline void Construct(E *e) {
    // Do NOT call "E()"! That triggers C++ "default initialization"
    // which zeroes out POD ("plain old data") types such as regular
    // ints.  We don't want that because it can be a performance issue
    // and people don't expect it; nsTArray should work like a regular
    // C/C++ array in this respect.
    new (static_cast<void *>(e)) E;
  }
  // Invoke the copy-constructor in place.
  template<class A>
  static inline void Construct(E *e, const A &arg) {
    new (static_cast<void *>(e)) E(arg);
  }
  // Invoke the destructor in place.
  static inline void Destruct(E *e) {
    e->~E();
  }
};

// The default comparator used by nsTArray
template<class A, class B>
class nsDefaultComparator
{
public:
  bool Equals(const A& a, const B& b) const {
    return a == b;
  }
  bool LessThan(const A& a, const B& b) const {
    return a < b;
  }
};

template <class E> class InfallibleTArray;
template <class E> class FallibleTArray;

template<bool IsPod, bool IsSameType>
struct AssignRangeAlgorithm {
  template<class Item, class ElemType, class IndexType, class SizeType>
  static void implementation(ElemType* elements, IndexType start,
                             SizeType count, const Item *values) {
    ElemType *iter = elements + start, *end = iter + count;
    for (; iter != end; ++iter, ++values)
      nsTArrayElementTraits<ElemType>::Construct(iter, *values);
  }
};

template<>
struct AssignRangeAlgorithm<true, true> {
  template<class Item, class ElemType, class IndexType, class SizeType>
  static void implementation(ElemType* elements, IndexType start,
                             SizeType count, const Item *values) {
    memcpy(elements + start, values, count * sizeof(ElemType));
  }
};

//
// Normally elements are copied with memcpy and memmove, but for some element
// types that is problematic.  The nsTArray_CopyElements template class can be
// specialized to ensure that copying calls constructors and destructors
// instead, as is done below for JS::Heap<E> elements.
//

//
// A class that defines how to copy elements using memcpy/memmove.
//
struct nsTArray_CopyWithMemutils
{
  const static bool allowRealloc = true;

  static void CopyElements(void* dest, const void* src, size_t count, size_t elemSize) {
    memcpy(dest, src, count * elemSize);
  }

  static void CopyHeaderAndElements(void* dest, const void* src, size_t count, size_t elemSize) {
    memcpy(dest, src, sizeof(nsTArrayHeader) + count * elemSize);
  }

  static void MoveElements(void* dest, const void* src, size_t count, size_t elemSize) {
    memmove(dest, src, count * elemSize);
  }
};

//
// A template class that defines how to copy elements calling their constructors
// and destructors appropriately.
//
template <class ElemType>
struct nsTArray_CopyWithConstructors
{
  typedef nsTArrayElementTraits<ElemType> traits;

  const static bool allowRealloc = false;

  static void CopyElements(void* dest, void* src, size_t count, size_t elemSize) {
    ElemType* destElem = static_cast<ElemType*>(dest);
    ElemType* srcElem = static_cast<ElemType*>(src);
    ElemType* destElemEnd = destElem + count;
#ifdef DEBUG
    ElemType* srcElemEnd = srcElem + count;
    MOZ_ASSERT(srcElemEnd <= destElem || srcElemEnd > destElemEnd);
#endif
    while (destElem != destElemEnd) {
      traits::Construct(destElem, *srcElem);
      traits::Destruct(srcElem);
      ++destElem;
      ++srcElem;
    }
  }

  static void CopyHeaderAndElements(void* dest, void* src, size_t count, size_t elemSize) {
    nsTArrayHeader* destHeader = static_cast<nsTArrayHeader*>(dest);
    nsTArrayHeader* srcHeader = static_cast<nsTArrayHeader*>(src);
    *destHeader = *srcHeader;
    CopyElements(static_cast<uint8_t*>(dest) + sizeof(nsTArrayHeader),
                 static_cast<uint8_t*>(src) + sizeof(nsTArrayHeader),
                 count, elemSize);
  }

  static void MoveElements(void* dest, void* src, size_t count, size_t elemSize) {
    ElemType* destElem = static_cast<ElemType*>(dest);
    ElemType* srcElem = static_cast<ElemType*>(src);
    ElemType* destElemEnd = destElem + count;
    ElemType* srcElemEnd = srcElem + count;
    if (destElem == srcElem) {
      return;  // In practice, we don't do this.
    } else if (srcElemEnd > destElem && srcElemEnd < destElemEnd) {
      while (destElemEnd != destElem) {
        --destElemEnd;
        --srcElemEnd;
        traits::Construct(destElemEnd, *srcElemEnd);
        traits::Destruct(srcElem);
      }
    } else {
      CopyElements(dest, src, count, elemSize);
    }
  }
};

//
// The default behaviour is to use memcpy/memmove for everything.
//
template <class E>
struct nsTArray_CopyElements : public nsTArray_CopyWithMemutils {};

//
// JS::Heap<E> elements require constructors/destructors to be called and so is
// specialized here.
//
template <class E>
struct nsTArray_CopyElements<JS::Heap<E> > : public nsTArray_CopyWithConstructors<E> {};

//
// Base class for nsTArray_Impl that is templated on element type and derived
// nsTArray_Impl class, to allow extra conversions to be added for specific
// types.
//
template <class E, class Derived>
struct nsTArray_TypedBase : public nsTArray_SafeElementAtHelper<E, Derived> {};

//
// Specialization of nsTArray_TypedBase for arrays containing JS::Heap<E>
// elements.
//
// These conversions are safe because JS::Heap<E> and E share the same
// representation, and since the result of the conversions are const references
// we won't miss any barriers.
//
// The static_cast is necessary to obtain the correct address for the derived
// class since we are a base class used in multiple inheritance.
//
template <class E, class Derived>
struct nsTArray_TypedBase<JS::Heap<E>, Derived>
 : public nsTArray_SafeElementAtHelper<JS::Heap<E>, Derived>
{
  operator const nsTArray<E>& () {
    MOZ_STATIC_ASSERT(sizeof(E) == sizeof(JS::Heap<E>),
                      "JS::Heap<E> must be binary compatible with E.");
    Derived* self = static_cast<Derived*>(this);
    return *reinterpret_cast<nsTArray<E> *>(self);
  }

  operator const FallibleTArray<E>& () {
    Derived* self = static_cast<Derived*>(this);
    return *reinterpret_cast<FallibleTArray<E> *>(self);
  }
};


//
// nsTArray_Impl contains most of the guts supporting nsTArray, FallibleTArray,
// nsAutoTArray, and AutoFallibleTArray.
//
// The only situation in which you might need to use nsTArray_Impl in your code
// is if you're writing code which mutates a TArray which may or may not be
// infallible.
//
// Code which merely reads from a TArray which may or may not be infallible can
// simply cast the TArray to |const nsTArray&|; both fallible and infallible
// TArrays can be cast to |const nsTArray&|.
//
template<class E, class Alloc>
class nsTArray_Impl : public nsTArray_base<Alloc, nsTArray_CopyElements<E> >,
                      public nsTArray_TypedBase<E, nsTArray_Impl<E, Alloc> >
{
public:
  typedef nsTArray_CopyElements<E>                   copy_type;
  typedef nsTArray_base<Alloc, copy_type>            base_type;
  typedef typename base_type::size_type              size_type;
  typedef typename base_type::index_type             index_type;
  typedef E                                          elem_type;
  typedef nsTArray_Impl<E, Alloc>                    self_type;
  typedef nsTArrayElementTraits<E>                   elem_traits;
  typedef nsTArray_SafeElementAtHelper<E, self_type> safeelementat_helper_type;

  using safeelementat_helper_type::SafeElementAt;
  using base_type::EmptyHdr;

  // A special value that is used to indicate an invalid or unknown index
  // into the array.
  enum {
    NoIndex = index_type(-1)
  };

  using base_type::Length;

  //
  // Finalization method
  //

  ~nsTArray_Impl() { Clear(); }

  //
  // Initialization methods
  //

  nsTArray_Impl() {}

  // Initialize this array and pre-allocate some number of elements.
  explicit nsTArray_Impl(size_type capacity) {
    SetCapacity(capacity);
  }

  // The array's copy-constructor performs a 'deep' copy of the given array.
  // @param other  The array object to copy.
  //
  // It's very important that we declare this method as taking |const
  // self_type&| as opposed to taking |const nsTArray_Impl<E, OtherAlloc>| for
  // an arbitrary OtherAlloc.
  //
  // If we don't declare a constructor taking |const self_type&|, C++ generates
  // a copy-constructor for this class which merely copies the object's
  // members, which is obviously wrong.
  //
  // You can pass an nsTArray_Impl<E, OtherAlloc> to this method because
  // nsTArray_Impl<E, X> can be cast to const nsTArray_Impl<E, Y>&.  So the
  // effect on the API is the same as if we'd declared this method as taking
  // |const nsTArray_Impl<E, OtherAlloc>&|.
  explicit nsTArray_Impl(const self_type& other) {
    AppendElements(other);
  }

  // Allow converting to a const array with a different kind of allocator,
  // Since the allocator doesn't matter for const arrays
  template<typename Allocator>
  operator const nsTArray_Impl<E, Allocator>&() const {
    return *reinterpret_cast<const nsTArray_Impl<E, Allocator>*>(this);
  }
  // And we have to do this for our subclasses too
  operator const nsTArray<E>&() const {
    return *reinterpret_cast<const InfallibleTArray<E>*>(this);
  }
  operator const FallibleTArray<E>&() const {
    return *reinterpret_cast<const FallibleTArray<E>*>(this);
  }

  // The array's assignment operator performs a 'deep' copy of the given
  // array.  It is optimized to reuse existing storage if possible.
  // @param other  The array object to copy.
  self_type& operator=(const self_type& other) {
    ReplaceElementsAt(0, Length(), other.Elements(), other.Length());
    return *this;
  }

  // Return true if this array has the same length and the same
  // elements as |other|.
  template<typename Allocator>
  bool operator==(const nsTArray_Impl<E, Allocator>& other) const {
    size_type len = Length();
    if (len != other.Length())
      return false;

    // XXX std::equal would be as fast or faster here
    for (index_type i = 0; i < len; ++i)
      if (!(operator[](i) == other[i]))
        return false;

    return true;
  }

  // Return true if this array does not have the same length and the same
  // elements as |other|.
  bool operator!=(const self_type& other) const {
    return !operator==(other);
  }

  template<typename Allocator>
  self_type& operator=(const nsTArray_Impl<E, Allocator>& other) {
    ReplaceElementsAt(0, Length(), other.Elements(), other.Length());
    return *this;
  }

  // @return The amount of memory used by this nsTArray_Impl, excluding
  // sizeof(*this).
  size_t SizeOfExcludingThis(nsMallocSizeOfFun mallocSizeOf) const {
    if (this->UsesAutoArrayBuffer() || Hdr() == EmptyHdr())
      return 0;
    return mallocSizeOf(this->Hdr());
  }

  // @return The amount of memory used by this nsTArray_Impl, including
  // sizeof(*this).
  size_t SizeOfIncludingThis(nsMallocSizeOfFun mallocSizeOf) const {
    return mallocSizeOf(this) + SizeOfExcludingThis(mallocSizeOf);
  }

  //
  // Accessor methods
  //

  // This method provides direct access to the array elements.
  // @return A pointer to the first element of the array.  If the array is
  // empty, then this pointer must not be dereferenced.
  elem_type* Elements() {
    return reinterpret_cast<elem_type *>(Hdr() + 1);
  }

  // This method provides direct, readonly access to the array elements.
  // @return A pointer to the first element of the array.  If the array is
  // empty, then this pointer must not be dereferenced.
  const elem_type* Elements() const {
    return reinterpret_cast<const elem_type *>(Hdr() + 1);
  }

  // This method provides direct access to the i'th element of the array.
  // The given index must be within the array bounds.
  // @param i  The index of an element in the array.
  // @return   A reference to the i'th element of the array.
  elem_type& ElementAt(index_type i) {
    MOZ_ASSERT(i < Length(), "invalid array index");
    return Elements()[i];
  }

  // This method provides direct, readonly access to the i'th element of the
  // array.  The given index must be within the array bounds.
  // @param i  The index of an element in the array.
  // @return   A const reference to the i'th element of the array.
  const elem_type& ElementAt(index_type i) const {
    MOZ_ASSERT(i < Length(), "invalid array index");
    return Elements()[i];
  }

  // This method provides direct access to the i'th element of the array in
  // a bounds safe manner. If the requested index is out of bounds the
  // provided default value is returned.
  // @param i  The index of an element in the array.
  // @param def The value to return if the index is out of bounds.
  elem_type& SafeElementAt(index_type i, elem_type& def) {
    return i < Length() ? Elements()[i] : def;
  }

  // This method provides direct access to the i'th element of the array in
  // a bounds safe manner. If the requested index is out of bounds the
  // provided default value is returned.
  // @param i  The index of an element in the array.
  // @param def The value to return if the index is out of bounds.
  const elem_type& SafeElementAt(index_type i, const elem_type& def) const {
    return i < Length() ? Elements()[i] : def;
  }

  // Shorthand for ElementAt(i)
  elem_type& operator[](index_type i) {
    return ElementAt(i);
  }

  // Shorthand for ElementAt(i)
  const elem_type& operator[](index_type i) const {
    return ElementAt(i);
  }

  // Shorthand for ElementAt(length - 1)
  elem_type& LastElement() {
    return ElementAt(Length() - 1);
  }

  // Shorthand for ElementAt(length - 1)
  const elem_type& LastElement() const {
    return ElementAt(Length() - 1);
  }

  // Shorthand for SafeElementAt(length - 1, def)
  elem_type& SafeLastElement(elem_type& def) {
    return SafeElementAt(Length() - 1, def);
  }

  // Shorthand for SafeElementAt(length - 1, def)
  const elem_type& SafeLastElement(const elem_type& def) const {
    return SafeElementAt(Length() - 1, def);
  }

  //
  // Search methods
  //

  // This method searches for the first element in this array that is equal
  // to the given element.
  // @param item   The item to search for.
  // @param comp   The Comparator used to determine element equality.
  // @return       true if the element was found.
  template<class Item, class Comparator>
  bool Contains(const Item& item, const Comparator& comp) const {
    return IndexOf(item, 0, comp) != NoIndex;
  }

  // This method searches for the first element in this array that is equal
  // to the given element.  This method assumes that 'operator==' is defined
  // for elem_type.
  // @param item   The item to search for.
  // @return       true if the element was found.
  template<class Item>
  bool Contains(const Item& item) const {
    return IndexOf(item) != NoIndex;
  }

  // This method searches for the offset of the first element in this
  // array that is equal to the given element.
  // @param item   The item to search for.
  // @param start  The index to start from.
  // @param comp   The Comparator used to determine element equality.
  // @return       The index of the found element or NoIndex if not found.
  template<class Item, class Comparator>
  index_type IndexOf(const Item& item, index_type start,
                     const Comparator& comp) const {
    const elem_type* iter = Elements() + start, *end = Elements() + Length();
    for (; iter != end; ++iter) {
      if (comp.Equals(*iter, item))
        return index_type(iter - Elements());
    }
    return NoIndex;
  }

  // This method searches for the offset of the first element in this
  // array that is equal to the given element.  This method assumes
  // that 'operator==' is defined for elem_type.
  // @param item   The item to search for.
  // @param start  The index to start from.
  // @return       The index of the found element or NoIndex if not found.
  template<class Item>
  index_type IndexOf(const Item& item, index_type start = 0) const {
    return IndexOf(item, start, nsDefaultComparator<elem_type, Item>());
  }

  // This method searches for the offset of the last element in this
  // array that is equal to the given element.
  // @param item   The item to search for.
  // @param start  The index to start from.  If greater than or equal to the
  //               length of the array, then the entire array is searched.
  // @param comp   The Comparator used to determine element equality.
  // @return       The index of the found element or NoIndex if not found.
  template<class Item, class Comparator>
  index_type LastIndexOf(const Item& item, index_type start,
                         const Comparator& comp) const {
    size_type endOffset = start >= Length() ? Length() : start + 1;
    const elem_type* end = Elements() - 1, *iter = end + endOffset;
    for (; iter != end; --iter) {
      if (comp.Equals(*iter, item))
        return index_type(iter - Elements());
    }
    return NoIndex;
  }

  // This method searches for the offset of the last element in this
  // array that is equal to the given element.  This method assumes
  // that 'operator==' is defined for elem_type.
  // @param item   The item to search for.
  // @param start  The index to start from.  If greater than or equal to the
  //               length of the array, then the entire array is searched.
  // @return       The index of the found element or NoIndex if not found.
  template<class Item>
  index_type LastIndexOf(const Item& item,
                         index_type start = NoIndex) const {
    return LastIndexOf(item, start, nsDefaultComparator<elem_type, Item>());
  }

  // This method searches for the offset for the element in this array
  // that is equal to the given element. The array is assumed to be sorted.
  // @param item   The item to search for.
  // @param comp   The Comparator used.
  // @return       The index of the found element or NoIndex if not found.
  template<class Item, class Comparator>
  index_type BinaryIndexOf(const Item& item, const Comparator& comp) const {
    index_type low = 0, high = Length();
    while (high > low) {
      index_type mid = (high + low) >> 1;
      if (comp.Equals(ElementAt(mid), item))
        return mid;
      if (comp.LessThan(ElementAt(mid), item))
        low = mid + 1;
      else
        high = mid;
    }
    return NoIndex;
  }

  // This method searches for the offset for the element in this array
  // that is equal to the given element. The array is assumed to be sorted.
  // This method assumes that 'operator==' and 'operator<' are defined.
  // @param item   The item to search for.
  // @return       The index of the found element or NoIndex if not found.
  template<class Item>
  index_type BinaryIndexOf(const Item& item) const {
    return BinaryIndexOf(item, nsDefaultComparator<elem_type, Item>());
  }

  //
  // Mutation methods
  //

  // This method replaces a range of elements in this array.
  // @param start     The starting index of the elements to replace.
  // @param count     The number of elements to replace.  This may be zero to
  //                  insert elements without removing any existing elements.
  // @param array     The values to copy into this array.  Must be non-null,
  //                  and these elements must not already exist in the array
  //                  being modified.
  // @param arrayLen  The number of values to copy into this array.
  // @return          A pointer to the new elements in the array, or null if
  //                  the operation failed due to insufficient memory.
  template<class Item>
  elem_type *ReplaceElementsAt(index_type start, size_type count,
                               const Item* array, size_type arrayLen) {
    // Adjust memory allocation up-front to catch errors.
    if (!Alloc::Successful(this->EnsureCapacity(Length() + arrayLen - count, sizeof(elem_type))))
      return nullptr;
    DestructRange(start, count);
    this->ShiftData(start, count, arrayLen, sizeof(elem_type), MOZ_ALIGNOF(elem_type));
    AssignRange(start, arrayLen, array);
    return Elements() + start;
  }

  // A variation on the ReplaceElementsAt method defined above.
  template<class Item>
  elem_type *ReplaceElementsAt(index_type start, size_type count,
                               const nsTArray<Item>& array) {
    return ReplaceElementsAt(start, count, array.Elements(), array.Length());
  }

  // A variation on the ReplaceElementsAt method defined above.
  template<class Item>
  elem_type *ReplaceElementsAt(index_type start, size_type count,
                               const Item& item) {
    return ReplaceElementsAt(start, count, &item, 1);
  }

  // A variation on the ReplaceElementsAt method defined above.
  template<class Item>
  elem_type *ReplaceElementAt(index_type index, const Item& item) {
    return ReplaceElementsAt(index, 1, &item, 1);
  }

  // A variation on the ReplaceElementsAt method defined above.
  template<class Item>
  elem_type *InsertElementsAt(index_type index, const Item* array,
                              size_type arrayLen) {
    return ReplaceElementsAt(index, 0, array, arrayLen);
  }

  // A variation on the ReplaceElementsAt method defined above.
  template<class Item, class Allocator>
  elem_type *InsertElementsAt(index_type index, const nsTArray_Impl<Item, Allocator>& array) {
    return ReplaceElementsAt(index, 0, array.Elements(), array.Length());
  }

  // A variation on the ReplaceElementsAt method defined above.
  template<class Item>
  elem_type *InsertElementAt(index_type index, const Item& item) {
    return ReplaceElementsAt(index, 0, &item, 1);
  }

  // Insert a new element without copy-constructing. This is useful to avoid
  // temporaries.
  // @return A pointer to the newly inserted element, or null on OOM.
  elem_type* InsertElementAt(index_type index) {
    if (!Alloc::Successful(this->EnsureCapacity(Length() + 1, sizeof(elem_type))))
      return nullptr;
    this->ShiftData(index, 0, 1, sizeof(elem_type), MOZ_ALIGNOF(elem_type));
    elem_type *elem = Elements() + index;
    elem_traits::Construct(elem);
    return elem;
  }

  // This method searches for the smallest index of an element that is strictly
  // greater than |item|.  If |item| is inserted at this index, the array will
  // remain sorted and |item| would come after all elements that are equal to
  // it.  If |item| is greater than or equal to all elements in the array, the
  // array length is returned.
  //
  // Note that consumers who want to know whether there are existing items equal
  // to |item| in the array can just check that the return value here is > 0 and
  // indexing into the previous slot gives something equal to |item|.
  //
  //
  // @param item   The item to search for.
  // @param comp   The Comparator used.
  // @return        The index of greatest element <= to |item|
  // @precondition The array is sorted
  template<class Item, class Comparator>
  index_type
  IndexOfFirstElementGt(const Item& item,
                        const Comparator& comp) const {
    // invariant: low <= [idx] <= high
    index_type low = 0, high = Length();
    while (high > low) {
      index_type mid = (high + low) >> 1;
      // Comparators are not required to provide a LessThan(Item&, elem_type),
      // so we can't do comp.LessThan(item, ElementAt(mid)).
      if (comp.LessThan(ElementAt(mid), item) ||
          comp.Equals(ElementAt(mid), item)) {
        // item >= ElementAt(mid), so our desired index is at least mid+1.
        low = mid + 1;
      } else {
        // item < ElementAt(mid).  Our desired index is therefore at most mid.
        high = mid;
      }
    }
    MOZ_ASSERT(high == low);
    return low;
  }

  // A variation on the IndexOfFirstElementGt method defined above.
  template<class Item>
  index_type
  IndexOfFirstElementGt(const Item& item) const {
    return IndexOfFirstElementGt(item, nsDefaultComparator<elem_type, Item>());
  }

  // Inserts |item| at such an index to guarantee that if the array
  // was previously sorted, it will remain sorted after this
  // insertion.
  template<class Item, class Comparator>
  elem_type *InsertElementSorted(const Item& item, const Comparator& comp) {
    index_type index = IndexOfFirstElementGt(item, comp);
    return InsertElementAt(index, item);
  }

  // A variation on the InsertElementSorted method defined above.
  template<class Item>
  elem_type *InsertElementSorted(const Item& item) {
    return InsertElementSorted(item, nsDefaultComparator<elem_type, Item>());
  }

  // This method appends elements to the end of this array.
  // @param array     The elements to append to this array.
  // @param arrayLen  The number of elements to append to this array.
  // @return          A pointer to the new elements in the array, or null if
  //                  the operation failed due to insufficient memory.
  template<class Item>
  elem_type *AppendElements(const Item* array, size_type arrayLen) {
    if (!Alloc::Successful(this->EnsureCapacity(Length() + arrayLen, sizeof(elem_type))))
      return nullptr;
    index_type len = Length();
    AssignRange(len, arrayLen, array);
    this->IncrementLength(arrayLen);
    return Elements() + len;
  }

  // A variation on the AppendElements method defined above.
  template<class Item, class Allocator>
  elem_type *AppendElements(const nsTArray_Impl<Item, Allocator>& array) {
    return AppendElements(array.Elements(), array.Length());
  }

  // A variation on the AppendElements method defined above.
  template<class Item>
  elem_type *AppendElement(const Item& item) {
    return AppendElements(&item, 1);
  }

  // Append new elements without copy-constructing. This is useful to avoid
  // temporaries.
  // @return A pointer to the newly appended elements, or null on OOM.
  elem_type *AppendElements(size_type count) {
    if (!Alloc::Successful(this->EnsureCapacity(Length() + count, sizeof(elem_type))))
      return nullptr;
    elem_type *elems = Elements() + Length();
    size_type i;
    for (i = 0; i < count; ++i) {
      elem_traits::Construct(elems + i);
    }
    this->IncrementLength(count);
    return elems;
  }

  // Append a new element without copy-constructing. This is useful to avoid
  // temporaries.
  // @return A pointer to the newly appended element, or null on OOM.
  elem_type *AppendElement() {
    return AppendElements(1);
  }

  // Move all elements from another array to the end of this array without
  // calling copy constructors or destructors.
  // @return A pointer to the newly appended elements, or null on OOM.
  template<class Item, class Allocator>
  elem_type *MoveElementsFrom(nsTArray_Impl<Item, Allocator>& array) {
    MOZ_ASSERT(&array != this, "argument must be different array");
    index_type len = Length();
    index_type otherLen = array.Length();
    if (!Alloc::Successful(this->EnsureCapacity(len + otherLen, sizeof(elem_type))))
      return nullptr;
    copy_type::CopyElements(Elements() + len, array.Elements(), otherLen, sizeof(elem_type));
    this->IncrementLength(otherLen);
    array.ShiftData(0, otherLen, 0, sizeof(elem_type), MOZ_ALIGNOF(elem_type));
    return Elements() + len;
  }

  // This method removes a range of elements from this array.
  // @param start  The starting index of the elements to remove.
  // @param count  The number of elements to remove.
  void RemoveElementsAt(index_type start, size_type count) {
    MOZ_ASSERT(count == 0 || start < Length(), "Invalid start index");
    MOZ_ASSERT(start + count <= Length(), "Invalid length");
    // Check that the previous assert didn't overflow
    MOZ_ASSERT(start <= start + count, "Start index plus length overflows");
    DestructRange(start, count);
    this->ShiftData(start, count, 0, sizeof(elem_type), MOZ_ALIGNOF(elem_type));
  }

  // A variation on the RemoveElementsAt method defined above.
  void RemoveElementAt(index_type index) {
    RemoveElementsAt(index, 1);
  }

  // A variation on the RemoveElementsAt method defined above.
  void Clear() {
    RemoveElementsAt(0, Length());
  }

  // This helper function combines IndexOf with RemoveElementAt to "search
  // and destroy" the first element that is equal to the given element.
  // @param item  The item to search for.
  // @param comp  The Comparator used to determine element equality.
  // @return true if the element was found
  template<class Item, class Comparator>
  bool RemoveElement(const Item& item, const Comparator& comp) {
    index_type i = IndexOf(item, 0, comp);
    if (i == NoIndex)
      return false;

    RemoveElementAt(i);
    return true;
  }

  // A variation on the RemoveElement method defined above that assumes
  // that 'operator==' is defined for elem_type.
  template<class Item>
  bool RemoveElement(const Item& item) {
    return RemoveElement(item, nsDefaultComparator<elem_type, Item>());
  }

  // This helper function combines IndexOfFirstElementGt with
  // RemoveElementAt to "search and destroy" the last element that
  // is equal to the given element.
  // @param item  The item to search for.
  // @param comp  The Comparator used to determine element equality.
  // @return true if the element was found
  template<class Item, class Comparator>
  bool RemoveElementSorted(const Item& item, const Comparator& comp) {
    index_type index = IndexOfFirstElementGt(item, comp);
    if (index > 0 && comp.Equals(ElementAt(index - 1), item)) {
      RemoveElementAt(index - 1);
      return true;
    }
    return false;
  }

  // A variation on the RemoveElementSorted method defined above.
  template<class Item>
  bool RemoveElementSorted(const Item& item) {
    return RemoveElementSorted(item, nsDefaultComparator<elem_type, Item>());
  }

  // This method causes the elements contained in this array and the given
  // array to be swapped.
  template<class Allocator>
  typename Alloc::ResultType
  SwapElements(nsTArray_Impl<E, Allocator>& other) {
    return Alloc::Result(this->SwapArrayElements(other, sizeof(elem_type),
                                                 MOZ_ALIGNOF(elem_type)));
  }

  //
  // Allocation
  //

  // This method may increase the capacity of this array object by the
  // specified amount.  This method may be called in advance of several
  // AppendElement operations to minimize heap re-allocations.  This method
  // will not reduce the number of elements in this array.
  // @param capacity  The desired capacity of this array.
  // @return True if the operation succeeded; false if we ran out of memory
  typename Alloc::ResultType SetCapacity(size_type capacity) {
    return Alloc::Result(this->EnsureCapacity(capacity, sizeof(elem_type)));
  }

  // This method modifies the length of the array.  If the new length is
  // larger than the existing length of the array, then new elements will be
  // constructed using elem_type's default constructor.  Otherwise, this call
  // removes elements from the array (see also RemoveElementsAt).
  // @param newLen  The desired length of this array.
  // @return        True if the operation succeeded; false otherwise.
  // See also TruncateLength if the new length is guaranteed to be
  // smaller than the old.
  bool SetLength(size_type newLen) {
    size_type oldLen = Length();
    if (newLen > oldLen) {
      return InsertElementsAt(oldLen, newLen - oldLen) != nullptr;
    }

    TruncateLength(newLen);
    return true;
  }

  // This method modifies the length of the array, but may only be
  // called when the new length is shorter than the old.  It can
  // therefore be called when elem_type has no default constructor,
  // unlike SetLength.  It removes elements from the array (see also
  // RemoveElementsAt).
  // @param newLen  The desired length of this array.
  void TruncateLength(size_type newLen) {
    size_type oldLen = Length();
    NS_ABORT_IF_FALSE(newLen <= oldLen,
                      "caller should use SetLength instead");
    RemoveElementsAt(newLen, oldLen - newLen);
  }

  // This method ensures that the array has length at least the given
  // length.  If the current length is shorter than the given length,
  // then new elements will be constructed using elem_type's default
  // constructor.
  // @param minLen  The desired minimum length of this array.
  // @return        True if the operation succeeded; false otherwise.
typename Alloc::ResultType EnsureLengthAtLeast(size_type minLen) {
    size_type oldLen = Length();
    if (minLen > oldLen) {
      return Alloc::ConvertBoolToResultType(!!InsertElementsAt(oldLen, minLen - oldLen));
    }
    return Alloc::ConvertBoolToResultType(true);
  }

  // This method inserts elements into the array, constructing
  // them using elem_type's default constructor.
  // @param index the place to insert the new elements. This must be no
  //              greater than the current length of the array.
  // @param count the number of elements to insert
  elem_type *InsertElementsAt(index_type index, size_type count) {
    if (!base_type::InsertSlotsAt(index, count, sizeof(elem_type), MOZ_ALIGNOF(elem_type))) {
      return nullptr;
    }

    // Initialize the extra array elements
    elem_type *iter = Elements() + index, *end = iter + count;
    for (; iter != end; ++iter) {
      elem_traits::Construct(iter);
    }

    return Elements() + index;
  }

  // This method inserts elements into the array, constructing them
  // elem_type's copy constructor (or whatever one-arg constructor
  // happens to match the Item type).
  // @param index the place to insert the new elements. This must be no
  //              greater than the current length of the array.
  // @param count the number of elements to insert.
  // @param item the value to use when constructing the new elements.
  template<class Item>
  elem_type *InsertElementsAt(index_type index, size_type count,
                              const Item& item) {
    if (!base_type::InsertSlotsAt(index, count, sizeof(elem_type), MOZ_ALIGNOF(elem_type))) {
      return nullptr;
    }

    // Initialize the extra array elements
    elem_type *iter = Elements() + index, *end = iter + count;
    for (; iter != end; ++iter) {
      elem_traits::Construct(iter, item);
    }

    return Elements() + index;
  }

  // This method may be called to minimize the memory used by this array.
  void Compact() {
    ShrinkCapacity(sizeof(elem_type), MOZ_ALIGNOF(elem_type));
  }

  //
  // Sorting
  //

  // This function is meant to be used with the NS_QuickSort function.  It
  // maps the callback API expected by NS_QuickSort to the Comparator API
  // used by nsTArray_Impl.  See nsTArray_Impl::Sort.
  template<class Comparator>
  static int Compare(const void* e1, const void* e2, void *data) {
    const Comparator* c = reinterpret_cast<const Comparator*>(data);
    const elem_type* a = static_cast<const elem_type*>(e1);
    const elem_type* b = static_cast<const elem_type*>(e2);
    return c->LessThan(*a, *b) ? -1 : (c->Equals(*a, *b) ? 0 : 1);
  }

  // This method sorts the elements of the array.  It uses the LessThan
  // method defined on the given Comparator object to collate elements.
  // @param comp The Comparator used to collate elements.
  template<class Comparator>
  void Sort(const Comparator& comp) {
    NS_QuickSort(Elements(), Length(), sizeof(elem_type),
                 Compare<Comparator>, const_cast<Comparator*>(&comp));
  }

  // A variation on the Sort method defined above that assumes that
  // 'operator<' is defined for elem_type.
  void Sort() {
    Sort(nsDefaultComparator<elem_type, elem_type>());
  }

  //
  // Binary Heap
  //

  // Sorts the array into a binary heap.
  // @param comp The Comparator used to create the heap
  template<class Comparator>
  void MakeHeap(const Comparator& comp) {
    if (!Length()) {
      return;
    }
    index_type index = (Length() - 1) / 2;
    do {
      SiftDown(index, comp);
    } while (index--);
  }

  // A variation on the MakeHeap method defined above.
  void MakeHeap() {
    MakeHeap(nsDefaultComparator<elem_type, elem_type>());
  }

  // Adds an element to the heap
  // @param item The item to add
  // @param comp The Comparator used to sift-up the item
  template<class Item, class Comparator>
  elem_type *PushHeap(const Item& item, const Comparator& comp) {
    if (!base_type::InsertSlotsAt(Length(), 1, sizeof(elem_type), MOZ_ALIGNOF(elem_type))) {
      return nullptr;
    }
    // Sift up the new node
    elem_type *elem = Elements();
    index_type index = Length() - 1;
    index_type parent_index = (index - 1) / 2;
    while (index && comp.LessThan(elem[parent_index], item)) {
      elem[index] = elem[parent_index];
      index = parent_index;
      parent_index = (index - 1) / 2;
    }
    elem[index] = item;
    return &elem[index];
  }

  // A variation on the PushHeap method defined above.
  template<class Item>
  elem_type *PushHeap(const Item& item) {
    return PushHeap(item, nsDefaultComparator<elem_type, Item>());
  }

  // Delete the root of the heap and restore the heap
  // @param comp The Comparator used to restore the heap
  template<class Comparator>
  void PopHeap(const Comparator& comp) {
    if (!Length()) {
      return;
    }
    index_type last_index = Length() - 1;
    elem_type *elem = Elements();
    elem[0] = elem[last_index];
    TruncateLength(last_index);
    if (Length()) {
      SiftDown(0, comp);
    }
  }

  // A variation on the PopHeap method defined above.
  void PopHeap() {
    PopHeap(nsDefaultComparator<elem_type, elem_type>());
  }

protected:
  using base_type::Hdr;
  using base_type::ShrinkCapacity;

  // This method invokes elem_type's destructor on a range of elements.
  // @param start  The index of the first element to destroy.
  // @param count  The number of elements to destroy.
  void DestructRange(index_type start, size_type count) {
    elem_type *iter = Elements() + start, *end = iter + count;
    for (; iter != end; ++iter) {
      elem_traits::Destruct(iter);
    }
  }

  // This method invokes elem_type's copy-constructor on a range of elements.
  // @param start   The index of the first element to construct.
  // @param count   The number of elements to construct.
  // @param values  The array of elements to copy.
  template<class Item>
  void AssignRange(index_type start, size_type count,
                   const Item *values) {
    AssignRangeAlgorithm<mozilla::IsPod<Item>::value,
                         mozilla::IsSame<Item, elem_type>::value>
      ::implementation(Elements(), start, count, values);
  }

  // This method sifts an item down to its proper place in a binary heap
  // @param index The index of the node to start sifting down from
  // @param comp  The Comparator used to sift down
  template<class Comparator>
  void SiftDown(index_type index, const Comparator& comp) {
    elem_type *elem = Elements();
    elem_type item = elem[index];
    index_type end = Length() - 1;
    while ((index * 2) < end) {
      const index_type left = (index * 2) + 1;
      const index_type right = (index * 2) + 2;
      const index_type parent_index = index;
      if (comp.LessThan(item, elem[left])) {
        if (left < end &&
            comp.LessThan(elem[left], elem[right])) {
          index = right;
        } else {
          index = left;
        }
      } else if (left < end &&
                 comp.LessThan(item, elem[right])) {
        index = right;
      } else {
        break;
      }
      elem[parent_index] = elem[index];
    }
    elem[index] = item;
  }
};

template <typename E, typename Alloc>
inline void
ImplCycleCollectionUnlink(nsTArray_Impl<E, Alloc>& aField)
{
  aField.Clear();
}

template <typename E, typename Alloc>
inline void
ImplCycleCollectionTraverse(nsCycleCollectionTraversalCallback& aCallback,
                            nsTArray_Impl<E, Alloc>& aField,
                            const char* aName,
                            uint32_t aFlags = 0)
{
  aFlags |= CycleCollectionEdgeNameArrayFlag;
  size_t length = aField.Length();
  for (size_t i = 0; i < length; ++i) {
    ImplCycleCollectionTraverse(aCallback, aField[i], aName, aFlags);
  }
}

//
// nsTArray is an infallible vector class.  See the comment at the top of this
// file for more details.
//
template <class E>
class nsTArray : public nsTArray_Impl<E, nsTArrayInfallibleAllocator>
{
public:
  typedef nsTArray_Impl<E, nsTArrayInfallibleAllocator> base_type;
  typedef nsTArray<E>                                   self_type;
  typedef typename base_type::size_type                 size_type;

  nsTArray() {}
  explicit nsTArray(size_type capacity) : base_type(capacity) {}
  explicit nsTArray(const nsTArray& other) : base_type(other) {}

  template<class Allocator>
  explicit nsTArray(const nsTArray_Impl<E, Allocator>& other) : base_type(other) {}
};

//
// FallibleTArray is a fallible vector class.
//
template <class E>
class FallibleTArray : public nsTArray_Impl<E, nsTArrayFallibleAllocator>
{
public:
  typedef nsTArray_Impl<E, nsTArrayFallibleAllocator>   base_type;
  typedef FallibleTArray<E>                             self_type;
  typedef typename base_type::size_type                 size_type;

  FallibleTArray() {}
  explicit FallibleTArray(size_type capacity) : base_type(capacity) {}
  explicit FallibleTArray(const FallibleTArray<E>& other) : base_type(other) {}

  template<class Allocator>
  explicit FallibleTArray(const nsTArray_Impl<E, Allocator>& other) : base_type(other) {}
};

//
// nsAutoArrayBase is a base class for AutoFallibleTArray and nsAutoTArray.
// You shouldn't use this class directly.
//
template <class TArrayBase, uint32_t N>
class nsAutoArrayBase : public TArrayBase
{
public:
  typedef nsAutoArrayBase<TArrayBase, N> self_type;
  typedef TArrayBase base_type;
  typedef typename base_type::Header Header;
  typedef typename base_type::elem_type elem_type;

  template<typename Allocator>
  self_type& operator=(const nsTArray_Impl<elem_type, Allocator>& other) {
    base_type::operator=(other);
    return *this;
  }

protected:
  nsAutoArrayBase() {
    Init();
  }

  // We need this constructor because nsAutoTArray and friends all have
  // implicit copy-constructors.  If we don't have this method, those
  // copy-constructors will call nsAutoArrayBase's implicit copy-constructor,
  // which won't call Init() and set up the auto buffer!
  nsAutoArrayBase(const TArrayBase &aOther) {
    Init();
    AppendElements(aOther);
  }

private:
  // nsTArray_base casts itself as an nsAutoArrayBase in order to get a pointer
  // to mAutoBuf.
  template<class Allocator, class Copier>
  friend class nsTArray_base;

  void Init() {
    MOZ_STATIC_ASSERT(MOZ_ALIGNOF(elem_type) <= 8,
                      "can't handle alignments greater than 8, "
                      "see nsTArray_base::UsesAutoArrayBuffer()");
    // Temporary work around for VS2012 RC compiler crash
    Header** phdr = base_type::PtrToHdr();
    *phdr = reinterpret_cast<Header*>(&mAutoBuf);
    (*phdr)->mLength = 0;
    (*phdr)->mCapacity = N;
    (*phdr)->mIsAutoArray = 1;

    MOZ_ASSERT(base_type::GetAutoArrayBuffer(MOZ_ALIGNOF(elem_type)) ==
               reinterpret_cast<Header*>(&mAutoBuf),
               "GetAutoArrayBuffer needs to be fixed");
  }

  // Declare mAutoBuf aligned to the maximum of the header's alignment and
  // elem_type's alignment.  We need to use a union rather than
  // MOZ_ALIGNED_DECL because GCC is picky about what goes into
  // __attribute__((aligned(foo))).
  union {
    char mAutoBuf[sizeof(nsTArrayHeader) + N * sizeof(elem_type)];
    // Do the max operation inline to ensure that it is a compile-time constant.
    mozilla::AlignedElem<(MOZ_ALIGNOF(Header) > MOZ_ALIGNOF(elem_type))
                         ? MOZ_ALIGNOF(Header) : MOZ_ALIGNOF(elem_type)> mAlign;
  };
};

//
// nsAutoTArray<E, N> is an infallible vector class with N elements of inline
// storage.  If you try to store more than N elements inside an
// nsAutoTArray<E, N>, we'll call malloc() and store them all on the heap.
//
// Note that you can cast an nsAutoTArray<E, N> to
// |const AutoFallibleTArray<E, N>&|.
//
template<class E, uint32_t N>
class nsAutoTArray : public nsAutoArrayBase<nsTArray<E>, N>
{
  typedef nsAutoTArray<E, N> self_type;
  typedef nsAutoArrayBase<nsTArray<E>, N> Base;

public:
  nsAutoTArray() {}

  template<typename Allocator>
  explicit nsAutoTArray(const nsTArray_Impl<E, Allocator>& other) {
    Base::AppendElements(other);
  }

  operator const AutoFallibleTArray<E, N>&() const {
    return *reinterpret_cast<const AutoFallibleTArray<E, N>*>(this);
  }
};

//
// AutoFallibleTArray<E, N> is a fallible vector class with N elements of
// inline storage.
//
template<class E, uint32_t N>
class AutoFallibleTArray : public nsAutoArrayBase<FallibleTArray<E>, N>
{
  typedef AutoFallibleTArray<E, N> self_type;
  typedef nsAutoArrayBase<FallibleTArray<E>, N> Base;

public:
  AutoFallibleTArray() {}

  template<typename Allocator>
  explicit AutoFallibleTArray(const nsTArray_Impl<E, Allocator>& other) {
    Base::AppendElements(other);
  }

  operator const nsAutoTArray<E, N>&() const {
    return *reinterpret_cast<const nsAutoTArray<E, N>*>(this);
  }
};

// Assert that nsAutoTArray doesn't have any extra padding inside.
//
// It's important that the data stored in this auto array takes up a multiple of
// 8 bytes; e.g. nsAutoTArray<uint32_t, 1> wouldn't work.  Since nsAutoTArray
// contains a pointer, its size must be a multiple of alignof(void*).  (This is
// because any type may be placed into an array, and there's no padding between
// elements of an array.)  The compiler pads the end of the structure to
// enforce this rule.
//
// If we used nsAutoTArray<uint32_t, 1> below, this assertion would fail on a
// 64-bit system, where the compiler inserts 4 bytes of padding at the end of
// the auto array to make its size a multiple of alignof(void*) == 8 bytes.

MOZ_STATIC_ASSERT(sizeof(nsAutoTArray<uint32_t, 2>) ==
                  sizeof(void*) + sizeof(nsTArrayHeader) + sizeof(uint32_t) * 2,
                  "nsAutoTArray shouldn't contain any extra padding, "
                  "see the comment");

// Definitions of nsTArray_Impl methods
#include "nsTArray-inl.h"

#endif  // nsTArray_h__