DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Mercurial (5b81998bb7ab)

VCS Links

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765
/* This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */

/*

  A program that attempts to find an optimal function ordering for an
  executable using a genetic algorithm whose fitness function is
  computed using runtime profile information.

  The fitness function was inspired by Nat Friedman's <nat@nat.org>
  work on `grope':

    _GNU Rope - A Subroutine Position Optimizer_
    <http://www.hungry.com/~shaver/grope/grope.ps>

  Brendan Eich <brendan@mozilla.org> told me tales about Scott Furman
  doing something like this, which sort of made me want to try it.

  As far as I can tell, it would take a lot of computers a lot of time
  to actually find something useful on a non-trivial program using
  this.

 */

#include <assert.h>
#include <fstream>
#include <hash_map>
#include <vector>
#include <limits.h>
#include <unistd.h>
#include <stdio.h>
#include <fcntl.h>

#include "elf_symbol_table.h"

#define _GNU_SOURCE
#include <getopt.h>

#define PAGE_SIZE 4096
#define SYMBOL_ALIGN 4

//----------------------------------------------------------------------

class call_pair
{
public:
    const Elf32_Sym *m_lo;
    const Elf32_Sym *m_hi;

    call_pair(const Elf32_Sym *site1, const Elf32_Sym *site2)
    {
        if (site1 < site2) {
            m_lo = site1;
            m_hi = site2;
        }
        else {
            m_hi = site1;
            m_lo = site2;
        }
    }

    friend bool
    operator==(const call_pair &lhs, const call_pair &rhs)
    {
        return (lhs.m_lo == rhs.m_lo) && (lhs.m_hi == rhs.m_hi);
    }
};

// Straight outta plhash.c!
#define GOLDEN_RATIO 0x9E3779B9U

template<>
struct hash<call_pair>
{
    size_t operator()(const call_pair &pair) const
    {
        size_t h = (reinterpret_cast<size_t>(pair.m_hi) >> 4);
        h += (reinterpret_cast<size_t>(pair.m_lo) >> 4);
        h *= GOLDEN_RATIO;
        return h;
    }
};

//----------------------------------------------------------------------

struct hash<const Elf32_Sym *>
{
    size_t operator()(const Elf32_Sym *sym) const
    {
        return (reinterpret_cast<size_t>(sym) >> 4) * GOLDEN_RATIO;
    }
};

//----------------------------------------------------------------------

typedef hash_map<call_pair, unsigned int> call_graph_t;
call_graph_t call_graph;

typedef hash_map<const Elf32_Sym *, unsigned int> histogram_t;
histogram_t histogram;
long long total_calls = 0;

elf_symbol_table symtab;

bool opt_debug = false;
int opt_generations = 10;
int opt_mutate = 0;
const char *opt_out = "order.out";
int opt_population_size = 100;
int opt_tick = 0;
bool opt_verbose = false;
int opt_window = 0;

static struct option long_options[] = {
    { "debug",       no_argument,       0, 'd' },
    { "exe",         required_argument, 0, 'e' },
    { "generations", required_argument, 0, 'g' },
    { "help",        no_argument,       0, '?' },
    { "mutate",      required_argument, 0, 'm' },
    { "out",         required_argument, 0, 'o' },
    { "population",  required_argument, 0, 'p' },
    { "seed",        required_argument, 0, 's' },
    { "tick",        optional_argument, 0, 't' },
    { "verbose",     no_argument,       0, 'v' },
    { "window",      required_argument, 0, 'w' },
    { 0,             0,                 0, 0   }
};

//----------------------------------------------------------------------

static long long
llrand()
{
    long long result;
    result = (long long) rand();
    result *= (long long) (unsigned int) (RAND_MAX + 1);
    result += (long long) rand();
    return result;
}

//----------------------------------------------------------------------

class symbol_order {
public:
    typedef vector<const Elf32_Sym *> vector_t;
    typedef long long score_t;

    static const score_t max_score;

    /**
     * A vector of symbols that is this ordering.
     */
    vector_t m_ordering;

    /**
     * The symbol ordering's score.
     */
    score_t  m_score;

    symbol_order() : m_score(0) {}

    /**
     * ``Shuffle'' a symbol ordering, randomizing it.
     */
    void shuffle();

    /**
     * Initialize this symbol ordering by performing a crossover from
     * two ``parent'' symbol orderings.
     */
    void crossover_from(const symbol_order *father, const symbol_order *mother);

    /**
     * Randomly mutate this symbol ordering.
     */
    void mutate();

    /**
     * Score a symbol ordering based on paginated locality.
     */
    score_t compute_score_page();

    /**
     * Score a symbol ordering based on a sliding window.
     */
    score_t compute_score_window(int window_size);

    static score_t compute_score(symbol_order &order);

    /**
     * Use the symbol table to dump the ordered symbolic constants.
     */
    void dump_symbols() const;

    friend ostream &
    operator<<(ostream &out, const symbol_order &order);
};

const symbol_order::score_t
symbol_order::max_score = ~((symbol_order::score_t)1 << ((sizeof(symbol_order::score_t) * 8) - 1));

symbol_order::score_t
symbol_order::compute_score_page()
{
    m_score = 0;

    unsigned int off = 0; // XXX in reality, probably not page-aligned to start

    vector_t::const_iterator end = m_ordering.end(),
        last = end,
        sym = m_ordering.begin();

    while (sym != end) {
        vector_t page;

        // If we had a symbol that spilled over from the last page,
        // then include it here.
        if (last != end)
            page.push_back(*last);

        // Pack symbols into the page
        do {
            page.push_back(*sym);

            int size = (*sym)->st_size;
            size += SYMBOL_ALIGN - 1;
            size &= ~(SYMBOL_ALIGN - 1);

            off += size;
        } while (++sym != end && off < PAGE_SIZE);

        // Remember if there was spill-over.
        off %= PAGE_SIZE;
        last = (off != 0) ? sym : end;

        // Now score the page as the count of all calls to symbols on
        // the page, less calls between the symbols on the page.
        vector_t::const_iterator page_end = page.end();
        for (vector_t::const_iterator i = page.begin(); i != page_end; ++i) {
            histogram_t::const_iterator func = histogram.find(*i);
            if (func == histogram.end())
                continue;

            m_score += func->second;

            vector_t::const_iterator j = i;
            for (++j; j != page_end; ++j) {
                call_graph_t::const_iterator call =
                    call_graph.find(call_pair(*i, *j));

                if (call != call_graph.end())
                    m_score -= call->second;
            }
        }
    }

    assert(m_score >= 0);

    // Integer reciprocal so we minimize instead of maximize.
    if (m_score == 0)
        m_score = 1;

    m_score = (total_calls / m_score) + 1;

    return m_score;
}

symbol_order::score_t
symbol_order::compute_score_window(int window_size)
{
    m_score = 0;

    vector_t::const_iterator *window = new vector_t::const_iterator[window_size];
    int window_fill = 0;

    vector_t::const_iterator end = m_ordering.end(),
        sym = m_ordering.begin();

    for (; sym != end; ++sym) {
        histogram_t::const_iterator func = histogram.find(*sym);
        if (func != histogram.end()) {
            long long scale = ((long long) 1) << window_size;

            m_score += func->second * scale * 2;

            vector_t::const_iterator *limit = window + window_fill;
            vector_t::const_iterator *iter;
            for (iter = window ; iter < limit; ++iter) {
                call_graph_t::const_iterator call =
                    call_graph.find(call_pair(*sym, **iter));

                if (call != call_graph.end())
                    m_score -= (call->second * scale);
            
                scale >>= 1;
            }
        }

        // Slide the window.
        vector_t::const_iterator *begin = window;
        vector_t::const_iterator *iter;
        for (iter = window + (window_size - 1); iter > begin; --iter)
            *iter = *(iter - 1);

        if (window_fill < window_size)
            ++window_fill;

        *window = sym;
    }

    delete[] window;

    assert(m_score >= 0);

    // Integer reciprocal so we minimize instead of maximize.
    if (m_score == 0)
        m_score = 1;

    m_score = (total_calls / m_score) + 1;

    return m_score;
}

symbol_order::score_t
symbol_order::compute_score(symbol_order &order)
{
    if (opt_window)
        return order.compute_score_window(opt_window);

    return order.compute_score_page();
}

void
symbol_order::shuffle()
{
    vector_t::iterator sym = m_ordering.begin();
    vector_t::iterator end = m_ordering.end();
    for (; sym != end; ++sym) {
        int i = rand() % m_ordering.size();
        const Elf32_Sym *temp = *sym;
        *sym = m_ordering[i];
        m_ordering[i] = temp;
    }
}

void
symbol_order::crossover_from(const symbol_order *father, const symbol_order *mother)
{
    histogram_t used;

    m_ordering = vector_t(father->m_ordering.size(), 0);

    vector_t::const_iterator parent_sym = father->m_ordering.begin();
    vector_t::iterator sym = m_ordering.begin();
    vector_t::iterator end = m_ordering.end();

    for (; sym != end; ++sym, ++parent_sym) {
        if (rand() % 2) {
            *sym = *parent_sym;
            used[*parent_sym] = 1;
        }
    }

    parent_sym = mother->m_ordering.begin();
    sym = m_ordering.begin();

    for (; sym != end; ++sym) {
        if (! *sym) {
            while (used[*parent_sym])
                ++parent_sym;

            *sym = *parent_sym++;
        }
    }
}

void
symbol_order::mutate()
{
    int i, j;
    i = rand() % m_ordering.size();
    j = rand() % m_ordering.size();

    const Elf32_Sym *temp = m_ordering[i];
    m_ordering[i] = m_ordering[j];
    m_ordering[j] = temp;
}

void
symbol_order::dump_symbols() const
{
    ofstream out(opt_out);

    vector_t::const_iterator sym = m_ordering.begin();
    vector_t::const_iterator end = m_ordering.end();
    for (; sym != end; ++sym)
        out << symtab.get_symbol_name(*sym) << endl;

    out.close();
}

ostream &
operator<<(ostream &out, const symbol_order &order)
{
    out << "symbol_order(" << order.m_score << ") ";

    symbol_order::vector_t::const_iterator sym = order.m_ordering.begin();
    symbol_order::vector_t::const_iterator end = order.m_ordering.end();
    for (; sym != end; ++sym)
        out.form("%08x ", *sym);

    out << endl;

    return out;
}

//----------------------------------------------------------------------

static void
usage(const char *name)
{
    cerr << "usage: " << name << " [options] [<file> ...]" << endl;
    cerr << "  Options:" << endl;
    cerr << "  --debug, -d" << endl;
    cerr << "      Print lots of verbose debugging cruft." << endl;
    cerr << "  --exe=<image>, -e <image> (required)" << endl;
    cerr << "      Specify the executable image from which to read symbol information." << endl;
    cerr << "  --generations=<num>, -g <num>" << endl;
    cerr << "      Specify the number of generations to run the GA (default is 10)." << endl;
    cerr << "  --help, -?" << endl;
    cerr << "      Print this message and exit." << endl;
    cerr << "  --mutate=<num>, -m <num>" << endl;
    cerr << "      Mutate every <num>th individual, or zero for no mutation (default)." << endl;
    cerr << "  --out=<file>, -o <file>" << endl;
    cerr << "      Specify the output file to which to dump the symbol ordering of the" << endl;
    cerr << "      best individual (default is `order.out')." << endl;
    cerr << "  --population=<num>, -p <num>" << endl;
    cerr << "      Set the population size to <num> individuals (default is 100)." << endl;
    cerr << "  --seed=<num>, -s <num>" << endl;
    cerr << "      Specify a seed to srand()." << endl;
    cerr << "  --tick[=<num>], -t [<num>]" << endl;
    cerr << "      When reading address data, print a dot to stderr every <num>th" << endl;
    cerr << "      address processed from the call trace. If specified with no argument," << endl;
    cerr << "      a dot will be printed for every million addresses processed." << endl;
    cerr << "  --verbose, -v" << endl;
    cerr << "      Issue progress messages to stderr." << endl;
    cerr << "  --window=<num>, -w <num>" << endl;
    cerr << "      Use a sliding window instead of pagination to score orderings." << endl;
    cerr << endl;
    cerr << "This program uses a genetic algorithm to produce an `optimal' ordering for" << endl;
    cerr << "an executable based on call patterns." << endl;
    cerr << endl;
    cerr << "Addresses from a call trace are read as binary data from the files" << endl;
    cerr << "specified, or from stdin if no files are specified. These addresses" << endl;
    cerr << "are used with the symbolic information from the executable to create" << endl;
    cerr << "a call graph. This call graph is used to `score' arbitrary symbol" << endl;
    cerr << "orderings, and provides the fitness function for the GA." << endl;
    cerr << endl;
}

/**
 * Using the symbol table, map a stream of address references into a
 * callgraph and a histogram.
 */
static void
map_addrs(int fd)
{
    const Elf32_Sym *last = 0;
    unsigned int buf[128];
    ssize_t cb;

    unsigned int count = 0;
    while ((cb = read(fd, buf, sizeof buf)) > 0) {
        if (cb % sizeof buf[0])
            fprintf(stderr, "unaligned read\n");

        unsigned int *addr = buf;
        unsigned int *limit = buf + (cb / 4);

        for (; addr < limit; ++addr) {
            const Elf32_Sym *sym = symtab.lookup(*addr);

            if (last && sym && last != sym) {
                ++total_calls;
                ++histogram[sym];
                ++call_graph[call_pair(last, sym)];

                if (opt_tick && (++count % opt_tick == 0)) {
                    cerr << ".";
                    flush(cerr);
                }
            }

            last = sym;
        }
    }

    if (opt_tick)
        cerr << endl;

    cerr << "Total calls: " << total_calls << endl;
    total_calls *= 1024;

    if (opt_window)
        total_calls <<= (opt_window + 1);
}

static symbol_order *
pick_parent(symbol_order *ordering, int max, int index)
{
    while (1) {
        index -= ordering->m_score;
        if (index < 0)
            break;

        ++ordering;
    }

    return ordering;
}

/**
 * The main program
 */
int
main(int argc, char *argv[])
{
    const char *opt_exe = 0;

    int c;
    while (1) {
        int option_index = 0;
        c = getopt_long(argc, argv, "?de:g:m:o:p:s:t:vw:", long_options, &option_index);

        if (c < 0)
            break;

        switch (c) {
        case '?':
            usage(argv[0]);
            return 0;

        case 'd':
            opt_debug = true;
            break;

        case 'e':
            opt_exe = optarg;
            break;

        case 'g':
            opt_generations = atoi(optarg);
            break;

        case 'm':
            opt_mutate = atoi(optarg);
            break;

        case 'o':
            opt_out = optarg;
            break;

        case 'p':
            opt_population_size = atoi(optarg);
            break;

        case 's':
            srand(atoi(optarg));
            break;

        case 't':
            opt_tick = optarg ? atoi(optarg) : 1000000;
            break;

        case 'v':
            opt_verbose = true;
            break;

        case 'w':
            opt_window = atoi(optarg);
            if (opt_window < 0 || opt_window > 8) {
                cerr << "invalid window size: " << opt_window << endl;
                return 1;
            }

            break;

        default:
            usage(argv[0]);
            return 1;
        }
    }

    // Make sure an image was specified
    if (! opt_exe) {
        usage(argv[0]);
        return 1;
    }

    // Read the sym table.
    symtab.init(opt_exe);

    // Process addresses to construct the call graph.
    if (optind >= argc) {
        map_addrs(STDIN_FILENO);
    }
    else {
        do {
            int fd = open(argv[optind], O_RDONLY);
            if (fd < 0) {
                perror(argv[optind]);
                return 1;
            }

            map_addrs(fd);
            close(fd);
        } while (++optind < argc);
    }

    if (opt_debug) {
        cerr << "Call graph:" << endl;

        call_graph_t::const_iterator limit = call_graph.end();
        call_graph_t::const_iterator i;
        for (i = call_graph.begin(); i != limit; ++i) {
            const call_pair& pair = i->first;
            cerr.form("%08x %08x %10d\n",
                      pair.m_lo->st_value,
                      pair.m_hi->st_value,
                      i->second);
        }
    }

    // Collect the symbols into a vector
    symbol_order::vector_t ordering;
    elf_symbol_table::const_iterator end = symtab.end();
    for (elf_symbol_table::const_iterator sym = symtab.begin(); sym != end; ++sym) {
        if (symtab.is_function(sym))
            ordering.push_back(sym);
    }

    if (opt_verbose) {
        symbol_order initial;
        initial.m_ordering = ordering;
        cerr << "created initial ordering, score=" << symbol_order::compute_score(initial) << endl;

        if (opt_debug)
            cerr << initial;
    }

    // Create a population.
    if (opt_verbose)
        cerr << "creating population" << endl;

    symbol_order *population = new symbol_order[opt_population_size];

    symbol_order::score_t total = 0, min = symbol_order::max_score, max = 0;

    // Score it.
    symbol_order *order = population;
    symbol_order *limit = population + opt_population_size;
    for (; order < limit; ++order) {
        order->m_ordering = ordering;
        order->shuffle();

        symbol_order::score_t score = symbol_order::compute_score(*order);

        if (opt_debug)
            cerr << *order;

        if (min > score)
            min = score;
        if (max < score)
            max = score;

        total += score;
    }

    if (opt_verbose) {
        cerr << "Initial population";
        cerr << ": min=" << min;
        cerr << ", max=" << max;
        cerr << " mean=" << (total / opt_population_size);
        cerr << endl;
    }


    // Run the GA.
    if (opt_verbose)
        cerr << "begininng ga" << endl;

    symbol_order::score_t best = 0;

    for (int generation = 1; generation <= opt_generations; ++generation) {
        // Create a new population.
        symbol_order *offspring = new symbol_order[opt_population_size];

        symbol_order *kid = offspring;
        symbol_order *offspring_limit = offspring + opt_population_size;
        for (; kid < offspring_limit; ++kid) {
            // Pick parents.
            symbol_order *father, *mother;
            father = pick_parent(population, max, llrand() % total);
            mother = pick_parent(population, max, llrand() % total);

            // Create a kid.
            kid->crossover_from(father, mother);

            // Mutate, possibly.
            if (opt_mutate) {
                if (rand() % opt_mutate == 0)
                    kid->mutate();
            }
        }

        delete[] population;
        population = offspring;

        // Score the new population.
        total = 0;
        min = symbol_order::max_score;
        max = 0;

        symbol_order *fittest = 0;

        limit = offspring_limit;
        for (order = population; order < limit; ++order) {
            symbol_order::score_t score = symbol_order::compute_score(*order);

            if (opt_debug)
                cerr << *order;

            if (min > score)
                min = score;

            if (max < score)
                max = score;

            if (best < score) {
                best = score;
                fittest = order;
            }

            total += score;
        }

        if (opt_verbose) {
            cerr << "Generation " << generation;
            cerr << ": min=" << min;
            cerr << ", max=" << max;
            if (fittest)
                cerr << "*";
            cerr << " mean=" << (total / opt_population_size);
            cerr << endl;
        }

        // If we've found a new ``best'' individual, dump it.
        if (fittest)
            fittest->dump_symbols();
    }

    delete[] population;
    return 0;
}