DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Header

Mercurial (5b81998bb7ab)

VCS Links

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507
/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=2 et sw=2 tw=80: */

/* This Source Code is subject to the terms of the Mozilla Public License
 * version 2.0 (the "License"). You can obtain a copy of the License at
 * http://mozilla.org/MPL/2.0/. */

/* rendering object for CSS "display: flex" */

#include "nsFlexContainerFrame.h"
#include "nsContentUtils.h"
#include "nsCSSAnonBoxes.h"
#include "nsDisplayList.h"
#include "nsLayoutUtils.h"
#include "nsPlaceholderFrame.h"
#include "nsPresContext.h"
#include "nsStyleContext.h"
#include "prlog.h"
#include <algorithm>

using namespace mozilla::css;
using namespace mozilla::layout;

#ifdef PR_LOGGING
static PRLogModuleInfo*
GetFlexContainerLog()
{
  static PRLogModuleInfo *sLog;
  if (!sLog)
    sLog = PR_NewLogModule("nsFlexContainerFrame");
  return sLog;
}
#endif /* PR_LOGGING */

// XXXdholbert Some of this helper-stuff should be separated out into a general
// "LogicalAxisUtils.h" helper.  Should that be a class, or a namespace (under
// what super-namespace?), or what?

// Helper enums
// ============

// Represents a physical orientation for an axis.
// The directional suffix indicates the direction in which the axis *grows*.
// So e.g. eAxis_LR means a horizontal left-to-right axis, whereas eAxis_BT
// means a vertical bottom-to-top axis.
// NOTE: The order here is important -- these values are used as indices into
// the static array 'kAxisOrientationToSidesMap', defined below.
enum AxisOrientationType {
  eAxis_LR,
  eAxis_RL,
  eAxis_TB,
  eAxis_BT,
  eNumAxisOrientationTypes // For sizing arrays that use these values as indices
};

// Represents one or the other extreme of an axis (e.g. for the main axis, the
// main-start vs. main-end edge.
// NOTE: The order here is important -- these values are used as indices into
// the sub-arrays in 'kAxisOrientationToSidesMap', defined below.
enum AxisEdgeType {
  eAxisEdge_Start,
  eAxisEdge_End,
  eNumAxisEdges // For sizing arrays that use these values as indices
};

// This array maps each axis orientation to a pair of corresponding
// [start, end] physical mozilla::css::Side values.
static const Side
kAxisOrientationToSidesMap[eNumAxisOrientationTypes][eNumAxisEdges] = {
  { eSideLeft,   eSideRight  },  // eAxis_LR
  { eSideRight,  eSideLeft   },  // eAxis_RL
  { eSideTop,    eSideBottom },  // eAxis_TB
  { eSideBottom, eSideTop }      // eAxis_BT
};

// Helper structs / classes / methods
// ==================================

// Indicates whether advancing along the given axis is equivalent to
// increasing our X or Y position (as opposed to decreasing it).
static inline bool
AxisGrowsInPositiveDirection(AxisOrientationType aAxis)
{
  return eAxis_LR == aAxis || eAxis_TB == aAxis;
}

// Indicates whether the given axis is horizontal.
static inline bool
IsAxisHorizontal(AxisOrientationType aAxis)
{
  return eAxis_LR == aAxis || eAxis_RL == aAxis;
}

// Given an AxisOrientationType, returns the "reverse" AxisOrientationType
// (in the same dimension, but the opposite direction)
static inline AxisOrientationType
GetReverseAxis(AxisOrientationType aAxis)
{
  AxisOrientationType reversedAxis;

  if (aAxis % 2 == 0) {
    // even enum value. Add 1 to reverse.
    reversedAxis = AxisOrientationType(aAxis + 1);
  } else {
    // odd enum value. Subtract 1 to reverse.
    reversedAxis = AxisOrientationType(aAxis - 1);
  }

  // Check that we're still in the enum's valid range
  MOZ_ASSERT(reversedAxis >= eAxis_LR &&
             reversedAxis <= eAxis_BT);

  return reversedAxis;
}

// Returns aFrame's computed value for 'height' or 'width' -- whichever is in
// the same dimension as aAxis.
static inline const nsStyleCoord&
GetSizePropertyForAxis(const nsIFrame* aFrame, AxisOrientationType aAxis)
{
  const nsStylePosition* stylePos = aFrame->StylePosition();

  return IsAxisHorizontal(aAxis) ?
    stylePos->mWidth :
    stylePos->mHeight;
}

static nscoord
MarginComponentForSide(const nsMargin& aMargin, Side aSide)
{
  switch (aSide) {
    case eSideLeft:
      return aMargin.left;
    case eSideRight:
      return aMargin.right;
    case eSideTop:
      return aMargin.top;
    case eSideBottom:
      return aMargin.bottom;
  }

  NS_NOTREACHED("unexpected Side enum");
  return aMargin.left; // have to return something
                       // (but something's busted if we got here)
}

static nscoord&
MarginComponentForSide(nsMargin& aMargin, Side aSide)
{
  switch (aSide) {
    case eSideLeft:
      return aMargin.left;
    case eSideRight:
      return aMargin.right;
    case eSideTop:
      return aMargin.top;
    case eSideBottom:
      return aMargin.bottom;
  }

  NS_NOTREACHED("unexpected Side enum");
  return aMargin.left; // have to return something
                       // (but something's busted if we got here)
}

// Encapsulates our flex container's main & cross axes.
class MOZ_STACK_CLASS FlexboxAxisTracker {
public:
  FlexboxAxisTracker(nsFlexContainerFrame* aFlexContainerFrame);

  // Accessors:
  AxisOrientationType GetMainAxis() const  { return mMainAxis;  }
  AxisOrientationType GetCrossAxis() const { return mCrossAxis; }

  nscoord GetMainComponent(const nsSize& aSize) const {
    return IsAxisHorizontal(mMainAxis) ?
      aSize.width : aSize.height;
  }
  int32_t GetMainComponent(const nsIntSize& aIntSize) const {
    return IsAxisHorizontal(mMainAxis) ?
      aIntSize.width : aIntSize.height;
  }
  nscoord GetMainComponent(const nsHTMLReflowMetrics& aMetrics) const {
    return IsAxisHorizontal(mMainAxis) ?
      aMetrics.width : aMetrics.height;
  }

  nscoord GetCrossComponent(const nsSize& aSize) const {
    return IsAxisHorizontal(mCrossAxis) ?
      aSize.width : aSize.height;
  }
  int32_t GetCrossComponent(const nsIntSize& aIntSize) const {
    return IsAxisHorizontal(mCrossAxis) ?
      aIntSize.width : aIntSize.height;
  }
  nscoord GetCrossComponent(const nsHTMLReflowMetrics& aMetrics) const {
    return IsAxisHorizontal(mCrossAxis) ?
      aMetrics.width : aMetrics.height;
  }

  nscoord GetMarginSizeInMainAxis(const nsMargin& aMargin) const {
    return IsAxisHorizontal(mMainAxis) ?
      aMargin.LeftRight() :
      aMargin.TopBottom();
  }
  nscoord GetMarginSizeInCrossAxis(const nsMargin& aMargin) const {
    return IsAxisHorizontal(mCrossAxis) ?
      aMargin.LeftRight() :
      aMargin.TopBottom();
  }

  nsPoint PhysicalPositionFromLogicalPosition(nscoord aMainPosn,
                                              nscoord aCrossPosn) const {
    return IsAxisHorizontal(mMainAxis) ?
      nsPoint(aMainPosn, aCrossPosn) :
      nsPoint(aCrossPosn, aMainPosn);
  }
  nsSize PhysicalSizeFromLogicalSizes(nscoord aMainSize,
                                      nscoord aCrossSize) const {
    return IsAxisHorizontal(mMainAxis) ?
      nsSize(aMainSize, aCrossSize) :
      nsSize(aCrossSize, aMainSize);
  }

private:
  AxisOrientationType mMainAxis;
  AxisOrientationType mCrossAxis;
};

// Represents a flex item.
// Includes the various pieces of input that the Flexbox Layout Algorithm uses
// to resolve a flexible width.
class FlexItem {
public:
  FlexItem(nsIFrame* aChildFrame,
           float aFlexGrow, float aFlexShrink, nscoord aMainBaseSize,
           nscoord aMainMinSize, nscoord aMainMaxSize,
           nscoord aCrossMinSize, nscoord aCrossMaxSize,
           nsMargin aMargin, nsMargin aBorderPadding,
           const FlexboxAxisTracker& aAxisTracker);

  // Accessors
  nsIFrame* Frame() const          { return mFrame; }
  nscoord GetFlexBaseSize() const  { return mFlexBaseSize; }

  nscoord GetMainMinSize() const   { return mMainMinSize; }
  nscoord GetMainMaxSize() const   { return mMainMaxSize; }

  // Note: These return the main-axis position and size of our *content box*.
  nscoord GetMainSize() const      { return mMainSize; }
  nscoord GetMainPosition() const  { return mMainPosn; }

  nscoord GetCrossMinSize() const  { return mCrossMinSize; }
  nscoord GetCrossMaxSize() const  { return mCrossMaxSize; }

  // Note: These return the cross-axis position and size of our *content box*.
  nscoord GetCrossSize() const     { return mCrossSize;  }
  nscoord GetCrossPosition() const { return mCrossPosn; }

  nscoord GetAscent() const        { return mAscent; }

  float GetShareOfFlexWeightSoFar() const { return mShareOfFlexWeightSoFar; }

  bool IsFrozen() const            { return mIsFrozen; }

  bool HadMinViolation() const     { return mHadMinViolation; }
  bool HadMaxViolation() const     { return mHadMaxViolation; }

  // Indicates whether this item received a preliminary "measuring" reflow
  // before its actual reflow.
  bool HadMeasuringReflow() const  { return mHadMeasuringReflow; }

  // Indicates whether this item's cross-size has been stretched (from having
  // "align-self: stretch" with an auto cross-size and no auto margins in the
  // cross axis).
  bool IsStretched() const         { return mIsStretched; }

  uint8_t GetAlignSelf() const     { return mAlignSelf; }

  // Returns the flex weight that we should use in the "resolving flexible
  // lengths" algorithm.  If we've got a positive amount of free space, we use
  // the flex-grow weight; otherwise, we use the "scaled flex shrink weight"
  // (scaled by our flex base size)
  float GetFlexWeightToUse(bool aHavePositiveFreeSpace)
  {
    if (IsFrozen()) {
      return 0.0f;
    }

    return aHavePositiveFreeSpace ?
      mFlexGrow :
      mFlexShrink * mFlexBaseSize;
  }

  // Getters for margin:
  // ===================
  const nsMargin& GetMargin() const { return mMargin; }

  // Returns the margin component for a given mozilla::css::Side
  nscoord GetMarginComponentForSide(Side aSide) const
  { return MarginComponentForSide(mMargin, aSide); }

  // Returns the total space occupied by this item's margins in the given axis
  nscoord GetMarginSizeInAxis(AxisOrientationType aAxis) const
  {
    Side startSide = kAxisOrientationToSidesMap[aAxis][eAxisEdge_Start];
    Side endSide = kAxisOrientationToSidesMap[aAxis][eAxisEdge_End];
    return GetMarginComponentForSide(startSide) +
      GetMarginComponentForSide(endSide);
  }

  // Getters for border/padding
  // ==========================
  const nsMargin& GetBorderPadding() const { return mBorderPadding; }

  // Returns the border+padding component for a given mozilla::css::Side
  nscoord GetBorderPaddingComponentForSide(Side aSide) const
  { return MarginComponentForSide(mBorderPadding, aSide); }

  // Returns the total space occupied by this item's borders and padding in
  // the given axis
  nscoord GetBorderPaddingSizeInAxis(AxisOrientationType aAxis) const
  {
    Side startSide = kAxisOrientationToSidesMap[aAxis][eAxisEdge_Start];
    Side endSide = kAxisOrientationToSidesMap[aAxis][eAxisEdge_End];
    return GetBorderPaddingComponentForSide(startSide) +
      GetBorderPaddingComponentForSide(endSide);
  }

  // Getter for combined margin/border/padding
  // =========================================
  // Returns the total space occupied by this item's margins, borders and
  // padding in the given axis
  nscoord GetMarginBorderPaddingSizeInAxis(AxisOrientationType aAxis) const
  {
    return GetMarginSizeInAxis(aAxis) + GetBorderPaddingSizeInAxis(aAxis);
  }

  // Setters
  // =======

  // Setters used while we're resolving flexible lengths
  // ---------------------------------------------------

  // Sets the main-size of our flex item's content-box.
  void SetMainSize(nscoord aNewMainSize)
  {
    MOZ_ASSERT(!mIsFrozen, "main size shouldn't change after we're frozen");
    mMainSize = aNewMainSize;
  }

  void SetShareOfFlexWeightSoFar(float aNewShare)
  {
    MOZ_ASSERT(!mIsFrozen || aNewShare == 0.0f,
               "shouldn't be giving this item any share of the weight "
               "after it's frozen");
    mShareOfFlexWeightSoFar = aNewShare;
  }

  void Freeze() { mIsFrozen = true; }

  void SetHadMinViolation()
  {
    MOZ_ASSERT(!mIsFrozen,
               "shouldn't be changing main size & having violations "
               "after we're frozen");
    mHadMinViolation = true;
  }
  void SetHadMaxViolation()
  {
    MOZ_ASSERT(!mIsFrozen,
               "shouldn't be changing main size & having violations "
               "after we're frozen");
    mHadMaxViolation = true;
  }
  void ClearViolationFlags()
  { mHadMinViolation = mHadMaxViolation = false; }

  // Setters for values that are determined after we've resolved our main size
  // -------------------------------------------------------------------------

  // Sets the main-axis position of our flex item's content-box.
  // (This is the distance between the main-start edge of the flex container
  // and the main-start edge of the flex item's content-box.)
  void SetMainPosition(nscoord aPosn) {
    MOZ_ASSERT(mIsFrozen, "main size should be resolved before this");
    mMainPosn  = aPosn;
  }

  // Sets the cross-size of our flex item's content-box.
  void SetCrossSize(nscoord aCrossSize) {
    MOZ_ASSERT(mIsFrozen, "main size should be resolved before this");
    mCrossSize = aCrossSize;
  }

  // Sets the cross-axis position of our flex item's content-box.
  // (This is the distance between the cross-start edge of the flex container
  // and the cross-start edge of the flex item.)
  void SetCrossPosition(nscoord aPosn) {
    MOZ_ASSERT(mIsFrozen, "main size should be resolved before this");
    mCrossPosn = aPosn;
  }

  void SetAscent(nscoord aAscent) {
    mAscent = aAscent;
  }

  void SetHadMeasuringReflow() {
    mHadMeasuringReflow = true;
  }

  void SetIsStretched() {
    MOZ_ASSERT(mIsFrozen, "main size should be resolved before this");
    mIsStretched = true;
  }

  // Setter for margin components (for resolving "auto" margins)
  void SetMarginComponentForSide(Side aSide, nscoord aLength)
  {
    MOZ_ASSERT(mIsFrozen, "main size should be resolved before this");
    MarginComponentForSide(mMargin, aSide) = aLength;
  }

  uint32_t GetNumAutoMarginsInAxis(AxisOrientationType aAxis) const;

protected:
  // Our frame:
  nsIFrame* const mFrame;

  // Values that we already know in constructor: (and are hence mostly 'const')
  const float mFlexGrow;
  const float mFlexShrink;

  const nsMargin mBorderPadding;
  nsMargin mMargin; // non-const because we need to resolve auto margins

  const nscoord mFlexBaseSize;

  const nscoord mMainMinSize;
  const nscoord mMainMaxSize;
  const nscoord mCrossMinSize;
  const nscoord mCrossMaxSize;

  // Values that we compute after constructor:
  nscoord mMainSize;
  nscoord mMainPosn;
  nscoord mCrossSize;
  nscoord mCrossPosn;
  nscoord mAscent;

  // Temporary state, while we're resolving flexible widths (for our main size)
  // XXXdholbert To save space, we could use a union to make these variables
  // overlay the same memory as some other member vars that aren't touched
  // until after main-size has been resolved. In particular, these could share
  // memory with mMainPosn through mAscent, and mIsStretched.
  float mShareOfFlexWeightSoFar;
  bool mIsFrozen;
  bool mHadMinViolation;
  bool mHadMaxViolation;

  // Misc:
  bool mHadMeasuringReflow; // Did this item get a preliminary reflow,
                            // to measure its desired height?
  bool mIsStretched; // See IsStretched() documentation
  uint8_t mAlignSelf; // My "align-self" computed value (with "auto"
                      // swapped out for parent"s "align-items" value,
                      // in our constructor).
};

// Helper-function to find the first non-anonymous-box descendent of aFrame.
static nsIFrame*
GetFirstNonAnonBoxDescendant(nsIFrame* aFrame)
{
  while (aFrame) {
    nsIAtom* pseudoTag = aFrame->StyleContext()->GetPseudo();

    // If aFrame isn't an anonymous container, then it'll do.
    if (!pseudoTag ||                                 // No pseudotag.
        !nsCSSAnonBoxes::IsAnonBox(pseudoTag) ||      // Pseudotag isn't anon.
        pseudoTag == nsCSSAnonBoxes::mozNonElement) { // Text, not a container.
      break;
    }

    // Otherwise, descend to its first child and repeat.

    // SPECIAL CASE: if we're dealing with an anonymous table, then it might
    // be wrapping something non-anonymous in its caption or col-group lists
    // (instead of its principal child list), so we have to look there.
    // (Note: For anonymous tables that have a non-anon cell *and* a non-anon
    // column, we'll always return the column. This is fine; we're really just
    // looking for a handle to *anything* with a meaningful content node inside
    // the table, for use in DOM comparisons to things outside of the table.)
    if (MOZ_UNLIKELY(aFrame->GetType() == nsGkAtoms::tableOuterFrame)) {
      nsIFrame* captionDescendant =
        GetFirstNonAnonBoxDescendant(aFrame->GetFirstChild(kCaptionList));
      if (captionDescendant) {
        return captionDescendant;
      }
    } else if (MOZ_UNLIKELY(aFrame->GetType() == nsGkAtoms::tableFrame)) {
      nsIFrame* colgroupDescendant =
        GetFirstNonAnonBoxDescendant(aFrame->GetFirstChild(kColGroupList));
      if (colgroupDescendant) {
        return colgroupDescendant;
      }
    }

    // USUAL CASE: Descend to the first child in principal list.
    aFrame = aFrame->GetFirstPrincipalChild();
  }
  return aFrame;
}

/**
 * Sorting helper-function that compares two frames' "order" property-values,
 * and if they're equal, compares the DOM positions of their corresponding
 * content nodes. Returns true if aFrame1 is "less than or equal to" aFrame2
 * according to this comparison.
 *
 * Note: This can't be a static function, because we need to pass it as a
 * template argument. (Only functions with external linkage can be passed as
 * template arguments.)
 *
 * @return true if the computed "order" property of aFrame1 is less than that
 *         of aFrame2, or if the computed "order" values are equal and aFrame1's
 *         corresponding DOM node is earlier than aFrame2's in the DOM tree.
 *         Otherwise, returns false.
 */
bool
IsOrderLEQWithDOMFallback(nsIFrame* aFrame1,
                          nsIFrame* aFrame2)
{
  MOZ_ASSERT(aFrame1->IsFlexItem() && aFrame2->IsFlexItem(),
             "this method only intended for comparing flex items");

  if (aFrame1 == aFrame2) {
    // Anything is trivially LEQ itself, so we return "true" here... but it's
    // probably bad if we end up actually needing this, so let's assert.
    NS_ERROR("Why are we checking if a frame is LEQ itself?");
    return true;
  }

  // If we've got a placeholder frame, use its out-of-flow frame's 'order' val.
  {
    nsIFrame* aRealFrame1 = nsPlaceholderFrame::GetRealFrameFor(aFrame1);
    nsIFrame* aRealFrame2 = nsPlaceholderFrame::GetRealFrameFor(aFrame2);

    int32_t order1 = aRealFrame1->StylePosition()->mOrder;
    int32_t order2 = aRealFrame2->StylePosition()->mOrder;

    if (order1 != order2) {
      return order1 < order2;
    }
  }

  // The "order" values are equal, so we need to fall back on DOM comparison.
  // For that, we need to dig through any anonymous box wrapper frames to find
  // the actual frame that corresponds to our child content.
  aFrame1 = GetFirstNonAnonBoxDescendant(aFrame1);
  aFrame2 = GetFirstNonAnonBoxDescendant(aFrame2);
  MOZ_ASSERT(aFrame1 && aFrame2,
             "why do we have an anonymous box without any "
             "non-anonymous descendants?");


  // Special case:
  // If either frame is for generated content from ::before or ::after, then
  // we can't use nsContentUtils::PositionIsBefore(), since that method won't
  // recognize generated content as being an actual sibling of other nodes.
  // We know where ::before and ::after nodes *effectively* insert in the DOM
  // tree, though (at the beginning & end), so we can just special-case them.
  nsIAtom* pseudo1 = aFrame1->StyleContext()->GetPseudo();
  nsIAtom* pseudo2 = aFrame2->StyleContext()->GetPseudo();
  if (pseudo1 == nsCSSPseudoElements::before ||
      pseudo2 == nsCSSPseudoElements::after) {
    // frame1 is ::before and/or frame2 is ::after => frame1 is LEQ frame2.
    return true;
  }
  if (pseudo1 == nsCSSPseudoElements::after ||
      pseudo2 == nsCSSPseudoElements::before) {
    // frame1 is ::after and/or frame2 is ::before => frame1 is not LEQ frame2.
    return false;
  }

  // Usual case: Compare DOM position.
  nsIContent* content1 = aFrame1->GetContent();
  nsIContent* content2 = aFrame2->GetContent();
  MOZ_ASSERT(content1 != content2,
             "Two different flex items are using the same nsIContent node for "
             "comparison, so we may be sorting them in an arbitrary order");

  return nsContentUtils::PositionIsBefore(content1, content2);
}

/**
 * Sorting helper-function that compares two frames' "order" property-values.
 * Returns true if aFrame1 is "less than or equal to" aFrame2 according to this
 * comparison.
 *
 * Note: This can't be a static function, because we need to pass it as a
 * template argument. (Only functions with external linkage can be passed as
 * template arguments.)
 *
 * @return true if the computed "order" property of aFrame1 is less than or
 *         equal to that of aFrame2.  Otherwise, returns false.
 */
bool
IsOrderLEQ(nsIFrame* aFrame1,
           nsIFrame* aFrame2)
{
  MOZ_ASSERT(aFrame1->IsFlexItem() && aFrame2->IsFlexItem(),
             "this method only intended for comparing flex items");

  // If we've got a placeholder frame, use its out-of-flow frame's 'order' val.
  nsIFrame* aRealFrame1 = nsPlaceholderFrame::GetRealFrameFor(aFrame1);
  nsIFrame* aRealFrame2 = nsPlaceholderFrame::GetRealFrameFor(aFrame2);

  int32_t order1 = aRealFrame1->StylePosition()->mOrder;
  int32_t order2 = aRealFrame2->StylePosition()->mOrder;

  return order1 <= order2;
}

bool
nsFlexContainerFrame::IsHorizontal()
{
  const FlexboxAxisTracker axisTracker(this);
  return IsAxisHorizontal(axisTracker.GetMainAxis());
}

nsresult
nsFlexContainerFrame::AppendFlexItemForChild(
  nsPresContext* aPresContext,
  nsIFrame*      aChildFrame,
  const nsHTMLReflowState& aParentReflowState,
  const FlexboxAxisTracker& aAxisTracker,
  nsTArray<FlexItem>& aFlexItems)
{
  // Create temporary reflow state just for sizing -- to get hypothetical
  // main-size and the computed values of min / max main-size property.
  // (This reflow state will _not_ be used for reflow.)
  nsHTMLReflowState childRS(aPresContext, aParentReflowState, aChildFrame,
                            nsSize(aParentReflowState.ComputedWidth(),
                                   aParentReflowState.ComputedHeight()));

  // FLEX GROW & SHRINK WEIGHTS
  // --------------------------
  const nsStylePosition* stylePos = aChildFrame->StylePosition();
  float flexGrow   = stylePos->mFlexGrow;
  float flexShrink = stylePos->mFlexShrink;

  // MAIN SIZES (flex base size, min/max size)
  // -----------------------------------------
  nscoord flexBaseSize =
    aAxisTracker.GetMainComponent(nsSize(childRS.ComputedWidth(),
                                         childRS.ComputedHeight()));
  nscoord mainMinSize =
    aAxisTracker.GetMainComponent(nsSize(childRS.mComputedMinWidth,
                                         childRS.mComputedMinHeight));
  nscoord mainMaxSize =
    aAxisTracker.GetMainComponent(nsSize(childRS.mComputedMaxWidth,
                                         childRS.mComputedMaxHeight));
  // This is enforced by the nsHTMLReflowState where these values come from:
  MOZ_ASSERT(mainMinSize <= mainMaxSize, "min size is larger than max size");

  // SPECIAL MAIN-SIZING FOR VERTICAL FLEX CONTAINERS
  // If we're vertical and our main size ended up being unconstrained
  // (e.g. because we had height:auto), we need to instead use our
  // "max-content" height, which is what we get from reflowing into our
  // available width.
  bool needToMeasureMaxContentHeight = false;
  if (!IsAxisHorizontal(aAxisTracker.GetMainAxis())) {
    // NOTE: If & when we handle "min-height: min-content" for flex items,
    // this is probably the spot where we'll want to resolve it to the
    // actual intrinsic height given our computed width. It'll be the same
    // auto-height that we determine here.
    needToMeasureMaxContentHeight = (NS_AUTOHEIGHT == flexBaseSize);

    if (needToMeasureMaxContentHeight) {
      // Give the item a special reflow with "mIsFlexContainerMeasuringHeight"
      // set.  This tells it to behave as if it had "height: auto", regardless
      // of what the "height" property is actually set to.
      nsHTMLReflowState
        childRSForMeasuringHeight(aPresContext, aParentReflowState,
                                  aChildFrame,
                                  nsSize(aParentReflowState.ComputedWidth(),
                                         NS_UNCONSTRAINEDSIZE),
                                  -1, -1, false);
      childRSForMeasuringHeight.mFlags.mIsFlexContainerMeasuringHeight = true;
      childRSForMeasuringHeight.Init(aPresContext);

      // If this item is flexible (vertically), then we assume that the
      // computed-height we're reflowing with now could be different
      // from the one we'll use for this flex item's "actual" reflow later on.
      // In that case, we need to be sure the flex item treats this as a
      // vertical resize, even though none of its ancestors are necessarily
      // being vertically resized.
      // (Note: We don't have to do this for width, because InitResizeFlags
      // will always turn on mHResize on when it sees that the computed width
      // is different from current width, and that's all we need.)
      if (flexGrow != 0.0f || flexShrink != 0.0f) {  // Are we flexible?
        childRSForMeasuringHeight.mFlags.mVResize = true;
      }

      nsHTMLReflowMetrics childDesiredSize;
      nsReflowStatus childReflowStatus;
      nsresult rv = ReflowChild(aChildFrame, aPresContext,
                                childDesiredSize, childRSForMeasuringHeight,
                                0, 0, NS_FRAME_NO_MOVE_FRAME,
                                childReflowStatus);
      NS_ENSURE_SUCCESS(rv, rv);

      MOZ_ASSERT(NS_FRAME_IS_COMPLETE(childReflowStatus),
                 "We gave flex item unconstrained available height, so it "
                 "should be complete");

      rv = FinishReflowChild(aChildFrame, aPresContext,
                             &childRSForMeasuringHeight, childDesiredSize,
                             0, 0, 0);
      NS_ENSURE_SUCCESS(rv, rv);

      // Subtract border/padding in vertical axis, to get _just_
      // the effective computed value of the "height" property.
      nscoord childDesiredHeight = childDesiredSize.height -
        childRS.mComputedBorderPadding.TopBottom();
      childDesiredHeight = std::max(0, childDesiredHeight);

      flexBaseSize = childDesiredHeight;
    }
  }

  // CROSS MIN/MAX SIZE
  // ------------------

  nscoord crossMinSize =
    aAxisTracker.GetCrossComponent(nsSize(childRS.mComputedMinWidth,
                                          childRS.mComputedMinHeight));
  nscoord crossMaxSize =
    aAxisTracker.GetCrossComponent(nsSize(childRS.mComputedMaxWidth,
                                          childRS.mComputedMaxHeight));

  // SPECIAL-CASE FOR WIDGET-IMPOSED SIZES
  // Check if we're a themed widget, in which case we might have a minimum
  // main & cross size imposed by our widget (which we can't go below), or
  // (more severe) our widget might have only a single valid size.
  bool isFixedSizeWidget = false;
  const nsStyleDisplay* disp = aChildFrame->StyleDisplay();
  if (aChildFrame->IsThemed(disp)) {
    nsIntSize widgetMinSize(0, 0);
    bool canOverride = true;
    aPresContext->GetTheme()->
      GetMinimumWidgetSize(childRS.rendContext, aChildFrame,
                           disp->mAppearance,
                           &widgetMinSize, &canOverride);

    nscoord widgetMainMinSize =
      aPresContext->DevPixelsToAppUnits(
        aAxisTracker.GetMainComponent(widgetMinSize));
    nscoord widgetCrossMinSize =
      aPresContext->DevPixelsToAppUnits(
        aAxisTracker.GetCrossComponent(widgetMinSize));

    // GMWS() returns border-box; we need content-box
    widgetMainMinSize -=
      aAxisTracker.GetMarginSizeInMainAxis(childRS.mComputedBorderPadding);
    widgetCrossMinSize -=
      aAxisTracker.GetMarginSizeInCrossAxis(childRS.mComputedBorderPadding);

    if (!canOverride) {
      // Fixed-size widget: freeze our main-size at the widget's mandated size.
      // (Set min and max main-sizes to that size, too, to keep us from
      // clamping to any other size later on.)
      flexBaseSize = mainMinSize = mainMaxSize = widgetMainMinSize;
      crossMinSize = crossMaxSize = widgetCrossMinSize;
      isFixedSizeWidget = true;
    } else {
      // Variable-size widget: ensure our min/max sizes are at least as large
      // as the widget's mandated minimum size, so we don't flex below that.
      mainMinSize = std::max(mainMinSize, widgetMainMinSize);
      mainMaxSize = std::max(mainMaxSize, widgetMainMinSize);

      crossMinSize = std::max(crossMinSize, widgetCrossMinSize);
      crossMaxSize = std::max(crossMaxSize, widgetCrossMinSize);
    }
  }

  aFlexItems.AppendElement(FlexItem(aChildFrame,
                                    flexGrow, flexShrink, flexBaseSize,
                                    mainMinSize, mainMaxSize,
                                    crossMinSize, crossMaxSize,
                                    childRS.mComputedMargin,
                                    childRS.mComputedBorderPadding,
                                    aAxisTracker));

  // If we're inflexible, we can just freeze to our hypothetical main-size
  // up-front. Similarly, if we're a fixed-size widget, we only have one
  // valid size, so we freeze to keep ourselves from flexing.
  if (isFixedSizeWidget || (flexGrow == 0.0f && flexShrink == 0.0f)) {
    aFlexItems.LastElement().Freeze();
  }

  // If we did a height-measuring reflow for this flex item, make a note of
  // that, so our "actual" reflow can set resize flags accordingly.
  if (needToMeasureMaxContentHeight) {
    aFlexItems.LastElement().SetHadMeasuringReflow();
  }

  return NS_OK;
}

FlexItem::FlexItem(nsIFrame* aChildFrame,
                   float aFlexGrow, float aFlexShrink, nscoord aFlexBaseSize,
                   nscoord aMainMinSize,  nscoord aMainMaxSize,
                   nscoord aCrossMinSize, nscoord aCrossMaxSize,
                   nsMargin aMargin, nsMargin aBorderPadding,
                   const FlexboxAxisTracker& aAxisTracker)
  : mFrame(aChildFrame),
    mFlexGrow(aFlexGrow),
    mFlexShrink(aFlexShrink),
    mBorderPadding(aBorderPadding),
    mMargin(aMargin),
    mFlexBaseSize(aFlexBaseSize),
    mMainMinSize(aMainMinSize),
    mMainMaxSize(aMainMaxSize),
    mCrossMinSize(aCrossMinSize),
    mCrossMaxSize(aCrossMaxSize),
    // Init main-size to 'hypothetical main size', which is flex base size
    // clamped to [min,max] range:
    mMainSize(NS_CSS_MINMAX(aFlexBaseSize, aMainMinSize, aMainMaxSize)),
    mMainPosn(0),
    mCrossSize(0),
    mCrossPosn(0),
    mAscent(0),
    mShareOfFlexWeightSoFar(0.0f),
    mIsFrozen(false),
    mHadMinViolation(false),
    mHadMaxViolation(false),
    mHadMeasuringReflow(false),
    mIsStretched(false),
    mAlignSelf(aChildFrame->StylePosition()->mAlignSelf)
{
  MOZ_ASSERT(aChildFrame, "expecting a non-null child frame");

  // Assert that any "auto" margin components are set to 0.
  // (We'll resolve them later; until then, we want to treat them as 0-sized.)
#ifdef DEBUG
  {
    const nsStyleSides& styleMargin = mFrame->StyleMargin()->mMargin;
    NS_FOR_CSS_SIDES(side) {
      if (styleMargin.GetUnit(side) == eStyleUnit_Auto) {
        MOZ_ASSERT(GetMarginComponentForSide(side) == 0,
                   "Someone else tried to resolve our auto margin");
      }
    }
  }
#endif // DEBUG

  // Resolve "align-self: auto" to parent's "align-items" value.
  if (mAlignSelf == NS_STYLE_ALIGN_SELF_AUTO) {
    mAlignSelf =
      mFrame->StyleContext()->GetParent()->StylePosition()->mAlignItems;
  }

  // If the flex item's inline axis is the same as the cross axis, then
  // 'align-self:baseline' is identical to 'flex-start'. If that's the case, we
  // just directly convert our align-self value here, so that we don't have to
  // handle this with special cases elsewhere.
  // Moreover: for the time being (until we support writing-modes),
  // all inline axes are horizontal -- so we can just check if the cross axis
  // is horizontal.
  // FIXME: Once we support writing-mode (vertical text), this IsAxisHorizontal
  // check won't be sufficient anymore -- we'll actually need to compare our
  // inline axis vs. the cross axis.
  if (mAlignSelf == NS_STYLE_ALIGN_ITEMS_BASELINE &&
      IsAxisHorizontal(aAxisTracker.GetCrossAxis())) {
    mAlignSelf = NS_STYLE_ALIGN_ITEMS_FLEX_START;
  }
}

uint32_t
FlexItem::GetNumAutoMarginsInAxis(AxisOrientationType aAxis) const
{
  uint32_t numAutoMargins = 0;
  const nsStyleSides& styleMargin = mFrame->StyleMargin()->mMargin;
  for (uint32_t i = 0; i < eNumAxisEdges; i++) {
    Side side = kAxisOrientationToSidesMap[aAxis][i];
    if (styleMargin.GetUnit(side) == eStyleUnit_Auto) {
      numAutoMargins++;
    }
  }

  // Mostly for clarity:
  MOZ_ASSERT(numAutoMargins <= 2,
             "We're just looking at one item along one dimension, so we "
             "should only have examined 2 margins");

  return numAutoMargins;
}

// Keeps track of our position along a particular axis (where a '0' position
// corresponds to the 'start' edge of that axis).
// This class shouldn't be instantiated directly -- rather, it should only be
// instantiated via its subclasses defined below.
class MOZ_STACK_CLASS PositionTracker {
public:
  // Accessor for the current value of the position that we're tracking.
  inline nscoord GetPosition() const { return mPosition; }
  inline AxisOrientationType GetAxis() const { return mAxis; }

  // Advances our position across the start edge of the given margin, in the
  // axis we're tracking.
  void EnterMargin(const nsMargin& aMargin)
  {
    Side side = kAxisOrientationToSidesMap[mAxis][eAxisEdge_Start];
    mPosition += MarginComponentForSide(aMargin, side);
  }

  // Advances our position across the end edge of the given margin, in the axis
  // we're tracking.
  void ExitMargin(const nsMargin& aMargin)
  {
    Side side = kAxisOrientationToSidesMap[mAxis][eAxisEdge_End];
    mPosition += MarginComponentForSide(aMargin, side);
  }

  // Advances our current position from the start side of a child frame's
  // border-box to the frame's upper or left edge (depending on our axis).
  // (Note that this is a no-op if our axis grows in positive direction.)
  void EnterChildFrame(nscoord aChildFrameSize)
  {
    if (!AxisGrowsInPositiveDirection(mAxis))
      mPosition += aChildFrameSize;
  }

  // Advances our current position from a frame's upper or left border-box edge
  // (whichever is in the axis we're tracking) to the 'end' side of the frame
  // in the axis that we're tracking. (Note that this is a no-op if our axis
  // grows in the negative direction.)
  void ExitChildFrame(nscoord aChildFrameSize)
  {
    if (AxisGrowsInPositiveDirection(mAxis))
      mPosition += aChildFrameSize;
  }

protected:
  // Protected constructor, to be sure we're only instantiated via a subclass.
  PositionTracker(AxisOrientationType aAxis)
    : mPosition(0),
      mAxis(aAxis)
  {}

private:
  // Private copy-constructor, since we don't want any instances of our
  // subclasses to be accidentally copied.
  PositionTracker(const PositionTracker& aOther)
    : mPosition(aOther.mPosition),
      mAxis(aOther.mAxis)
  {}

protected:
  // Member data:
  nscoord mPosition;               // The position we're tracking
  const AxisOrientationType mAxis; // The axis along which we're moving
};

// Tracks our position in the main axis, when we're laying out flex items.
class MOZ_STACK_CLASS MainAxisPositionTracker : public PositionTracker {
public:
  MainAxisPositionTracker(nsFlexContainerFrame* aFlexContainerFrame,
                          const FlexboxAxisTracker& aAxisTracker,
                          const nsHTMLReflowState& aReflowState,
                          const nsTArray<FlexItem>& aItems);

  ~MainAxisPositionTracker() {
    MOZ_ASSERT(mNumPackingSpacesRemaining == 0,
               "miscounted the number of packing spaces");
    MOZ_ASSERT(mNumAutoMarginsInMainAxis == 0,
               "miscounted the number of auto margins");
  }

  // Advances past the packing space (if any) between two flex items
  void TraversePackingSpace();

  // If aItem has any 'auto' margins in the main axis, this method updates the
  // corresponding values in its margin.
  void ResolveAutoMarginsInMainAxis(FlexItem& aItem);

private:
  nscoord  mPackingSpaceRemaining;
  uint32_t mNumAutoMarginsInMainAxis;
  uint32_t mNumPackingSpacesRemaining;
  uint8_t  mJustifyContent;
};

// Utility class for managing our position along the cross axis along
// the whole flex container (at a higher level than a single line)
class SingleLineCrossAxisPositionTracker;
class MOZ_STACK_CLASS CrossAxisPositionTracker : public PositionTracker {
public:
  CrossAxisPositionTracker(nsFlexContainerFrame* aFlexContainerFrame,
                           const FlexboxAxisTracker& aAxisTracker,
                           const nsHTMLReflowState& aReflowState);

  // XXXdholbert This probably needs a ResolveStretchedLines() method,
  // (which takes an array of SingleLineCrossAxisPositionTracker objects
  // and distributes an equal amount of space to each one).
  // For now, we just have Reflow directly call
  // SingleLineCrossAxisPositionTracker::SetLineCrossSize().
};

// Utility class for managing our position along the cross axis, *within* a
// single flex line.
class MOZ_STACK_CLASS SingleLineCrossAxisPositionTracker : public PositionTracker {
public:
  SingleLineCrossAxisPositionTracker(nsFlexContainerFrame* aFlexContainerFrame,
                                     const FlexboxAxisTracker& aAxisTracker,
                                     const nsTArray<FlexItem>& aItems);

  void ComputeLineCrossSize(const nsTArray<FlexItem>& aItems);
  inline nscoord GetLineCrossSize() const { return mLineCrossSize; }

  // Used to override the flex line's size, for cases when the flex container is
  // single-line and has a fixed size, and also in cases where
  // "align-self: stretch" triggers some space-distribution between lines
  // (when we support that property).
  inline void SetLineCrossSize(nscoord aNewLineCrossSize) {
    mLineCrossSize = aNewLineCrossSize;
  }

  void ResolveStretchedCrossSize(FlexItem& aItem);
  void ResolveAutoMarginsInCrossAxis(FlexItem& aItem);

  void EnterAlignPackingSpace(const FlexItem& aItem);

  // Resets our position to the cross-start edge of this line.
  inline void ResetPosition() { mPosition = 0; }

  // Returns the ascent of the line.
  nscoord GetCrossStartToFurthestBaseline() { return mCrossStartToFurthestBaseline; }

private:
  // Returns the distance from the cross-start side of the given flex item's
  // margin-box to its baseline. (Used in baseline alignment.)
  nscoord GetBaselineOffsetFromCrossStart(const FlexItem& aItem) const;

  nscoord mLineCrossSize;

  // Largest distance from a baseline-aligned item's cross-start margin-box
  // edge to its baseline.  Computed in ComputeLineCrossSize, and used for
  // alignment of any "align-self: baseline" items in this line (and possibly
  // used for computing the baseline of the flex container, as well).
  nscoord mCrossStartToFurthestBaseline;
};

//----------------------------------------------------------------------

// Frame class boilerplate
// =======================

NS_QUERYFRAME_HEAD(nsFlexContainerFrame)
  NS_QUERYFRAME_ENTRY(nsFlexContainerFrame)
NS_QUERYFRAME_TAIL_INHERITING(nsFlexContainerFrameSuper)

NS_IMPL_FRAMEARENA_HELPERS(nsFlexContainerFrame)

nsIFrame*
NS_NewFlexContainerFrame(nsIPresShell* aPresShell,
                         nsStyleContext* aContext)
{
  return new (aPresShell) nsFlexContainerFrame(aContext);
}

//----------------------------------------------------------------------

// nsFlexContainerFrame Method Implementations
// ===========================================

/* virtual */
nsFlexContainerFrame::~nsFlexContainerFrame()
{
}

template<bool IsLessThanOrEqual(nsIFrame*, nsIFrame*)>
/* static */ bool
nsFlexContainerFrame::SortChildrenIfNeeded()
{
  if (nsLayoutUtils::IsFrameListSorted<IsLessThanOrEqual>(mFrames)) {
    return false;
  }

  nsLayoutUtils::SortFrameList<IsLessThanOrEqual>(mFrames);
  return true;
}

/* virtual */
nsIAtom*
nsFlexContainerFrame::GetType() const
{
  return nsGkAtoms::flexContainerFrame;
}

/* virtual */
int
nsFlexContainerFrame::GetSkipSides() const
{
  // (same as nsBlockFrame's GetSkipSides impl)
  if (IS_TRUE_OVERFLOW_CONTAINER(this)) {
    return (1 << NS_SIDE_TOP) | (1 << NS_SIDE_BOTTOM);
  }

  int skip = 0;
  if (GetPrevInFlow()) {
    skip |= 1 << NS_SIDE_TOP;
  }
  nsIFrame* nif = GetNextInFlow();
  if (nif && !IS_TRUE_OVERFLOW_CONTAINER(nif)) {
    skip |= 1 << NS_SIDE_BOTTOM;
  }
  return skip;
}

#ifdef DEBUG
NS_IMETHODIMP
nsFlexContainerFrame::GetFrameName(nsAString& aResult) const
{
  return MakeFrameName(NS_LITERAL_STRING("FlexContainer"), aResult);
}
#endif // DEBUG

// Helper for BuildDisplayList, to implement this special-case for flex items
// from the spec:
//    Flex items paint exactly the same as block-level elements in the
//    normal flow, except that 'z-index' values other than 'auto' create
//    a stacking context even if 'position' is 'static'.
// http://www.w3.org/TR/2012/CR-css3-flexbox-20120918/#painting
uint32_t
GetDisplayFlagsForFlexItem(nsIFrame* aFrame)
{
  MOZ_ASSERT(aFrame->IsFlexItem(), "Should only be called on flex items");

  const nsStylePosition* pos = aFrame->StylePosition();
  if (pos->mZIndex.GetUnit() == eStyleUnit_Integer) {
    return nsIFrame::DISPLAY_CHILD_FORCE_STACKING_CONTEXT;
  }
  return nsIFrame::DISPLAY_CHILD_FORCE_PSEUDO_STACKING_CONTEXT;
}

void
nsFlexContainerFrame::BuildDisplayList(nsDisplayListBuilder*   aBuilder,
                                       const nsRect&           aDirtyRect,
                                       const nsDisplayListSet& aLists)
{
  NS_ASSERTION(
    nsLayoutUtils::IsFrameListSorted<IsOrderLEQWithDOMFallback>(mFrames),
    "Child frames aren't sorted correctly");

  DisplayBorderBackgroundOutline(aBuilder, aLists);

  // Our children are all block-level, so their borders/backgrounds all go on
  // the BlockBorderBackgrounds list.
  nsDisplayListSet childLists(aLists, aLists.BlockBorderBackgrounds());
  for (nsFrameList::Enumerator e(mFrames); !e.AtEnd(); e.Next()) {
    BuildDisplayListForChild(aBuilder, e.get(), aDirtyRect, childLists,
                             GetDisplayFlagsForFlexItem(e.get()));
  }
}

#ifdef DEBUG
// helper for the debugging method below
bool
FrameWantsToBeInAnonymousFlexItem(nsIFrame* aFrame)
{
  // Note: This needs to match the logic in
  // nsCSSFrameConstructor::FrameConstructionItem::NeedsAnonFlexItem()
  return (aFrame->IsFrameOfType(nsIFrame::eLineParticipant) ||
          nsGkAtoms::placeholderFrame == aFrame->GetType());
}

// Debugging method, to let us assert that our anonymous flex items are
// set up correctly -- in particular, we assert:
//  (1) we don't have any inline non-replaced children
//  (2) we don't have any consecutive anonymous flex items
//  (3) we don't have any empty anonymous flex items
//
// XXXdholbert This matches what nsCSSFrameConstructor currently does, and what
// the spec used to say.  However, the spec has now changed regarding what
// types of content get wrapped in an anonymous flexbox item.  The patch that
// implements those changes (in nsCSSFrameConstructor) will need to change
// this method as well.
void
nsFlexContainerFrame::SanityCheckAnonymousFlexItems() const
{
  bool prevChildWasAnonFlexItem = false;
  for (nsIFrame* child = mFrames.FirstChild(); child;
       child = child->GetNextSibling()) {
    MOZ_ASSERT(!FrameWantsToBeInAnonymousFlexItem(child),
               "frame wants to be inside an anonymous flex item, "
               "but it isn't");
    if (child->StyleContext()->GetPseudo() ==
        nsCSSAnonBoxes::anonymousFlexItem) {
      MOZ_ASSERT(!prevChildWasAnonFlexItem,
                 "two anon flex items in a row (shouldn't happen)");

      nsIFrame* firstWrappedChild = child->GetFirstPrincipalChild();
      MOZ_ASSERT(firstWrappedChild,
                 "anonymous flex item is empty (shouldn't happen)");
      prevChildWasAnonFlexItem = true;
    } else {
      prevChildWasAnonFlexItem = false;
    }
  }
}
#endif // DEBUG

// Based on the sign of aTotalViolation, this function freezes a subset of our
// flexible sizes, and restores the remaining ones to their initial pref sizes.
static void
FreezeOrRestoreEachFlexibleSize(
  const nscoord aTotalViolation,
  nsTArray<FlexItem>& aItems)
{
  enum FreezeType {
    eFreezeEverything,
    eFreezeMinViolations,
    eFreezeMaxViolations
  };

  FreezeType freezeType;
  if (aTotalViolation == 0) {
    freezeType = eFreezeEverything;
  } else if (aTotalViolation > 0) {
    freezeType = eFreezeMinViolations;
  } else { // aTotalViolation < 0
    freezeType = eFreezeMaxViolations;
  }

  for (uint32_t i = 0; i < aItems.Length(); i++) {
    FlexItem& item = aItems[i];
    MOZ_ASSERT(!item.HadMinViolation() || !item.HadMaxViolation(),
               "Can have either min or max violation, but not both");

    if (!item.IsFrozen()) {
      if (eFreezeEverything == freezeType ||
          (eFreezeMinViolations == freezeType && item.HadMinViolation()) ||
          (eFreezeMaxViolations == freezeType && item.HadMaxViolation())) {

        MOZ_ASSERT(item.GetMainSize() >= item.GetMainMinSize(),
                   "Freezing item at a size below its minimum");
        MOZ_ASSERT(item.GetMainSize() <= item.GetMainMaxSize(),
                   "Freezing item at a size above its maximum");

        item.Freeze();
      } // else, we'll reset this item's main size to its flex base size on the
        // next iteration of this algorithm.

      // Clear this item's violation(s), now that we've dealt with them
      item.ClearViolationFlags();
    }
  }
}

// Implementation of flexbox spec's "Determine sign of flexibility" step.
// NOTE: aTotalFreeSpace should already have the flex items' margin, border,
// & padding values subtracted out.
static bool
ShouldUseFlexGrow(nscoord aTotalFreeSpace,
                  nsTArray<FlexItem>& aItems)
{
  // NOTE: The FlexItem constructor sets its main-size to the
  // *hypothetical main size*, which is the flex base size, clamped
  // to the min/max range.  That's what we want here. Good.
  for (uint32_t i = 0; i < aItems.Length(); i++) {
    aTotalFreeSpace -= aItems[i].GetMainSize();
    if (aTotalFreeSpace <= 0) {
      return false;
    }
  }
  MOZ_ASSERT(aTotalFreeSpace > 0,
             "if we used up all the space, should've already returned");
  return true;
}

// Implementation of flexbox spec's "resolve the flexible lengths" algorithm.
// NOTE: aTotalFreeSpace should already have the flex items' margin, border,
// & padding values subtracted out, so that all we need to do is distribute the
// remaining free space among content-box sizes.  (The spec deals with
// margin-box sizes, but we can have fewer values in play & a simpler algorithm
// if we subtract margin/border/padding up front.)
void
nsFlexContainerFrame::ResolveFlexibleLengths(
  const FlexboxAxisTracker& aAxisTracker,
  nscoord aFlexContainerMainSize,
  nsTArray<FlexItem>& aItems)
{
  PR_LOG(GetFlexContainerLog(), PR_LOG_DEBUG, ("ResolveFlexibleLengths\n"));
  if (aItems.IsEmpty()) {
    return;
  }

  // Subtract space occupied by our items' margins/borders/padding, so we can
  // just be dealing with the space available for our flex items' content
  // boxes.
  nscoord spaceAvailableForFlexItemsContentBoxes = aFlexContainerMainSize;
  for (uint32_t i = 0; i < aItems.Length(); i++) {
    spaceAvailableForFlexItemsContentBoxes -=
      aItems[i].GetMarginBorderPaddingSizeInAxis(aAxisTracker.GetMainAxis());
  }

  // Determine whether we're going to be growing or shrinking items.
  bool havePositiveFreeSpace =
    ShouldUseFlexGrow(spaceAvailableForFlexItemsContentBoxes, aItems);

  // NOTE: I claim that this chunk of the algorithm (the looping part) needs to
  // run the loop at MOST aItems.Length() times.  This claim should hold up
  // because we'll freeze at least one item on each loop iteration, and once
  // we've run out of items to freeze, there's nothing left to do.  However,
  // in most cases, we'll break out of this loop long before we hit that many
  // iterations.
  for (uint32_t iterationCounter = 0;
       iterationCounter < aItems.Length(); iterationCounter++) {
    // Set every not-yet-frozen item's used main size to its
    // flex base size, and subtract all the used main sizes from our
    // total amount of space to determine the 'available free space'
    // (positive or negative) to be distributed among our flexible items.
    nscoord availableFreeSpace = spaceAvailableForFlexItemsContentBoxes;
    for (uint32_t i = 0; i < aItems.Length(); i++) {
      FlexItem& item = aItems[i];
      if (!item.IsFrozen()) {
        item.SetMainSize(item.GetFlexBaseSize());
      }
      availableFreeSpace -= item.GetMainSize();
    }

    PR_LOG(GetFlexContainerLog(), PR_LOG_DEBUG,
           (" available free space = %d\n", availableFreeSpace));

    // If sign of free space matches flexType, give each flexible
    // item a portion of availableFreeSpace.
    if ((availableFreeSpace > 0 && havePositiveFreeSpace) ||
        (availableFreeSpace < 0 && !havePositiveFreeSpace)) {

      // STRATEGY: On each item, we compute & store its "share" of the total
      // flex weight that we've seen so far:
      //   curFlexWeight / runningFlexWeightSum
      //
      // Then, when we go to actually distribute the space (in the next loop),
      // we can simply walk backwards through the elements and give each item
      // its "share" multiplied by the remaining available space.
      //
      // SPECIAL CASE: If the sum of the flex weights is larger than the
      // maximum representable float (overflowing to infinity), then we can't
      // sensibly divide out proportional shares anymore. In that case, we
      // simply treat the flex item(s) with the largest flex weights as if
      // their weights were infinite (dwarfing all the others), and we
      // distribute all of the available space among them.
      float runningFlexWeightSum = 0.0f;
      float largestFlexWeight = 0.0f;
      uint32_t numItemsWithLargestFlexWeight = 0;
      for (uint32_t i = 0; i < aItems.Length(); i++) {
        FlexItem& item = aItems[i];
        float curFlexWeight = item.GetFlexWeightToUse(havePositiveFreeSpace);
        MOZ_ASSERT(curFlexWeight >= 0.0f, "weights are non-negative");

        runningFlexWeightSum += curFlexWeight;
        if (NS_finite(runningFlexWeightSum)) {
          if (curFlexWeight == 0.0f) {
            item.SetShareOfFlexWeightSoFar(0.0f);
          } else {
            item.SetShareOfFlexWeightSoFar(curFlexWeight /
                                           runningFlexWeightSum);
          }
        } // else, the sum of weights overflows to infinity, in which
          // case we don't bother with "SetShareOfFlexWeightSoFar" since
          // we know we won't use it. (instead, we'll just give every
          // item with the largest flex weight an equal share of space.)

        // Update our largest-flex-weight tracking vars
        if (curFlexWeight > largestFlexWeight) {
          largestFlexWeight = curFlexWeight;
          numItemsWithLargestFlexWeight = 1;
        } else if (curFlexWeight == largestFlexWeight) {
          numItemsWithLargestFlexWeight++;
        }
      }

      if (runningFlexWeightSum != 0.0f) { // no distribution if no flexibility
        PR_LOG(GetFlexContainerLog(), PR_LOG_DEBUG,
               (" Distributing available space:"));
        for (uint32_t i = aItems.Length() - 1; i < aItems.Length(); --i) {
          FlexItem& item = aItems[i];

          if (!item.IsFrozen()) {
            // To avoid rounding issues, we compute the change in size for this
            // item, and then subtract it from the remaining available space.
            nscoord sizeDelta = 0;
            if (NS_finite(runningFlexWeightSum)) {
              float myShareOfRemainingSpace =
                item.GetShareOfFlexWeightSoFar();

              MOZ_ASSERT(myShareOfRemainingSpace >= 0.0f &&
                         myShareOfRemainingSpace <= 1.0f,
                         "my share should be nonnegative fractional amount");

              if (myShareOfRemainingSpace == 1.0f) {
                // (We special-case 1.0f to avoid float error from converting
                // availableFreeSpace from integer*1.0f --> float --> integer)
                sizeDelta = availableFreeSpace;
              } else if (myShareOfRemainingSpace > 0.0f) {
                sizeDelta = NSToCoordRound(availableFreeSpace *
                                           myShareOfRemainingSpace);
              }
            } else if (item.GetFlexWeightToUse(havePositiveFreeSpace) ==
                       largestFlexWeight) {
              // Total flexibility is infinite, so we're just distributing
              // the available space equally among the items that are tied for
              // having the largest weight (and this is one of those items).
              sizeDelta =
                NSToCoordRound(availableFreeSpace /
                               float(numItemsWithLargestFlexWeight));
              numItemsWithLargestFlexWeight--;
            }

            availableFreeSpace -= sizeDelta;

            item.SetMainSize(item.GetMainSize() + sizeDelta);
            PR_LOG(GetFlexContainerLog(), PR_LOG_DEBUG,
                   ("  child %d receives %d, for a total of %d\n",
                    i, sizeDelta, item.GetMainSize()));
          }
        }
      }
    }

    // Fix min/max violations:
    nscoord totalViolation = 0; // keeps track of adjustments for min/max
    PR_LOG(GetFlexContainerLog(), PR_LOG_DEBUG,
           (" Checking for violations:"));

    for (uint32_t i = 0; i < aItems.Length(); i++) {
      FlexItem& item = aItems[i];
      if (!item.IsFrozen()) {
        if (item.GetMainSize() < item.GetMainMinSize()) {
          // min violation
          totalViolation += item.GetMainMinSize() - item.GetMainSize();
          item.SetMainSize(item.GetMainMinSize());
          item.SetHadMinViolation();
        } else if (item.GetMainSize() > item.GetMainMaxSize()) {
          // max violation
          totalViolation += item.GetMainMaxSize() - item.GetMainSize();
          item.SetMainSize(item.GetMainMaxSize());
          item.SetHadMaxViolation();
        }
      }
    }

    FreezeOrRestoreEachFlexibleSize(totalViolation, aItems);

    PR_LOG(GetFlexContainerLog(), PR_LOG_DEBUG,
           (" Total violation: %d\n", totalViolation));

    if (totalViolation == 0) {
      break;
    }
  }

  // Post-condition: all lengths should've been frozen.
#ifdef DEBUG
  for (uint32_t i = 0; i < aItems.Length(); ++i) {
    MOZ_ASSERT(aItems[i].IsFrozen(),
               "All flexible lengths should've been resolved");
  }
#endif // DEBUG
}

MainAxisPositionTracker::
  MainAxisPositionTracker(nsFlexContainerFrame* aFlexContainerFrame,
                          const FlexboxAxisTracker& aAxisTracker,
                          const nsHTMLReflowState& aReflowState,
                          const nsTArray<FlexItem>& aItems)
  : PositionTracker(aAxisTracker.GetMainAxis()),
    mNumAutoMarginsInMainAxis(0),
    mNumPackingSpacesRemaining(0)
{
  MOZ_ASSERT(aReflowState.frame == aFlexContainerFrame,
             "Expecting the reflow state for the flex container frame");

  // Step over flex container's own main-start border/padding.
  // XXXdholbert Check GetSkipSides() here when we support pagination.
  EnterMargin(aReflowState.mComputedBorderPadding);

  // Set up our state for managing packing space & auto margins.
  //   * If our main-size is unconstrained, then we just shrinkwrap our
  // contents, and we don't have any packing space.
  //   * Otherwise, we subtract our items' margin-box main-sizes from our
  // computed main-size to get our available packing space.
  mPackingSpaceRemaining =
    aAxisTracker.GetMainComponent(nsSize(aReflowState.ComputedWidth(),
                                         aReflowState.ComputedHeight()));
  if (mPackingSpaceRemaining == NS_UNCONSTRAINEDSIZE) {
    mPackingSpaceRemaining = 0;
  } else {
    for (uint32_t i = 0; i < aItems.Length(); i++) {
      nscoord itemMarginBoxMainSize =
        aItems[i].GetMainSize() +
        aItems[i].GetMarginBorderPaddingSizeInAxis(aAxisTracker.GetMainAxis());
      mPackingSpaceRemaining -= itemMarginBoxMainSize;
    }
  }

  if (mPackingSpaceRemaining > 0) {
    for (uint32_t i = 0; i < aItems.Length(); i++) {
      mNumAutoMarginsInMainAxis += aItems[i].GetNumAutoMarginsInAxis(mAxis);
    }
  }

  mJustifyContent = aFlexContainerFrame->StylePosition()->mJustifyContent;
  // If packing space is negative, 'justify' behaves like 'start', and
  // 'distribute' behaves like 'center'.  In those cases, it's simplest to
  // just pretend we have a different 'justify-content' value and share code.
  if (mPackingSpaceRemaining < 0) {
    if (mJustifyContent == NS_STYLE_JUSTIFY_CONTENT_SPACE_BETWEEN) {
      mJustifyContent = NS_STYLE_JUSTIFY_CONTENT_FLEX_START;
    } else if (mJustifyContent == NS_STYLE_JUSTIFY_CONTENT_SPACE_AROUND) {
      mJustifyContent = NS_STYLE_JUSTIFY_CONTENT_CENTER;
    }
  }

  // Figure out how much space we'll set aside for auto margins or
  // packing spaces, and advance past any leading packing-space.
  if (mNumAutoMarginsInMainAxis == 0 &&
      mPackingSpaceRemaining != 0 &&
      !aItems.IsEmpty()) {
    switch (mJustifyContent) {
      case NS_STYLE_JUSTIFY_CONTENT_FLEX_START:
        // All packing space should go at the end --> nothing to do here.
        break;
      case NS_STYLE_JUSTIFY_CONTENT_FLEX_END:
        // All packing space goes at the beginning
        mPosition += mPackingSpaceRemaining;
        break;
      case NS_STYLE_JUSTIFY_CONTENT_CENTER:
        // Half the packing space goes at the beginning
        mPosition += mPackingSpaceRemaining / 2;
        break;
      case NS_STYLE_JUSTIFY_CONTENT_SPACE_BETWEEN:
        MOZ_ASSERT(mPackingSpaceRemaining >= 0,
                   "negative packing space should make us use 'flex-start' "
                   "instead of 'space-between'");
        // 1 packing space between each flex item, no packing space at ends.
        mNumPackingSpacesRemaining = aItems.Length() - 1;
        break;
      case NS_STYLE_JUSTIFY_CONTENT_SPACE_AROUND:
        MOZ_ASSERT(mPackingSpaceRemaining >= 0,
                   "negative packing space should make us use 'center' "
                   "instead of 'space-around'");
        // 1 packing space between each flex item, plus half a packing space
        // at beginning & end.  So our number of full packing-spaces is equal
        // to the number of flex items.
        mNumPackingSpacesRemaining = aItems.Length();
        if (mNumPackingSpacesRemaining > 0) {
          // The edges (start/end) share one full packing space
          nscoord totalEdgePackingSpace =
            mPackingSpaceRemaining / mNumPackingSpacesRemaining;

          // ...and we'll use half of that right now, at the start
          mPosition += totalEdgePackingSpace / 2;
          // ...but we need to subtract all of it right away, so that we won't
          // hand out any of it to intermediate packing spaces.
          mPackingSpaceRemaining -= totalEdgePackingSpace;
          mNumPackingSpacesRemaining--;
        }
        break;
      default:
        MOZ_NOT_REACHED("Unexpected justify-content value");
    }
  }

  MOZ_ASSERT(mNumPackingSpacesRemaining == 0 ||
             mNumAutoMarginsInMainAxis == 0,
             "extra space should either go to packing space or to "
             "auto margins, but not to both");
}

void
MainAxisPositionTracker::ResolveAutoMarginsInMainAxis(FlexItem& aItem)
{
  if (mNumAutoMarginsInMainAxis) {
    const nsStyleSides& styleMargin = aItem.Frame()->StyleMargin()->mMargin;
    for (uint32_t i = 0; i < eNumAxisEdges; i++) {
      Side side = kAxisOrientationToSidesMap[mAxis][i];
      if (styleMargin.GetUnit(side) == eStyleUnit_Auto) {
        // NOTE: This integer math will skew the distribution of remainder
        // app-units towards the end, which is fine.
        nscoord curAutoMarginSize =
          mPackingSpaceRemaining / mNumAutoMarginsInMainAxis;

        MOZ_ASSERT(aItem.GetMarginComponentForSide(side) == 0,
                   "Expecting auto margins to have value '0' before we "
                   "resolve them");
        aItem.SetMarginComponentForSide(side, curAutoMarginSize);

        mNumAutoMarginsInMainAxis--;
        mPackingSpaceRemaining -= curAutoMarginSize;
      }
    }
  }
}

void
MainAxisPositionTracker::TraversePackingSpace()
{
  if (mNumPackingSpacesRemaining) {
    MOZ_ASSERT(mJustifyContent == NS_STYLE_JUSTIFY_CONTENT_SPACE_BETWEEN ||
               mJustifyContent == NS_STYLE_JUSTIFY_CONTENT_SPACE_AROUND,
               "mNumPackingSpacesRemaining only applies for "
               "space-between/space-around");

    MOZ_ASSERT(mPackingSpaceRemaining >= 0,
               "ran out of packing space earlier than we expected");

    // NOTE: This integer math will skew the distribution of remainder
    // app-units towards the end, which is fine.
    nscoord curPackingSpace =
      mPackingSpaceRemaining / mNumPackingSpacesRemaining;

    mPosition += curPackingSpace;
    mNumPackingSpacesRemaining--;
    mPackingSpaceRemaining -= curPackingSpace;
  }
}

CrossAxisPositionTracker::
  CrossAxisPositionTracker(nsFlexContainerFrame* aFlexContainerFrame,
                           const FlexboxAxisTracker& aAxisTracker,
                           const nsHTMLReflowState& aReflowState)
    : PositionTracker(aAxisTracker.GetCrossAxis())
{
  // Step over flex container's cross-start border/padding.
  EnterMargin(aReflowState.mComputedBorderPadding);
}

SingleLineCrossAxisPositionTracker::
  SingleLineCrossAxisPositionTracker(nsFlexContainerFrame* aFlexContainerFrame,
                                     const FlexboxAxisTracker& aAxisTracker,
                                     const nsTArray<FlexItem>& aItems)
  : PositionTracker(aAxisTracker.GetCrossAxis()),
    mLineCrossSize(0),
    mCrossStartToFurthestBaseline(nscoord_MIN) // Starts at -infinity, and then
                                               // we progressively increase it.
{
}

void
SingleLineCrossAxisPositionTracker::
  ComputeLineCrossSize(const nsTArray<FlexItem>& aItems)
{
  // NOTE: mCrossStartToFurthestBaseline is a member var rather than a local
  // var, because we'll need it for baseline-alignment and for computing the
  // container's baseline later on.
  MOZ_ASSERT(mCrossStartToFurthestBaseline == nscoord_MIN,
             "Computing largest baseline offset more than once");

  nscoord crossEndToFurthestBaseline = nscoord_MIN;
  nscoord largestOuterCrossSize = 0;
  for (uint32_t i = 0; i < aItems.Length(); ++i) {
    const FlexItem& curItem = aItems[i];
    nscoord curOuterCrossSize = curItem.GetCrossSize() +
      curItem.GetMarginBorderPaddingSizeInAxis(mAxis);

    if (curItem.GetAlignSelf() == NS_STYLE_ALIGN_ITEMS_BASELINE &&
        curItem.GetNumAutoMarginsInAxis(mAxis) == 0) {
      // FIXME: Once we support multi-line flexbox with "wrap-reverse", that'll
      // give us bottom-to-top cross axes. (But for now, we assume eAxis_TB.)
      // FIXME: Once we support "writing-mode", we'll have to do baseline
      // alignment in vertical flex containers here (w/ horizontal cross-axes).
      MOZ_ASSERT(mAxis == eAxis_TB,
                 "Only expecting to do baseline-alignment in horizontal "
                 "flex containers, with top-to-bottom cross axis");

      // Find distance from our item's cross-start and cross-end margin-box
      // edges to its baseline.
      //
      // Here's a diagram of a flex-item that we might be doing this on.
      // "mmm" is the margin-box, "bbb" is the border-box. The bottom of
      // the text "BASE" is the baseline.
      //
      // ---(cross-start)---
      //                ___              ___            ___
      //   mmmmmmmmmmmm  |                |margin-start  |
      //   m          m  |               _|_   ___       |
      //   m bbbbbbbb m  |curOuterCrossSize     |        |crossStartToBaseline
      //   m b      b m  |                      |ascent  |
      //   m b BASE b m  |                     _|_      _|_
      //   m b      b m  |                               |
      //   m bbbbbbbb m  |                               |crossEndToBaseline
      //   m          m  |                               |
      //   mmmmmmmmmmmm _|_                             _|_
      //
      // ---(cross-end)---
      //
      // We already have the curOuterCrossSize, margin-start, and the ascent.
      // * We can get crossStartToBaseline by adding margin-start + ascent.
      // * If we subtract that from the curOuterCrossSize, we get
      //   crossEndToBaseline.

      nscoord crossStartToBaseline = GetBaselineOffsetFromCrossStart(curItem);
      nscoord crossEndToBaseline = curOuterCrossSize - crossStartToBaseline;

      // Now, update our "largest" values for these (across all the flex items
      // in this flex line), so we can use them in computing mLineCrossSize
      // below:
      mCrossStartToFurthestBaseline = std::max(mCrossStartToFurthestBaseline,
                                               crossStartToBaseline);
      crossEndToFurthestBaseline = std::max(crossEndToFurthestBaseline,
                                            crossEndToBaseline);
    } else {
      largestOuterCrossSize = std::max(largestOuterCrossSize, curOuterCrossSize);
    }
  }

  // The line's cross-size is the larger of:
  //  (a) [largest cross-start-to-baseline + largest baseline-to-cross-end] of
  //      all baseline-aligned items with no cross-axis auto margins...
  // and
  //  (b) largest cross-size of all other children.
  mLineCrossSize = std::max(mCrossStartToFurthestBaseline +
                            crossEndToFurthestBaseline,
                            largestOuterCrossSize);
}

nscoord
SingleLineCrossAxisPositionTracker::
  GetBaselineOffsetFromCrossStart(const FlexItem& aItem) const
{
  Side crossStartSide = kAxisOrientationToSidesMap[mAxis][eAxisEdge_Start];

  // XXXdholbert This assumes cross axis is Top-To-Bottom.
  // For bottom-to-top support, probably want to make this depend on
  //   AxisGrowsInPositiveDirection(mAxis)
  return NSCoordSaturatingAdd(aItem.GetAscent(),
                              aItem.GetMarginComponentForSide(crossStartSide));
}

void
SingleLineCrossAxisPositionTracker::
  ResolveStretchedCrossSize(FlexItem& aItem)
{
  // We stretch IFF we are align-self:stretch, have no auto margins in
  // cross axis, and have cross-axis size property == "auto". If any of those
  // conditions don't hold up, we can just return.
  if (aItem.GetAlignSelf() != NS_STYLE_ALIGN_ITEMS_STRETCH ||
      aItem.GetNumAutoMarginsInAxis(mAxis) != 0 ||
      GetSizePropertyForAxis(aItem.Frame(), mAxis).GetUnit() !=
        eStyleUnit_Auto) {
    return;
  }

  // Reserve space for margins & border & padding, and then use whatever
  // remains as our item's cross-size (clamped to its min/max range).
  nscoord stretchedSize = mLineCrossSize -
    aItem.GetMarginBorderPaddingSizeInAxis(mAxis);

  stretchedSize = NS_CSS_MINMAX(stretchedSize,
                                aItem.GetCrossMinSize(),
                                aItem.GetCrossMaxSize());

  // Update the cross-size & make a note that it's stretched, so we know to
  // override the reflow state's computed cross-size in our final reflow.
  aItem.SetCrossSize(stretchedSize);
  aItem.SetIsStretched();
}

void
SingleLineCrossAxisPositionTracker::
  ResolveAutoMarginsInCrossAxis(FlexItem& aItem)
{
  // Subtract the space that our item is already occupying, to see how much
  // space (if any) is available for its auto margins.
  nscoord spaceForAutoMargins = mLineCrossSize -
    (aItem.GetCrossSize() + aItem.GetMarginBorderPaddingSizeInAxis(mAxis));

  if (spaceForAutoMargins <= 0) {
    return; // No available space  --> nothing to do
  }

  uint32_t numAutoMargins = aItem.GetNumAutoMarginsInAxis(mAxis);
  if (numAutoMargins == 0) {
    return; // No auto margins --> nothing to do.
  }

  // OK, we have at least one auto margin and we have some available space.
  // Give each auto margin a share of the space.
  const nsStyleSides& styleMargin = aItem.Frame()->StyleMargin()->mMargin;
  for (uint32_t i = 0; i < eNumAxisEdges; i++) {
    Side side = kAxisOrientationToSidesMap[mAxis][i];
    if (styleMargin.GetUnit(side) == eStyleUnit_Auto) {
      MOZ_ASSERT(aItem.GetMarginComponentForSide(side) == 0,
                 "Expecting auto margins to have value '0' before we "
                 "update them");

      // NOTE: integer divison is fine here; numAutoMargins is either 1 or 2.
      // If it's 2 & spaceForAutoMargins is odd, 1st margin gets smaller half.
      nscoord curAutoMarginSize = spaceForAutoMargins / numAutoMargins;
      aItem.SetMarginComponentForSide(side, curAutoMarginSize);
      numAutoMargins--;
      spaceForAutoMargins -= curAutoMarginSize;
    }
  }
}

void
SingleLineCrossAxisPositionTracker::
  EnterAlignPackingSpace(const FlexItem& aItem)
{
  // We don't do align-self alignment on items that have auto margins
  // in the cross axis.
  if (aItem.GetNumAutoMarginsInAxis(mAxis)) {
    return;
  }

  switch (aItem.GetAlignSelf()) {
    case NS_STYLE_ALIGN_ITEMS_FLEX_START:
    case NS_STYLE_ALIGN_ITEMS_STRETCH:
      // No space to skip over -- we're done.
      // NOTE: 'stretch' behaves like 'start' once we've stretched any
      // auto-sized items (which we've already done).
      break;
    case NS_STYLE_ALIGN_ITEMS_FLEX_END:
      mPosition +=
        mLineCrossSize -
        (aItem.GetCrossSize() +
         aItem.GetMarginBorderPaddingSizeInAxis(mAxis));
      break;
    case NS_STYLE_ALIGN_ITEMS_CENTER:
      // Note: If cross-size is odd, the "after" space will get the extra unit.
      mPosition +=
        (mLineCrossSize -
         (aItem.GetCrossSize() +
          aItem.GetMarginBorderPaddingSizeInAxis(mAxis))) / 2;
      break;
    case NS_STYLE_ALIGN_ITEMS_BASELINE:
      NS_WARN_IF_FALSE(mCrossStartToFurthestBaseline != nscoord_MIN,
                       "using uninitialized baseline offset (or working with "
                       "content that has bogus huge values)");
      MOZ_ASSERT(mCrossStartToFurthestBaseline >=
                 GetBaselineOffsetFromCrossStart(aItem),
                 "failed at finding largest ascent");

      // Advance so that aItem's baseline is aligned with
      // largest baseline offset.
      mPosition += (mCrossStartToFurthestBaseline -
                    GetBaselineOffsetFromCrossStart(aItem));
      break;
    default:
      NS_NOTREACHED("Unexpected align-self value");
      break;
  }
}

FlexboxAxisTracker::FlexboxAxisTracker(nsFlexContainerFrame* aFlexContainerFrame)
{
  uint32_t flexDirection =
    aFlexContainerFrame->StylePosition()->mFlexDirection;
  uint32_t cssDirection =
    aFlexContainerFrame->StyleVisibility()->mDirection;

  MOZ_ASSERT(cssDirection == NS_STYLE_DIRECTION_LTR ||
             cssDirection == NS_STYLE_DIRECTION_RTL,
             "Unexpected computed value for 'direction' property");
  // (Not asserting for flexDirection here; it's checked by the switch below.)

  // These are defined according to writing-modes' definitions of
  // start/end (for the inline dimension) and before/after (for the block
  // dimension), here:
  //   http://www.w3.org/TR/css3-writing-modes/#logical-directions
  // (NOTE: I'm intentionally not calling this "inlineAxis"/"blockAxis", since
  // those terms have explicit definition in the writing-modes spec, which are
  // the opposite of how I'd be using them here.)
  // XXXdholbert Once we support the 'writing-mode' property, use its value
  // here to further customize inlineDimension & blockDimension.

  // Inline dimension ("start-to-end"):
  AxisOrientationType inlineDimension =
    cssDirection == NS_STYLE_DIRECTION_RTL ? eAxis_RL : eAxis_LR;

  // Block dimension ("before-to-after"):
  AxisOrientationType blockDimension = eAxis_TB;

  // Determine main axis:
  switch (flexDirection) {
    case NS_STYLE_FLEX_DIRECTION_ROW:
      mMainAxis = inlineDimension;
      break;
    case NS_STYLE_FLEX_DIRECTION_ROW_REVERSE:
      mMainAxis = GetReverseAxis(inlineDimension);
      break;
    case NS_STYLE_FLEX_DIRECTION_COLUMN:
      mMainAxis = blockDimension;
      break;
    case NS_STYLE_FLEX_DIRECTION_COLUMN_REVERSE:
      mMainAxis = GetReverseAxis(blockDimension);
      break;
    default:
      MOZ_NOT_REACHED("Unexpected computed value for 'flex-flow' property");
      mMainAxis = inlineDimension;
      break;
  }

  // Determine cross axis:
  // (This is set up so that a bogus |flexDirection| value will
  // give us blockDimension.
  if (flexDirection == NS_STYLE_FLEX_DIRECTION_COLUMN ||
      flexDirection == NS_STYLE_FLEX_DIRECTION_COLUMN_REVERSE) {
    mCrossAxis = inlineDimension;
  } else {
    mCrossAxis = blockDimension;
  }
      
  // FIXME: Once we support "flex-wrap", check if it's "wrap-reverse"
  // here to determine whether we should reverse mCrossAxis.
  MOZ_ASSERT(IsAxisHorizontal(mMainAxis) != IsAxisHorizontal(mCrossAxis),
             "main & cross axes should be in different dimensions");


  // NOTE: Right now, cross axis is never bottom-to-top.
  // The only way for it to be different would be if we used a vertical
  // "writing-mode" or if we had "flex-wrap: wrap-reverse" -- but we don't
  // support either of those yet, so that can't happen right now.
  // (When we add support for either of those properties, this assert will
  // no longer hold.)
  MOZ_ASSERT(mCrossAxis != eAxis_BT, "Not expecting bottom-to-top cross axis");
}

nsresult
nsFlexContainerFrame::GenerateFlexItems(
  nsPresContext* aPresContext,
  const nsHTMLReflowState& aReflowState,
  const FlexboxAxisTracker& aAxisTracker,
  nsTArray<FlexItem>& aFlexItems)
{
  MOZ_ASSERT(aFlexItems.IsEmpty(), "Expecting outparam to start out empty");

  // XXXdholbert When we support multi-line, we  might want this to be a linked
  // list, so we can easily split into multiple lines.
  aFlexItems.SetCapacity(mFrames.GetLength());
  for (nsFrameList::Enumerator e(mFrames); !e.AtEnd(); e.Next()) {
    nsresult rv = AppendFlexItemForChild(aPresContext, e.get(),
                                         aReflowState, aAxisTracker,
                                         aFlexItems);
    NS_ENSURE_SUCCESS(rv,rv);
  }

  return NS_OK;
}

// Computes the content-box main-size of our flex container.
nscoord
nsFlexContainerFrame::ComputeFlexContainerMainSize(
  const nsHTMLReflowState& aReflowState,
  const FlexboxAxisTracker& aAxisTracker,
  const nsTArray<FlexItem>& aItems)
{
  // If we've got a finite computed main-size, use that.
  nscoord mainSize =
    aAxisTracker.GetMainComponent(nsSize(aReflowState.ComputedWidth(),
                                         aReflowState.ComputedHeight()));
  if (mainSize != NS_UNCONSTRAINEDSIZE) {
    return mainSize;
  }

  NS_WARN_IF_FALSE(!IsAxisHorizontal(aAxisTracker.GetMainAxis()),
                   "Computed width should always be constrained, so horizontal "
                   "flex containers should have a constrained main-size");

  // Otherwise, use the sum of our items' hypothetical main sizes, clamped
  // to our computed min/max main-size properties.
  mainSize = 0;
  for (uint32_t i = 0; i < aItems.Length(); ++i) {
    mainSize +=
      aItems[i].GetMainSize() +
      aItems[i].GetMarginBorderPaddingSizeInAxis(aAxisTracker.GetMainAxis());
  }

  nscoord minMainSize =
    aAxisTracker.GetMainComponent(nsSize(aReflowState.mComputedMinWidth,
                                         aReflowState.mComputedMinHeight));
  nscoord maxMainSize =
    aAxisTracker.GetMainComponent(nsSize(aReflowState.mComputedMaxWidth,
                                         aReflowState.mComputedMaxHeight));

  return NS_CSS_MINMAX(mainSize, minMainSize, maxMainSize);
}

void
nsFlexContainerFrame::PositionItemInMainAxis(
  MainAxisPositionTracker& aMainAxisPosnTracker,
  FlexItem& aItem)
{
  nscoord itemMainBorderBoxSize =
    aItem.GetMainSize() +
    aItem.GetBorderPaddingSizeInAxis(aMainAxisPosnTracker.GetAxis());

  // Resolve any main-axis 'auto' margins on aChild to an actual value.
  aMainAxisPosnTracker.ResolveAutoMarginsInMainAxis(aItem);

  // Advance our position tracker to child's upper-left content-box corner,
  // and use that as its position in the main axis.
  aMainAxisPosnTracker.EnterMargin(aItem.GetMargin());
  aMainAxisPosnTracker.EnterChildFrame(itemMainBorderBoxSize);

  aItem.SetMainPosition(aMainAxisPosnTracker.GetPosition());

  aMainAxisPosnTracker.ExitChildFrame(itemMainBorderBoxSize);
  aMainAxisPosnTracker.ExitMargin(aItem.GetMargin());
  aMainAxisPosnTracker.TraversePackingSpace();
}

// Helper method to take care of children who ASK_FOR_BASELINE, when
// we need their baseline.
static void
ResolveReflowedChildAscent(nsIFrame* aFrame,
                           nsHTMLReflowMetrics& aChildDesiredSize)
{
  if (aChildDesiredSize.ascent == nsHTMLReflowMetrics::ASK_FOR_BASELINE) {
    // Use GetFirstLineBaseline(), or just GetBaseline() if that fails.
    if (!nsLayoutUtils::GetFirstLineBaseline(aFrame,
                                             &aChildDesiredSize.ascent)) {
      aChildDesiredSize.ascent = aFrame->GetBaseline();
    }
  }
}

nsresult
nsFlexContainerFrame::SizeItemInCrossAxis(
  nsPresContext* aPresContext,
  const FlexboxAxisTracker& aAxisTracker,
  nsHTMLReflowState& aChildReflowState,
  FlexItem& aItem)
{
  // In vertical flexbox (with horizontal cross-axis), we can just trust the
  // reflow state's computed-width as our cross-size. We also don't need to
  // record the baseline because we'll have converted any "align-self:baseline"
  // items to be "align-self:flex-start" in the FlexItem constructor.
  // FIXME: Once we support writing-mode (vertical text), we will be able to
  // have baseline-aligned items in a vertical flexbox, and we'll need to
  // record baseline information here.
  if (IsAxisHorizontal(aAxisTracker.GetCrossAxis())) {
    MOZ_ASSERT(aItem.GetAlignSelf() != NS_STYLE_ALIGN_ITEMS_BASELINE,
               "In vert flex container, we depend on FlexItem constructor to "
               "convert 'align-self: baseline' to 'align-self: flex-start'");
    aItem.SetCrossSize(aChildReflowState.ComputedWidth());
    return NS_OK;
  }

  MOZ_ASSERT(!aItem.HadMeasuringReflow(),
             "We shouldn't need more than one measuring reflow");

  if (aItem.GetAlignSelf() == NS_STYLE_ALIGN_ITEMS_STRETCH) {
    // This item's got "align-self: stretch", so we probably imposed a
    // stretched computed height on it during its previous reflow. We're
    // not imposing that height for *this* measuring reflow, so we need to
    // tell it to treat this reflow as a vertical resize (regardless of
    // whether any of its ancestors are being resized).
    aChildReflowState.mFlags.mVResize = true;
  }
  nsHTMLReflowMetrics childDesiredSize;
  nsReflowStatus childReflowStatus;
  nsresult rv = ReflowChild(aItem.Frame(), aPresContext,
                            childDesiredSize, aChildReflowState,
                            0, 0, NS_FRAME_NO_MOVE_FRAME,
                            childReflowStatus);
  aItem.SetHadMeasuringReflow();
  NS_ENSURE_SUCCESS(rv, rv);

  // XXXdholbert Once we do pagination / splitting, we'll need to actually
  // handle incomplete childReflowStatuses. But for now, we give our kids
  // unconstrained available height, which means they should always complete.
  MOZ_ASSERT(NS_FRAME_IS_COMPLETE(childReflowStatus),
             "We gave flex item unconstrained available height, so it "
             "should be complete");

  // Tell the child we're done with its initial reflow.
  // (Necessary for e.g. GetBaseline() to work below w/out asserting)
  rv = FinishReflowChild(aItem.Frame(), aPresContext,
                         &aChildReflowState, childDesiredSize, 0, 0, 0);
  NS_ENSURE_SUCCESS(rv, rv);

  // Save the sizing info that we learned from this reflow
  // -----------------------------------------------------

  // Tentatively store the child's desired content-box cross-size.
  // Note that childDesiredSize is the border-box size, so we have to
  // subtract border & padding to get the content-box size.
  // (Note that at this point in the code, we know our cross axis is vertical,
  // so we don't bother with making aAxisTracker pick the cross-axis component
  // for us.)
  nscoord crossAxisBorderPadding = aItem.GetBorderPadding().TopBottom();
  if (childDesiredSize.height < crossAxisBorderPadding) {
    // Child's requested size isn't large enough for its border/padding!
    // This is OK for the trivial nsFrame::Reflow() impl, but other frame
    // classes should know better. So, if we get here, the child had better be
    // an instance of nsFrame (i.e. it should return null from GetType()).
    // XXXdholbert Once we've fixed bug 765861, we should upgrade this to an
    // assertion that trivially passes if bug 765861's flag has been flipped.
    NS_WARN_IF_FALSE(!aItem.Frame()->GetType(),
                     "Child should at least request space for border/padding");
    aItem.SetCrossSize(0);
  } else {
    // (normal case)
    aItem.SetCrossSize(childDesiredSize.height - crossAxisBorderPadding);
  }

  // If we need to do baseline-alignment, store the child's ascent.
  if (aItem.GetAlignSelf() == NS_STYLE_ALIGN_ITEMS_BASELINE) {
    ResolveReflowedChildAscent(aItem.Frame(), childDesiredSize);
    aItem.SetAscent(childDesiredSize.ascent);
  }

  return NS_OK;
}

void
nsFlexContainerFrame::PositionItemInCrossAxis(
  nscoord aLineStartPosition,
  SingleLineCrossAxisPositionTracker& aLineCrossAxisPosnTracker,
  FlexItem& aItem)
{
  MOZ_ASSERT(aLineCrossAxisPosnTracker.GetPosition() == 0,
             "per-line cross-axis position tracker wasn't correctly reset");

  // Resolve any to-be-stretched cross-sizes & auto margins in cross axis.
  aLineCrossAxisPosnTracker.ResolveStretchedCrossSize(aItem);
  aLineCrossAxisPosnTracker.ResolveAutoMarginsInCrossAxis(aItem);

  // Compute the cross-axis position of this item
  nscoord itemCrossBorderBoxSize =
    aItem.GetCrossSize() +
    aItem.GetBorderPaddingSizeInAxis(aLineCrossAxisPosnTracker.GetAxis());
  aLineCrossAxisPosnTracker.EnterAlignPackingSpace(aItem);
  aLineCrossAxisPosnTracker.EnterMargin(aItem.GetMargin());
  aLineCrossAxisPosnTracker.EnterChildFrame(itemCrossBorderBoxSize);

  aItem.SetCrossPosition(aLineStartPosition +
                         aLineCrossAxisPosnTracker.GetPosition());

  // Back out to cross-axis edge of the line.
  aLineCrossAxisPosnTracker.ResetPosition();
}

NS_IMETHODIMP
nsFlexContainerFrame::Reflow(nsPresContext*           aPresContext,
                             nsHTMLReflowMetrics&     aDesiredSize,
                             const nsHTMLReflowState& aReflowState,
                             nsReflowStatus&          aStatus)
{
  DO_GLOBAL_REFLOW_COUNT("nsFlexContainerFrame");
  DISPLAY_REFLOW(aPresContext, this, aReflowState, aDesiredSize, aStatus);
  PR_LOG(GetFlexContainerLog(), PR_LOG_DEBUG,
         ("Reflow() for nsFlexContainerFrame %p\n", this));

  if (IsFrameTreeTooDeep(aReflowState, aDesiredSize, aStatus)) {
    return NS_OK;
  }

  // We (and our children) can only depend on our ancestor's height if we have
  // a percent-height, or if we're positioned and we have "top" and "bottom"
  // set and have height:auto.  (There are actually other cases, too -- e.g. if
  // our parent is itself a vertical flex container and we're flexible -- but
  // we'll let our ancestors handle those sorts of cases.)
  const nsStylePosition* stylePos = StylePosition();
  if (stylePos->mHeight.HasPercent() ||
      (StyleDisplay()->IsAbsolutelyPositionedStyle() &&
       eStyleUnit_Auto == stylePos->mHeight.GetUnit() &&
       eStyleUnit_Auto != stylePos->mOffset.GetTopUnit() &&
       eStyleUnit_Auto != stylePos->mOffset.GetBottomUnit())) {
    AddStateBits(NS_FRAME_CONTAINS_RELATIVE_HEIGHT);
  }

#ifdef DEBUG
  SanityCheckAnonymousFlexItems();
#endif // DEBUG

  // If we've never reordered our children, then we can trust that they're
  // already in DOM-order, and we only need to consider their "order" property
  // when checking them for sortedness & sorting them.
  //
  // After we actually sort them, though, we can't trust that they're in DOM
  // order anymore.  So, from that point on, our sort & sorted-order-checking
  // operations need to use a fancier LEQ function that also takes DOM order
  // into account, so that we can honor the spec's requirement that frames w/
  // equal "order" values are laid out in DOM order.
  if (!mChildrenHaveBeenReordered) {
    mChildrenHaveBeenReordered =
      SortChildrenIfNeeded<IsOrderLEQ>();
  } else {
    SortChildrenIfNeeded<IsOrderLEQWithDOMFallback>();
  }

  const FlexboxAxisTracker axisTracker(this);

  // Generate a list of our flex items (already sorted), and get our main
  // size (which may depend on those items).
  nsTArray<FlexItem> items;
  nsresult rv = GenerateFlexItems(aPresContext, aReflowState,
                                  axisTracker, items);
  NS_ENSURE_SUCCESS(rv, rv);

  // XXXdholbert FOR MULTI-LINE FLEX CONTAINERS: Do line-breaking here.
  // This would produce an array of arrays, or a list of arrays,
  // or something like that. (one list/array per line)

  nscoord flexContainerMainSize =
    ComputeFlexContainerMainSize(aReflowState, axisTracker, items);

  ResolveFlexibleLengths(axisTracker, flexContainerMainSize, items);

  // Our frame's main-size is the content-box size plus border and padding.
  nscoord frameMainSize = flexContainerMainSize +
    axisTracker.GetMarginSizeInMainAxis(aReflowState.mComputedBorderPadding);

  nscoord frameCrossSize;

  MainAxisPositionTracker mainAxisPosnTracker(this, axisTracker,
                                              aReflowState, items);

  // First loop: Compute main axis position & cross-axis size of each item
  for (uint32_t i = 0; i < items.Length(); ++i) {
    FlexItem& curItem = items[i];

    nsHTMLReflowState childReflowState(aPresContext, aReflowState,
                                       curItem.Frame(),
                                       nsSize(aReflowState.ComputedWidth(),
                                              NS_UNCONSTRAINEDSIZE));
    // Override computed main-size
    if (IsAxisHorizontal(axisTracker.GetMainAxis())) {
      childReflowState.SetComputedWidth(curItem.GetMainSize());
    } else {
      childReflowState.SetComputedHeight(curItem.GetMainSize());
    }

    PositionItemInMainAxis(mainAxisPosnTracker, curItem);

    nsresult rv =
      SizeItemInCrossAxis(aPresContext, axisTracker,
                          childReflowState, curItem);
    NS_ENSURE_SUCCESS(rv, rv);
  }

  // Calculate the cross size of our (single) flex line:
  // Set up state for cross-axis alignment, at a high level (outside the
  // scope of a particular flex line)
  CrossAxisPositionTracker
    crossAxisPosnTracker(this, axisTracker, aReflowState);

  // Set up state for cross-axis-positioning of children _within_ a single
  // flex line.
  SingleLineCrossAxisPositionTracker
    lineCrossAxisPosnTracker(this, axisTracker, items);

  lineCrossAxisPosnTracker.ComputeLineCrossSize(items);
  // XXXdholbert Once we've got multi-line flexbox support: here, after we've
  // computed the cross size of all lines, we need to check if if
  // 'align-content' is 'stretch' -- if it is, we need to give each line an
  // additional share of our flex container's desired cross-size. (if it's
  // not NS_AUTOHEIGHT and there's any cross-size left over to distribute)

  // Calculate the content-box cross size of our flex container:
  nscoord contentBoxCrossSize =
    axisTracker.GetCrossComponent(nsSize(aReflowState.ComputedWidth(),
                                         aReflowState.ComputedHeight()));

  if (contentBoxCrossSize == NS_AUTOHEIGHT) {
    // Unconstrained 'auto' cross-size: shrink-wrap our line(s), subject
    // to our min-size / max-size constraints in that axis.
    nscoord minCrossSize =
      axisTracker.GetCrossComponent(nsSize(aReflowState.mComputedMinWidth,
                                           aReflowState.mComputedMinHeight));
    nscoord maxCrossSize =
      axisTracker.GetCrossComponent(nsSize(aReflowState.mComputedMaxWidth,
                                           aReflowState.mComputedMaxHeight));
    contentBoxCrossSize =
      NS_CSS_MINMAX(lineCrossAxisPosnTracker.GetLineCrossSize(),
                    minCrossSize, maxCrossSize);
  }
  if (lineCrossAxisPosnTracker.GetLineCrossSize() !=
      contentBoxCrossSize) {
    // XXXdholbert When we support multi-line flex containers, we should
    // distribute any extra space among or between our lines here according
    // to 'align-content'. For now, we do the single-line special behavior:
    // "If the flex container has only a single line (even if it's a
    // multi-line flex container), the cross size of the flex line is the
    // flex container's inner cross size."
    lineCrossAxisPosnTracker.SetLineCrossSize(contentBoxCrossSize);
  }
  frameCrossSize = contentBoxCrossSize +
    axisTracker.GetMarginSizeInCrossAxis(aReflowState.mComputedBorderPadding);

  // Set the flex container's baseline, from its baseline-aligned items.
  // (This might give us nscoord_MIN if we don't have any baseline-aligned
  // flex items.  That's OK, we'll update it below.)
  nscoord flexContainerAscent =
    lineCrossAxisPosnTracker.GetCrossStartToFurthestBaseline();
  if (flexContainerAscent != nscoord_MIN) {
    // Add top borderpadding, so our ascent is w.r.t. border-box
    flexContainerAscent += aReflowState.mComputedBorderPadding.top;
  }

  // Position the items in cross axis, within their line
  for (uint32_t i = 0; i < items.Length(); ++i) {
    PositionItemInCrossAxis(crossAxisPosnTracker.GetPosition(),
                            lineCrossAxisPosnTracker, items[i]);
  }

  // FINAL REFLOW: Give each child frame another chance to reflow, now that
  // we know its final size and position.
  for (uint32_t i = 0; i < items.Length(); ++i) {
    FlexItem& curItem = items[i];
    nsHTMLReflowState childReflowState(aPresContext, aReflowState,
                                       curItem.Frame(),
                                       nsSize(aReflowState.ComputedWidth(),
                                              NS_UNCONSTRAINEDSIZE));

    // Keep track of whether we've overriden the child's computed height
    // and/or width, so we can set its resize flags accordingly.
    bool didOverrideComputedWidth = false;
    bool didOverrideComputedHeight = false;

    // Override computed main-size
    if (IsAxisHorizontal(axisTracker.GetMainAxis())) {
      childReflowState.SetComputedWidth(curItem.GetMainSize());
      didOverrideComputedWidth = true;
    } else {
      childReflowState.SetComputedHeight(curItem.GetMainSize());
      didOverrideComputedHeight = true;
    }

    // Override reflow state's computed cross-size, for stretched items.
    if (curItem.IsStretched()) {
      MOZ_ASSERT(curItem.GetAlignSelf() == NS_STYLE_ALIGN_ITEMS_STRETCH,
                 "stretched item w/o 'align-self: stretch'?");
      if (IsAxisHorizontal(axisTracker.GetCrossAxis())) {
        childReflowState.SetComputedWidth(curItem.GetCrossSize());
        didOverrideComputedWidth = true;
      } else {
        // If this item's height is stretched, it's a relative height.
        curItem.Frame()->AddStateBits(NS_FRAME_CONTAINS_RELATIVE_HEIGHT);
        childReflowState.SetComputedHeight(curItem.GetCrossSize());
        didOverrideComputedHeight = true;
      }
    }

    // XXXdholbert Might need to actually set the correct margins in the
    // reflow state at some point, so that they can be saved on the frame for
    // UsedMarginProperty().  Maybe doesn't matter though...?

    // If we're overriding the computed width or height, *and* we had an
    // earlier "measuring" reflow, then this upcoming reflow needs to be
    // treated as a resize.
    if (curItem.HadMeasuringReflow()) {
      if (didOverrideComputedWidth) {
        // (This is somewhat redundant, since the reflow state already
        // sets mHResize whenever our computed width has changed since the
        // previous reflow. Still, it's nice for symmetry, and it may become
        // necessary once we support orthogonal flows.)
        childReflowState.mFlags.mHResize = true;
      }
      if (didOverrideComputedHeight) {
        childReflowState.mFlags.mVResize = true;
      }
    }
    // NOTE: Be very careful about doing anything else with childReflowState
    // after this point, because some of its methods (e.g. SetComputedWidth)
    // internally call InitResizeFlags and stomp on mVResize & mHResize.

    nscoord mainPosn = curItem.GetMainPosition();
    nscoord crossPosn = curItem.GetCrossPosition();
    if (!AxisGrowsInPositiveDirection(axisTracker.GetMainAxis())) {
      mainPosn = frameMainSize - mainPosn;
    }
    if (!AxisGrowsInPositiveDirection(axisTracker.GetCrossAxis())) {
      crossPosn = frameCrossSize - crossPosn;
    }

    nsPoint physicalPosn =
      axisTracker.PhysicalPositionFromLogicalPosition(mainPosn, crossPosn);

    nsHTMLReflowMetrics childDesiredSize;
    nsReflowStatus childReflowStatus;
    nsresult rv = ReflowChild(curItem.Frame(), aPresContext,
                              childDesiredSize, childReflowState,
                              physicalPosn.x, physicalPosn.y,
                              0, childReflowStatus);
    NS_ENSURE_SUCCESS(rv, rv);

    // XXXdholbert Once we do pagination / splitting, we'll need to actually
    // handle incomplete childReflowStatuses. But for now, we give our kids
    // unconstrained available height, which means they should always
    // complete.
    MOZ_ASSERT(NS_FRAME_IS_COMPLETE(childReflowStatus),
               "We gave flex item unconstrained available height, so it "
               "should be complete");

    // Apply CSS relative positioning
    const nsStyleDisplay* styleDisp = curItem.Frame()->StyleDisplay();
    if (NS_STYLE_POSITION_RELATIVE == styleDisp->mPosition) {
      physicalPosn.x += childReflowState.mComputedOffsets.left;
      physicalPosn.y += childReflowState.mComputedOffsets.top;
    }

    rv = FinishReflowChild(curItem.Frame(), aPresContext,
                           &childReflowState, childDesiredSize,
                           physicalPosn.x, physicalPosn.y, 0);
    NS_ENSURE_SUCCESS(rv, rv);

    // If this is our first child and we haven't established a baseline for
    // the container yet, then use this child's baseline as the container's
    // baseline.
    if (i == 0 && flexContainerAscent == nscoord_MIN) {
      ResolveReflowedChildAscent(curItem.Frame(), childDesiredSize);

      // (We subtract mComputedOffsets.top because we don't want relative
      // positioning on the child to affect the baseline that we read from it).
      flexContainerAscent = physicalPosn.y + childDesiredSize.ascent -
        childReflowState.mComputedOffsets.top;
    }
  }

  // XXXdholbert This could be more elegant
  aDesiredSize.width =
    IsAxisHorizontal(axisTracker.GetMainAxis()) ?
    frameMainSize : frameCrossSize;
  aDesiredSize.height =
    IsAxisHorizontal(axisTracker.GetCrossAxis()) ?
    frameMainSize : frameCrossSize;

  if (flexContainerAscent == nscoord_MIN) {
    // Still don't have our baseline set -- this happens if we have no
    // children (or if our children are huge enough that they have nscoord_MIN
    // as their baseline... in which case, we'll use the wrong baseline, but no
    // big deal)
    NS_WARN_IF_FALSE(items.IsEmpty(),
                     "Have flex items but didn't get an ascent - that's odd "
                     "(or there are just gigantic sizes involved)");
    // Per spec, just use the bottom of content-box.
    flexContainerAscent = aDesiredSize.height -
      aReflowState.mComputedBorderPadding.bottom;
  }

  aDesiredSize.ascent = flexContainerAscent;

  // Overflow area = union(my overflow area, kids' overflow areas)
  aDesiredSize.SetOverflowAreasToDesiredBounds();
  for (nsFrameList::Enumerator e(mFrames); !e.AtEnd(); e.Next()) {
    ConsiderChildOverflow(aDesiredSize.mOverflowAreas, e.get());
  }

  NS_FRAME_SET_TRUNCATION(aStatus, aReflowState, aDesiredSize)

  aStatus = NS_FRAME_COMPLETE;

  FinishReflowWithAbsoluteFrames(aPresContext, aDesiredSize,
                                 aReflowState, aStatus);

  return NS_OK;
}

/* virtual */ nscoord
nsFlexContainerFrame::GetMinWidth(nsRenderingContext* aRenderingContext)
{
  FlexboxAxisTracker axisTracker(this);

  nscoord minWidth = 0;
  for (nsFrameList::Enumerator e(mFrames); !e.AtEnd(); e.Next()) {
    nscoord childMinWidth =
      nsLayoutUtils::IntrinsicForContainer(aRenderingContext, e.get(),
                                           nsLayoutUtils::MIN_WIDTH);
    if (IsAxisHorizontal(axisTracker.GetMainAxis())) {
      minWidth += childMinWidth;
    } else {
      minWidth = std::max(minWidth, childMinWidth);
    }
  }
  return minWidth;
}

/* virtual */ nscoord
nsFlexContainerFrame::GetPrefWidth(nsRenderingContext* aRenderingContext)
{
  // XXXdholbert Optimization: We could cache our intrinsic widths like
  // nsBlockFrame does (and return it early from this function if it's set).
  // Whenever anything happens that might change it, set it to
  // NS_INTRINSIC_WIDTH_UNKNOWN (like nsBlockFrame::MarkIntrinsicWidthsDirty
  // does)
  FlexboxAxisTracker axisTracker(this);

  nscoord prefWidth = 0;
  for (nsFrameList::Enumerator e(mFrames); !e.AtEnd(); e.Next()) {
    nscoord childPrefWidth =
      nsLayoutUtils::IntrinsicForContainer(aRenderingContext, e.get(),
                                           nsLayoutUtils::PREF_WIDTH);
    if (IsAxisHorizontal(axisTracker.GetMainAxis())) {
      prefWidth += childPrefWidth;
    } else {
      prefWidth = std::max(prefWidth, childPrefWidth);
    }
  }
  return prefWidth;
}