DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Implementation

Mercurial (5b81998bb7ab)

VCS Links

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*-
 * vim: set ts=8 sts=4 et sw=4 tw=99:
 * This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */

/* Definitions for javascript analysis. */

#ifndef jsanalyze_h
#define jsanalyze_h

#include "mozilla/PodOperations.h"

#include "jscompartment.h"
#include "jscntxt.h"
#include "jsinfer.h"
#include "jsscript.h"

class JSScript;

namespace js {
namespace analyze {

/*
 * There are three analyses we can perform on a JSScript, outlined below.
 * The results of all three are stored in ScriptAnalysis, but the analyses
 * themselves can be performed separately. Along with type inference results,
 * per-script analysis results are tied to the per-compartment analysis pool
 * and are freed on every garbage collection.
 *
 * - Basic bytecode analysis. For each bytecode, determine the stack depth at
 * that point and control flow information needed for compilation. Also does
 * a defined-variables analysis to look for local variables which have uses
 * before definitions.
 *
 * - Lifetime analysis. Makes a backwards pass over the script to approximate
 * the regions where each variable is live, avoiding a full fixpointing
 * live-variables pass. This is based on the algorithm described in:
 *
 *     "Quality and Speed in Linear-scan Register Allocation"
 *     Traub et. al.
 *     PLDI, 1998
 *
 * - SSA analysis of the script's variables and stack values. For each stack
 * value popped and non-escaping local variable or argument read, determines
 * which push(es) or write(s) produced that value.
 *
 * Intermediate type inference results are additionally stored here. The above
 * analyses are independent from type inference.
 */

/* Information about a bytecode instruction. */
class Bytecode
{
    friend class ScriptAnalysis;

  public:
    Bytecode() { mozilla::PodZero(this); }

    /* --------- Bytecode analysis --------- */

    /* Whether there are any incoming jumps to this instruction. */
    bool jumpTarget : 1;

    /* Whether there is fallthrough to this instruction from a non-branching instruction. */
    bool fallthrough : 1;

    /* Whether this instruction is the fall through point of a conditional jump. */
    bool jumpFallthrough : 1;

    /*
     * Whether this instruction must always execute, unless the script throws
     * an exception which it does not later catch.
     */
    bool unconditional : 1;

    /* Whether this instruction has been analyzed to get its output defines and stack. */
    bool analyzed : 1;

    /* Whether this is a catch/finally entry point. */
    bool exceptionEntry : 1;

    /* Whether this is in a try block. */
    bool inTryBlock : 1;

    /* Whether this is in a loop. */
    bool inLoop : 1;

    /* Method JIT safe point. */
    bool safePoint : 1;

    /*
     * Side effects of this bytecode were not determined by type inference.
     * Either a property set with unknown lvalue, or call with unknown callee.
     */
    bool monitoredTypes : 1;

    /* Call whose result should be monitored. */
    bool monitoredTypesReturn : 1;

    /*
     * Dynamically observed state about the execution of this opcode. These are
     * hints about the script for use during compilation.
     */
    bool arrayWriteHole: 1;     /* SETELEM which has written to an array hole. */
    bool getStringElement:1;    /* GETELEM which has accessed string properties. */
    bool nonNativeGetElement:1; /* GETELEM on a non-native, non-array object. */
    bool accessGetter: 1;       /* Property read on a shape with a getter hook. */

    /* Stack depth before this opcode. */
    uint32_t stackDepth;

  private:

    /* If this is a JSOP_LOOPHEAD or JSOP_LOOPENTRY, information about the loop. */
    LoopAnalysis *loop;

    /* --------- SSA analysis --------- */

    /* Generated location of each value popped by this bytecode. */
    SSAValue *poppedValues;

    /* Points where values pushed or written by this bytecode are popped. */
    SSAUseChain **pushedUses;

    union {
        /*
         * If this is a join point (implies jumpTarget), any slots at this
         * point which can have a different values than at the immediate
         * predecessor in the bytecode. Array is terminated by an entry with
         * a zero slot.
         */
        SlotValue *newValues;

        /*
         * Vector used during SSA analysis to store values in need of merging
         * at this point. If this has incoming forward jumps and we have not
         * yet reached this point, stores values for entries on the stack and
         * for variables which have changed since the branch. If this is a loop
         * head and we haven't reached the back edge yet, stores loop phi nodes
         * for variables and entries live at the head of the loop.
         */
        Vector<SlotValue> *pendingValues;
    };

    /* --------- Type inference --------- */

    /* Types for all values pushed by this bytecode. */
    types::StackTypeSet *pushedTypes;

    /* Any type barriers in place at this bytecode. */
    types::TypeBarrier *typeBarriers;
};

/*
 * For opcodes which assign to a local variable or argument, track an extra def
 * during SSA analysis for the value's use chain and assigned type.
 */
static inline bool
ExtendedDef(jsbytecode *pc)
{
    switch ((JSOp)*pc) {
      case JSOP_SETARG:
      case JSOP_SETLOCAL:
        return true;
      default:
        return false;
    }
}

/*
 * For opcodes which access local variables or arguments, we track an extra
 * use during SSA analysis for the value of the variable before/after the op.
 */
static inline bool
ExtendedUse(jsbytecode *pc)
{
    if (ExtendedDef(pc))
        return true;
    switch ((JSOp)*pc) {
      case JSOP_GETARG:
      case JSOP_CALLARG:
      case JSOP_GETLOCAL:
      case JSOP_CALLLOCAL:
        return true;
      default:
        return false;
    }
}

static inline JSOp
ReverseCompareOp(JSOp op)
{
    switch (op) {
      case JSOP_GT:
        return JSOP_LT;
      case JSOP_GE:
        return JSOP_LE;
      case JSOP_LT:
        return JSOP_GT;
      case JSOP_LE:
        return JSOP_GE;
      case JSOP_EQ:
      case JSOP_NE:
      case JSOP_STRICTEQ:
      case JSOP_STRICTNE:
        return op;
      default:
        JS_NOT_REACHED("unrecognized op");
        return op;
    }
}

static inline JSOp
NegateCompareOp(JSOp op)
{
    switch (op) {
      case JSOP_GT:
        return JSOP_LE;
      case JSOP_GE:
        return JSOP_LT;
      case JSOP_LT:
        return JSOP_GE;
      case JSOP_LE:
        return JSOP_GT;
      case JSOP_EQ:
        return JSOP_NE;
      case JSOP_NE:
        return JSOP_EQ;
      case JSOP_STRICTNE:
        return JSOP_STRICTEQ;
      case JSOP_STRICTEQ:
        return JSOP_STRICTNE;
      default:
        JS_NOT_REACHED("unrecognized op");
        return op;
    }
}

static inline unsigned
FollowBranch(JSContext *cx, JSScript *script, unsigned offset)
{
    /*
     * Get the target offset of a branch. For GOTO opcodes implementing
     * 'continue' statements, short circuit any artificial backwards jump
     * inserted by the emitter.
     */
    jsbytecode *pc = script->code + offset;
    unsigned targetOffset = offset + GET_JUMP_OFFSET(pc);
    if (targetOffset < offset) {
        jsbytecode *target = script->code + targetOffset;
        JSOp nop = JSOp(*target);
        if (nop == JSOP_GOTO)
            return targetOffset + GET_JUMP_OFFSET(target);
    }
    return targetOffset;
}

/* Common representation of slots throughout analyses and the compiler. */
static inline uint32_t CalleeSlot() {
    return 0;
}
static inline uint32_t ThisSlot() {
    return 1;
}
static inline uint32_t ArgSlot(uint32_t arg) {
    return 2 + arg;
}
static inline uint32_t LocalSlot(JSScript *script, uint32_t local) {
    return 2 + (script->function() ? script->function()->nargs : 0) + local;
}
static inline uint32_t TotalSlots(JSScript *script) {
    return LocalSlot(script, 0) + script->nfixed;
}

static inline uint32_t StackSlot(JSScript *script, uint32_t index) {
    return TotalSlots(script) + index;
}

static inline uint32_t GetBytecodeSlot(JSScript *script, jsbytecode *pc)
{
    switch (JSOp(*pc)) {

      case JSOP_GETARG:
      case JSOP_CALLARG:
      case JSOP_SETARG:
        return ArgSlot(GET_SLOTNO(pc));

      case JSOP_GETLOCAL:
      case JSOP_CALLLOCAL:
      case JSOP_SETLOCAL:
        return LocalSlot(script, GET_SLOTNO(pc));

      case JSOP_THIS:
        return ThisSlot();

      default:
        JS_NOT_REACHED("Bad slot opcode");
        return 0;
    }
}

/* Slot opcodes which update SSA information. */
static inline bool
BytecodeUpdatesSlot(JSOp op)
{
    return (op == JSOP_SETARG || op == JSOP_SETLOCAL);
}

/*
 * Information about the lifetime of a local or argument. These form a linked
 * list describing successive intervals in the program where the variable's
 * value may be live. At points in the script not in one of these segments
 * (points in a 'lifetime hole'), the variable is dead and registers containing
 * its type/payload can be discarded without needing to be synced.
 */
struct Lifetime
{
    /*
     * Start and end offsets of this lifetime. The variable is live at the
     * beginning of every bytecode in this (inclusive) range.
     */
    uint32_t start;
    uint32_t end;

    /*
     * In a loop body, endpoint to extend this lifetime with if the variable is
     * live in the next iteration.
     */
    uint32_t savedEnd;

    /*
     * This is an artificial segment extending the lifetime of this variable
     * when it is live at the head of the loop. It will not be used until the
     * next iteration.
     */
    bool loopTail;

    /*
     * The start of this lifetime is a bytecode writing the variable. Each
     * write to a variable is associated with a lifetime.
     */
    bool write;

    /* Next lifetime. The variable is dead from this->end to next->start. */
    Lifetime *next;

    Lifetime(uint32_t offset, uint32_t savedEnd, Lifetime *next)
        : start(offset), end(offset), savedEnd(savedEnd),
          loopTail(false), write(false), next(next)
    {}
};

/* Basic information for a loop. */
class LoopAnalysis
{
  public:
    /* Any loop this one is nested in. */
    LoopAnalysis *parent;

    /* Offset of the head of the loop. */
    uint32_t head;

    /*
     * Offset of the unique jump going to the head of the loop. The code
     * between the head and the backedge forms the loop body.
     */
    uint32_t backedge;

    /* Target offset of the initial jump or fallthrough into the loop. */
    uint32_t entry;

    /*
     * Start of the last basic block in the loop, excluding the initial jump to
     * entry. All code between lastBlock and the backedge runs in every
     * iteration, and if entry >= lastBlock all code between entry and the
     * backedge runs when the loop is initially entered.
     */
    uint32_t lastBlock;

    /* Loop nesting depth, 0 for the outermost loop. */
    uint16_t depth;

    /*
     * This loop contains safe points in its body which the interpreter might
     * join at directly.
     */
    bool hasSafePoints;

    /* This loop has calls or inner loops. */
    bool hasCallsLoops;
};

/* Current lifetime information for a variable. */
struct LifetimeVariable
{
    /* If the variable is currently live, the lifetime segment. */
    Lifetime *lifetime;

    /* If the variable is currently dead, the next live segment. */
    Lifetime *saved;

    /* Jump preceding the basic block which killed this variable. */
    uint32_t savedEnd : 31;

    /* If the variable needs to be kept alive until lifetime->start. */
    bool ensured : 1;

    /* Whether this variable is live at offset. */
    Lifetime * live(uint32_t offset) const {
        if (lifetime && lifetime->end >= offset)
            return lifetime;
        Lifetime *segment = lifetime ? lifetime : saved;
        while (segment && segment->start <= offset) {
            if (segment->end >= offset)
                return segment;
            segment = segment->next;
        }
        return NULL;
    }

    /*
     * Get the offset of the first write to the variable in an inclusive range,
     * UINT32_MAX if the variable is not written in the range.
     */
    uint32_t firstWrite(uint32_t start, uint32_t end) const {
        Lifetime *segment = lifetime ? lifetime : saved;
        while (segment && segment->start <= end) {
            if (segment->start >= start && segment->write)
                return segment->start;
            segment = segment->next;
        }
        return UINT32_MAX;
    }
    uint32_t firstWrite(LoopAnalysis *loop) const {
        return firstWrite(loop->head, loop->backedge);
    }

    /*
     * If the variable is only written once in the body of a loop, offset of
     * that write. UINT32_MAX otherwise.
     */
    uint32_t onlyWrite(LoopAnalysis *loop) const {
        uint32_t offset = UINT32_MAX;
        Lifetime *segment = lifetime ? lifetime : saved;
        while (segment && segment->start <= loop->backedge) {
            if (segment->start >= loop->head && segment->write) {
                if (offset != UINT32_MAX)
                    return UINT32_MAX;
                offset = segment->start;
            }
            segment = segment->next;
        }
        return offset;
    }

#ifdef DEBUG
    void print() const;
#endif
};

struct SSAPhiNode;

/*
 * Representation of values on stack or in slots at each point in the script.
 * Values are independent from the bytecode position, and mean the same thing
 * everywhere in the script. SSA values are immutable, except for contents of
 * the values and types in an SSAPhiNode.
 */
class SSAValue
{
    friend class ScriptAnalysis;

  public:
    enum Kind {
        EMPTY  = 0, /* Invalid entry. */
        PUSHED = 1, /* Value pushed by some bytecode. */
        VAR    = 2, /* Initial or written value to some argument or local. */
        PHI    = 3  /* Selector for one of several values. */
    };

    Kind kind() const {
        JS_ASSERT(u.pushed.kind == u.var.kind && u.pushed.kind == u.phi.kind);

        /* Use a bitmask because MSVC wants to use -1 for PHI nodes. */
        return (Kind) (u.pushed.kind & 0x3);
    }

    bool operator==(const SSAValue &o) const {
        return !memcmp(this, &o, sizeof(SSAValue));
    }

    /* Accessors for values pushed by a bytecode within this script. */

    uint32_t pushedOffset() const {
        JS_ASSERT(kind() == PUSHED);
        return u.pushed.offset;
    }

    uint32_t pushedIndex() const {
        JS_ASSERT(kind() == PUSHED);
        return u.pushed.index;
    }

    /* Accessors for initial and written values of arguments and (undefined) locals. */

    bool varInitial() const {
        JS_ASSERT(kind() == VAR);
        return u.var.initial;
    }

    uint32_t varSlot() const {
        JS_ASSERT(kind() == VAR);
        return u.var.slot;
    }

    uint32_t varOffset() const {
        JS_ASSERT(!varInitial());
        return u.var.offset;
    }

    /* Accessors for phi nodes. */

    uint32_t phiSlot() const;
    uint32_t phiLength() const;
    const SSAValue &phiValue(uint32_t i) const;
    types::TypeSet *phiTypes() const;

    /* Offset at which this phi node was created. */
    uint32_t phiOffset() const {
        JS_ASSERT(kind() == PHI);
        return u.phi.offset;
    }

    SSAPhiNode *phiNode() const {
        JS_ASSERT(kind() == PHI);
        return u.phi.node;
    }

    /* Other accessors. */

#ifdef DEBUG
    void print() const;
#endif

    void clear() {
        mozilla::PodZero(this);
        JS_ASSERT(kind() == EMPTY);
    }

    void initPushed(uint32_t offset, uint32_t index) {
        clear();
        u.pushed.kind = PUSHED;
        u.pushed.offset = offset;
        u.pushed.index = index;
    }

    static SSAValue PushedValue(uint32_t offset, uint32_t index) {
        SSAValue v;
        v.initPushed(offset, index);
        return v;
    }

    void initInitial(uint32_t slot) {
        clear();
        u.var.kind = VAR;
        u.var.initial = true;
        u.var.slot = slot;
    }

    void initWritten(uint32_t slot, uint32_t offset) {
        clear();
        u.var.kind = VAR;
        u.var.initial = false;
        u.var.slot = slot;
        u.var.offset = offset;
    }

    static SSAValue WrittenVar(uint32_t slot, uint32_t offset) {
        SSAValue v;
        v.initWritten(slot, offset);
        return v;
    }

    void initPhi(uint32_t offset, SSAPhiNode *node) {
        clear();
        u.phi.kind = PHI;
        u.phi.offset = offset;
        u.phi.node = node;
    }

    static SSAValue PhiValue(uint32_t offset, SSAPhiNode *node) {
        SSAValue v;
        v.initPhi(offset, node);
        return v;
    }

  private:
    union {
        struct {
            Kind kind : 2;
            uint32_t offset : 30;
            uint32_t index;
        } pushed;
        struct {
            Kind kind : 2;
            bool initial : 1;
            uint32_t slot : 29;
            uint32_t offset;
        } var;
        struct {
            Kind kind : 2;
            uint32_t offset : 30;
            SSAPhiNode *node;
        } phi;
    } u;
};

/*
 * Mutable component of a phi node, with the possible values of the phi
 * and the possible types of the node as determined by type inference.
 * When phi nodes are copied around, any updates to the original will
 * be seen by all copies made.
 */
struct SSAPhiNode
{
    types::StackTypeSet types;
    uint32_t slot;
    uint32_t length;
    SSAValue *options;
    SSAUseChain *uses;
    SSAPhiNode() { mozilla::PodZero(this); }
};

inline uint32_t
SSAValue::phiSlot() const
{
    return u.phi.node->slot;
}

inline uint32_t
SSAValue::phiLength() const
{
    JS_ASSERT(kind() == PHI);
    return u.phi.node->length;
}

inline const SSAValue &
SSAValue::phiValue(uint32_t i) const
{
    JS_ASSERT(kind() == PHI && i < phiLength());
    return u.phi.node->options[i];
}

inline types::TypeSet *
SSAValue::phiTypes() const
{
    JS_ASSERT(kind() == PHI);
    return &u.phi.node->types;
}

class SSAUseChain
{
  public:
    bool popped : 1;
    uint32_t offset : 31;
    /* FIXME: Assert that only the proper arm of this union is accessed. */
    union {
        uint32_t which;
        SSAPhiNode *phi;
    } u;
    SSAUseChain *next;

    SSAUseChain() { mozilla::PodZero(this); }
};

class SlotValue
{
  public:
    uint32_t slot;
    SSAValue value;
    SlotValue(uint32_t slot, const SSAValue &value) : slot(slot), value(value) {}
};

struct NeedsArgsObjState;

/* Analysis information about a script. */
class ScriptAnalysis
{
    friend class Bytecode;

    JSScript *script_;

    Bytecode **codeArray;

    uint32_t numSlots;
    uint32_t numPropertyReads_;

    bool outOfMemory;
    bool hadFailure;

    bool *escapedSlots;

    types::StackTypeSet *undefinedTypeSet;

    /* Which analyses have been performed. */
    bool ranBytecode_;
    bool ranSSA_;
    bool ranLifetimes_;
    bool ranInference_;

#ifdef DEBUG
    /* Whether the compartment was in debug mode when we performed the analysis. */
    bool originalDebugMode_: 1;
#endif

    /* --------- Bytecode analysis --------- */

    bool usesReturnValue_:1;
    bool usesScopeChain_:1;
    bool usesThisValue_:1;
    bool hasFunctionCalls_:1;
    bool modifiesArguments_:1;
    bool localsAliasStack_:1;
    bool isIonInlineable:1;
    bool canTrackVars:1;
    bool hasLoops_:1;

    uint32_t numReturnSites_;

    /* --------- Lifetime analysis --------- */

    LifetimeVariable *lifetimes;

  public:

    ScriptAnalysis(JSScript *script) {
        mozilla::PodZero(this);
        this->script_ = script;
#ifdef DEBUG
        this->originalDebugMode_ = script_->compartment()->debugMode();
#endif
    }

    bool ranBytecode() { return ranBytecode_; }
    bool ranSSA() { return ranSSA_; }
    bool ranLifetimes() { return ranLifetimes_; }
    bool ranInference() { return ranInference_; }

    void analyzeBytecode(JSContext *cx);
    void analyzeSSA(JSContext *cx);
    void analyzeLifetimes(JSContext *cx);
    void analyzeTypes(JSContext *cx);

    /* Analyze the effect of invoking 'new' on script. */
    void analyzeTypesNew(JSContext *cx);

    bool OOM() const { return outOfMemory; }
    bool failed() const { return hadFailure; }
    bool ionInlineable() const { return isIonInlineable; }
    bool ionInlineable(uint32_t argc) const { return isIonInlineable && argc == script_->function()->nargs; }
    void setIonUninlineable() { isIonInlineable = false; }

    /* Number of property read opcodes in the script. */
    uint32_t numPropertyReads() const { return numPropertyReads_; }

    /* Whether there are POPV/SETRVAL bytecodes which can write to the frame's rval. */
    bool usesReturnValue() const { return usesReturnValue_; }

    /* Whether there are NAME bytecodes which can access the frame's scope chain. */
    bool usesScopeChain() const { return usesScopeChain_; }

    bool usesThisValue() const { return usesThisValue_; }
    bool hasFunctionCalls() const { return hasFunctionCalls_; }
    uint32_t numReturnSites() const { return numReturnSites_; }

    bool hasLoops() const { return hasLoops_; }

    /*
     * True if all named formal arguments are not modified. If the arguments
     * object cannot escape, the arguments are never modified within the script.
     */
    bool modifiesArguments() { return modifiesArguments_; }

    /*
     * True if there are any LOCAL opcodes aliasing values on the stack (above
     * script_->nfixed).
     */
    bool localsAliasStack() { return localsAliasStack_; }

    /* Accessors for bytecode information. */

    Bytecode& getCode(uint32_t offset) {
        JS_ASSERT(offset < script_->length);
        JS_ASSERT(codeArray[offset]);
        return *codeArray[offset];
    }
    Bytecode& getCode(const jsbytecode *pc) { return getCode(pc - script_->code); }

    Bytecode* maybeCode(uint32_t offset) {
        JS_ASSERT(offset < script_->length);
        return codeArray[offset];
    }
    Bytecode* maybeCode(const jsbytecode *pc) { return maybeCode(pc - script_->code); }

    bool jumpTarget(uint32_t offset) {
        JS_ASSERT(offset < script_->length);
        return codeArray[offset] && codeArray[offset]->jumpTarget;
    }
    bool jumpTarget(const jsbytecode *pc) { return jumpTarget(pc - script_->code); }

    bool popGuaranteed(jsbytecode *pc) {
        jsbytecode *next = pc + GetBytecodeLength(pc);
        return JSOp(*next) == JSOP_POP && !jumpTarget(next);
    }

    inline const SSAValue &poppedValue(uint32_t offset, uint32_t which);

    inline const SSAValue &poppedValue(const jsbytecode *pc, uint32_t which);

    const SlotValue *newValues(uint32_t offset) {
        JS_ASSERT(offset < script_->length);
        return getCode(offset).newValues;
    }
    const SlotValue *newValues(const jsbytecode *pc) { return newValues(pc - script_->code); }

    inline types::StackTypeSet *pushedTypes(uint32_t offset, uint32_t which = 0);
    inline types::StackTypeSet *pushedTypes(const jsbytecode *pc, uint32_t which);

    bool hasPushedTypes(const jsbytecode *pc) { return getCode(pc).pushedTypes != NULL; }

    types::TypeBarrier *typeBarriers(JSContext *cx, uint32_t offset) {
        if (getCode(offset).typeBarriers)
            pruneTypeBarriers(cx, offset);
        return getCode(offset).typeBarriers;
    }
    types::TypeBarrier *typeBarriers(JSContext *cx, const jsbytecode *pc) {
        return typeBarriers(cx, pc - script_->code);
    }
    void addTypeBarrier(JSContext *cx, const jsbytecode *pc,
                        types::TypeSet *target, types::Type type);
    void addSingletonTypeBarrier(JSContext *cx, const jsbytecode *pc,
                                 types::TypeSet *target,
                                 HandleObject singleton, HandleId singletonId);

    /* Remove obsolete type barriers at the given offset. */
    void pruneTypeBarriers(JSContext *cx, uint32_t offset);

    /*
     * Remove still-active type barriers at the given offset. If 'all' is set,
     * then all barriers are removed, otherwise only those deemed excessive
     * are removed.
     */
    void breakTypeBarriers(JSContext *cx, uint32_t offset, bool all);

    /* Break all type barriers used in computing v. */
    void breakTypeBarriersSSA(JSContext *cx, const SSAValue &v);

    inline void addPushedType(JSContext *cx, uint32_t offset, uint32_t which, types::Type type);

    inline types::StackTypeSet *getValueTypes(const SSAValue &v);

    inline types::StackTypeSet *poppedTypes(uint32_t offset, uint32_t which);
    inline types::StackTypeSet *poppedTypes(const jsbytecode *pc, uint32_t which);

    /* Whether an arithmetic operation is operating on integers, with an integer result. */
    bool integerOperation(jsbytecode *pc);

    bool trackUseChain(const SSAValue &v) {
        JS_ASSERT_IF(v.kind() == SSAValue::VAR, trackSlot(v.varSlot()));
        return v.kind() != SSAValue::EMPTY &&
               (v.kind() != SSAValue::VAR || !v.varInitial());
    }

    /*
     * Get the use chain for an SSA value. May be invalid for some opcodes in
     * scripts where localsAliasStack(). You have been warned!
     */
    inline SSAUseChain *& useChain(const SSAValue &v);

    LoopAnalysis *getLoop(uint32_t offset) {
        JS_ASSERT(offset < script_->length);
        return getCode(offset).loop;
    }
    LoopAnalysis *getLoop(const jsbytecode *pc) { return getLoop(pc - script_->code); }


    /* For a JSOP_CALL* op, get the pc of the corresponding JSOP_CALL/NEW/etc. */
    inline jsbytecode *getCallPC(jsbytecode *pc);

    /* Accessors for local variable information. */

    /*
     * Escaping slots include all slots that can be accessed in ways other than
     * through the corresponding LOCAL/ARG opcode. This includes all closed
     * slots in the script, all slots in scripts which use eval or are in debug
     * mode, and slots which are aliased by NAME or similar opcodes in the
     * containing script (which does not imply the variable is closed).
     */
    bool slotEscapes(uint32_t slot) {
        JS_ASSERT(script_->compartment()->activeAnalysis);
        if (slot >= numSlots)
            return true;
        return escapedSlots[slot];
    }

    /*
     * Whether we distinguish different writes of this variable while doing
     * SSA analysis. Escaping locals can be written in other scripts, and the
     * presence of NAME opcodes which could alias local variables or arguments
     * keeps us from tracking variable values at each point.
     */
    bool trackSlot(uint32_t slot) { return !slotEscapes(slot) && canTrackVars && slot < 1000; }

    const LifetimeVariable & liveness(uint32_t slot) {
        JS_ASSERT(script_->compartment()->activeAnalysis);
        JS_ASSERT(!slotEscapes(slot));
        return lifetimes[slot];
    }

    void printSSA(JSContext *cx);
    void printTypes(JSContext *cx);

  private:
    void setOOM(JSContext *cx) {
        if (!outOfMemory)
            js_ReportOutOfMemory(cx);
        outOfMemory = true;
        hadFailure = true;
    }

    /* Bytecode helpers */
    inline bool addJump(JSContext *cx, unsigned offset,
                        unsigned *currentOffset, unsigned *forwardJump, unsigned *forwardLoop,
                        unsigned stackDepth);

    /* Lifetime helpers */
    inline void addVariable(JSContext *cx, LifetimeVariable &var, unsigned offset,
                            LifetimeVariable **&saved, unsigned &savedCount);
    inline void killVariable(JSContext *cx, LifetimeVariable &var, unsigned offset,
                             LifetimeVariable **&saved, unsigned &savedCount);
    inline void extendVariable(JSContext *cx, LifetimeVariable &var, unsigned start, unsigned end);
    inline void ensureVariable(LifetimeVariable &var, unsigned until);

    /* Current value for a variable or stack value, as tracked during SSA. */
    struct SSAValueInfo
    {
        SSAValue v;

        /*
         * Sizes of branchTargets the last time this slot was written. Branches less
         * than this threshold do not need to be inspected if the slot is written
         * again, as they will already reflect the slot's value at the branch.
         */
        int32_t branchSize;
    };

    /* SSA helpers */
    bool makePhi(JSContext *cx, uint32_t slot, uint32_t offset, SSAValue *pv);
    void insertPhi(JSContext *cx, SSAValue &phi, const SSAValue &v);
    void mergeValue(JSContext *cx, uint32_t offset, const SSAValue &v, SlotValue *pv);
    void checkPendingValue(JSContext *cx, const SSAValue &v, uint32_t slot,
                           Vector<SlotValue> *pending);
    void checkBranchTarget(JSContext *cx, uint32_t targetOffset, Vector<uint32_t> &branchTargets,
                           SSAValueInfo *values, uint32_t stackDepth);
    void checkExceptionTarget(JSContext *cx, uint32_t catchOffset,
                              Vector<uint32_t> &exceptionTargets);
    void mergeBranchTarget(JSContext *cx, SSAValueInfo &value, uint32_t slot,
                           const Vector<uint32_t> &branchTargets, uint32_t currentOffset);
    void mergeExceptionTarget(JSContext *cx, const SSAValue &value, uint32_t slot,
                              const Vector<uint32_t> &exceptionTargets);
    void mergeAllExceptionTargets(JSContext *cx, SSAValueInfo *values,
                                  const Vector<uint32_t> &exceptionTargets);
    void freezeNewValues(JSContext *cx, uint32_t offset);

    struct TypeInferenceState {
        Vector<SSAPhiNode *> phiNodes;
        bool hasHole;
        types::StackTypeSet *forTypes;
        bool hasPropertyReadTypes;
        uint32_t propertyReadIndex;
        TypeInferenceState(JSContext *cx)
            : phiNodes(cx), hasHole(false), forTypes(NULL),
              hasPropertyReadTypes(false), propertyReadIndex(0)
        {}
    };

    /* Type inference helpers */
    bool analyzeTypesBytecode(JSContext *cx, unsigned offset, TypeInferenceState &state);

    typedef Vector<SSAValue, 16> SeenVector;
    bool needsArgsObj(JSContext *cx, SeenVector &seen, const SSAValue &v);
    bool needsArgsObj(JSContext *cx, SeenVector &seen, SSAUseChain *use);
    bool needsArgsObj(JSContext *cx);

  public:
#ifdef DEBUG
    void assertMatchingDebugMode();
#else
    void assertMatchingDebugMode() { }
#endif
};

/* SSA value as used by CrossScriptSSA, identifies the frame it came from. */
struct CrossSSAValue
{
    unsigned frame;
    SSAValue v;
    CrossSSAValue(unsigned frame, const SSAValue &v) : frame(frame), v(v) {}
};

/*
 * Analysis for managing SSA values from multiple call stack frames. These are
 * created by the backend compiler when inlining functions, and allow for
 * values to be tracked as they flow into or out of the inlined frames.
 */
class CrossScriptSSA
{
  public:

    static const uint32_t OUTER_FRAME = UINT32_MAX;
    static const unsigned INVALID_FRAME = uint32_t(-2);

    struct Frame {
        uint32_t index;
        JSScript *script;
        uint32_t depth;  /* Distance from outer frame to this frame, in sizeof(Value) */
        uint32_t parent;
        jsbytecode *parentpc;

        Frame(uint32_t index, JSScript *script, uint32_t depth, uint32_t parent,
              jsbytecode *parentpc)
          : index(index), script(script), depth(depth), parent(parent), parentpc(parentpc)
        {}
    };

    const Frame &getFrame(uint32_t index) {
        if (index == OUTER_FRAME)
            return outerFrame;
        return inlineFrames[index];
    }

    unsigned numFrames() { return 1 + inlineFrames.length(); }
    const Frame &iterFrame(unsigned i) {
        if (i == 0)
            return outerFrame;
        return inlineFrames[i - 1];
    }

    JSScript *outerScript() { return outerFrame.script; }

    /* Total length of scripts preceding a frame. */
    size_t frameLength(uint32_t index) {
        if (index == OUTER_FRAME)
            return 0;
        size_t res = outerFrame.script->length;
        for (unsigned i = 0; i < index; i++)
            res += inlineFrames[i].script->length;
        return res;
    }

    inline types::StackTypeSet *getValueTypes(const CrossSSAValue &cv);

    bool addInlineFrame(JSScript *script, uint32_t depth, uint32_t parent,
                        jsbytecode *parentpc)
    {
        uint32_t index = inlineFrames.length();
        return inlineFrames.append(Frame(index, script, depth, parent, parentpc));
    }

    CrossScriptSSA(JSContext *cx, JSScript *outer)
        : outerFrame(OUTER_FRAME, outer, 0, INVALID_FRAME, NULL), inlineFrames(cx)
    {}

    CrossSSAValue foldValue(const CrossSSAValue &cv);

  private:
    Frame outerFrame;
    Vector<Frame> inlineFrames;
};

#ifdef DEBUG
void PrintBytecode(JSContext *cx, HandleScript script, jsbytecode *pc);
#endif

} /* namespace analyze */
} /* namespace js */

namespace mozilla {

template <> struct IsPod<js::analyze::LifetimeVariable> : TrueType {};
template <> struct IsPod<js::analyze::LoopAnalysis>     : TrueType {};
template <> struct IsPod<js::analyze::SlotValue>        : TrueType {};
template <> struct IsPod<js::analyze::SSAValue>         : TrueType {};
template <> struct IsPod<js::analyze::SSAUseChain>      : TrueType {};

} /* namespace mozilla */

#endif /* jsanalyze_h */