DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Mercurial (5b81998bb7ab)

VCS Links

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*-
 * vim: set ts=8 sts=4 et sw=4 tw=99:
 * This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */

#ifndef gc_Barrier_h
#define gc_Barrier_h

#include "jsapi.h"

#include "gc/Heap.h"
#include "js/HashTable.h"
#include "js/RootingAPI.h"

/*
 * A write barrier is a mechanism used by incremental or generation GCs to
 * ensure that every value that needs to be marked is marked. In general, the
 * write barrier should be invoked whenever a write can cause the set of things
 * traced through by the GC to change. This includes:
 *   - writes to object properties
 *   - writes to array slots
 *   - writes to fields like JSObject::shape_ that we trace through
 *   - writes to fields in private data, like JSGenerator::obj
 *   - writes to non-markable fields like JSObject::private that point to
 *     markable data
 * The last category is the trickiest. Even though the private pointers does not
 * point to a GC thing, changing the private pointer may change the set of
 * objects that are traced by the GC. Therefore it needs a write barrier.
 *
 * Every barriered write should have the following form:
 *   <pre-barrier>
 *   obj->field = value; // do the actual write
 *   <post-barrier>
 * The pre-barrier is used for incremental GC and the post-barrier is for
 * generational GC.
 *
 *                               PRE-BARRIER
 *
 * To understand the pre-barrier, let's consider how incremental GC works. The
 * GC itself is divided into "slices". Between each slice, JS code is allowed to
 * run. Each slice should be short so that the user doesn't notice the
 * interruptions. In our GC, the structure of the slices is as follows:
 *
 * 1. ... JS work, which leads to a request to do GC ...
 * 2. [first GC slice, which performs all root marking and possibly more marking]
 * 3. ... more JS work is allowed to run ...
 * 4. [GC mark slice, which runs entirely in drainMarkStack]
 * 5. ... more JS work ...
 * 6. [GC mark slice, which runs entirely in drainMarkStack]
 * 7. ... more JS work ...
 * 8. [GC marking finishes; sweeping done non-incrementally; GC is done]
 * 9. ... JS continues uninterrupted now that GC is finishes ...
 *
 * Of course, there may be a different number of slices depending on how much
 * marking is to be done.
 *
 * The danger inherent in this scheme is that the JS code in steps 3, 5, and 7
 * might change the heap in a way that causes the GC to collect an object that
 * is actually reachable. The write barrier prevents this from happening. We use
 * a variant of incremental GC called "snapshot at the beginning." This approach
 * guarantees the invariant that if an object is reachable in step 2, then we
 * will mark it eventually. The name comes from the idea that we take a
 * theoretical "snapshot" of all reachable objects in step 2; all objects in
 * that snapshot should eventually be marked. (Note that the write barrier
 * verifier code takes an actual snapshot.)
 *
 * The basic correctness invariant of a snapshot-at-the-beginning collector is
 * that any object reachable at the end of the GC (step 9) must either:
 *   (1) have been reachable at the beginning (step 2) and thus in the snapshot
 *   (2) or must have been newly allocated, in steps 3, 5, or 7.
 * To deal with case (2), any objects allocated during an incremental GC are
 * automatically marked black.
 *
 * This strategy is actually somewhat conservative: if an object becomes
 * unreachable between steps 2 and 8, it would be safe to collect it. We won't,
 * mainly for simplicity. (Also, note that the snapshot is entirely
 * theoretical. We don't actually do anything special in step 2 that we wouldn't
 * do in a non-incremental GC.
 *
 * It's the pre-barrier's job to maintain the snapshot invariant. Consider the
 * write "obj->field = value". Let the prior value of obj->field be
 * value0. Since it's possible that value0 may have been what obj->field
 * contained in step 2, when the snapshot was taken, the barrier marks
 * value0. Note that it only does this if we're in the middle of an incremental
 * GC. Since this is rare, the cost of the write barrier is usually just an
 * extra branch.
 *
 * In practice, we implement the pre-barrier differently based on the type of
 * value0. E.g., see JSObject::writeBarrierPre, which is used if obj->field is
 * a JSObject*. It takes value0 as a parameter.
 *
 *                                POST-BARRIER
 *
 * These are not yet implemented. Once we get generational GC, they will allow
 * us to keep track of pointers from non-nursery space into the nursery.
 *
 *                            IMPLEMENTATION DETAILS
 *
 * Since it would be awkward to change every write to memory into a function
 * call, this file contains a bunch of C++ classes and templates that use
 * operator overloading to take care of barriers automatically. In many cases,
 * all that's necessary to make some field be barriered is to replace
 *     Type *field;
 * with
 *     HeapPtr<Type> field;
 * There are also special classes HeapValue and HeapId, which barrier js::Value
 * and jsid, respectively.
 *
 * One additional note: not all object writes need to be barriered. Writes to
 * newly allocated objects do not need a pre-barrier.  In these cases, we use
 * the "obj->field.init(value)" method instead of "obj->field = value". We use
 * the init naming idiom in many places to signify that a field is being
 * assigned for the first time.
 */

namespace js {

template<class T, typename Unioned = uintptr_t>
class EncapsulatedPtr
{
  protected:
    union {
        T *value;
        Unioned other;
    };

  public:
    EncapsulatedPtr() : value(NULL) {}
    EncapsulatedPtr(T *v) : value(v) {}
    explicit EncapsulatedPtr(const EncapsulatedPtr<T> &v) : value(v.value) {}

    ~EncapsulatedPtr() { pre(); }

    /* Use to set the pointer to NULL. */
    void clear() {
        pre();
        value = NULL;
    }

    EncapsulatedPtr<T, Unioned> &operator=(T *v) {
        pre();
        JS_ASSERT(!IsPoisonedPtr<T>(v));
        value = v;
        return *this;
    }

    EncapsulatedPtr<T, Unioned> &operator=(const EncapsulatedPtr<T> &v) {
        pre();
        JS_ASSERT(!IsPoisonedPtr<T>(v.value));
        value = v.value;
        return *this;
    }

    /* Use this if the automatic coercion to T* isn't working. */
    T *get() const { return value; }

    /*
     * Use these if you want to change the value without invoking the barrier.
     * Obviously this is dangerous unless you know the barrier is not needed.
     */
    T **unsafeGet() { return &value; }
    void unsafeSet(T *v) { value = v; }

    Unioned *unsafeGetUnioned() { return &other; }

    T &operator*() const { return *value; }
    T *operator->() const { return value; }

    operator T*() const { return value; }

  protected:
    void pre();
};

template <class T, class Unioned = uintptr_t>
class HeapPtr : public EncapsulatedPtr<T, Unioned>
{
  public:
    HeapPtr() : EncapsulatedPtr<T>(NULL) {}
    explicit HeapPtr(T *v) : EncapsulatedPtr<T>(v) { post(); }
    explicit HeapPtr(const HeapPtr<T> &v)
      : EncapsulatedPtr<T>(v) { post(); }

    void init(T *v) {
        JS_ASSERT(!IsPoisonedPtr<T>(v));
        this->value = v;
        post();
    }

    HeapPtr<T, Unioned> &operator=(T *v) {
        this->pre();
        JS_ASSERT(!IsPoisonedPtr<T>(v));
        this->value = v;
        post();
        return *this;
    }

    HeapPtr<T, Unioned> &operator=(const HeapPtr<T> &v) {
        this->pre();
        JS_ASSERT(!IsPoisonedPtr<T>(v.value));
        this->value = v.value;
        post();
        return *this;
    }

  protected:
    void post() { T::writeBarrierPost(this->value, (void *)&this->value); }

    /* Make this friend so it can access pre() and post(). */
    template<class T1, class T2>
    friend inline void
    BarrieredSetPair(Zone *zone,
                     HeapPtr<T1> &v1, T1 *val1,
                     HeapPtr<T2> &v2, T2 *val2);
};

/*
 * FixedHeapPtr is designed for one very narrow case: replacing immutable raw
 * pointers to GC-managed things, implicitly converting to a handle type for
 * ease of use.  Pointers encapsulated by this type must:
 *
 *   be immutable (no incremental write barriers),
 *   never point into the nursery (no generational write barriers), and
 *   be traced via MarkRuntime (we use fromMarkedLocation).
 *
 * In short: you *really* need to know what you're doing before you use this
 * class!
 */
template <class T>
class FixedHeapPtr
{
    T *value;

  public:
    operator T*() const { return value; }
    T * operator->() const { return value; }

    operator Handle<T*>() const {
        return Handle<T*>::fromMarkedLocation(&value);
    }

    void init(T *ptr) {
        value = ptr;
    }
};

template <class T>
class RelocatablePtr : public EncapsulatedPtr<T>
{
  public:
    RelocatablePtr() : EncapsulatedPtr<T>(NULL) {}
    explicit RelocatablePtr(T *v) : EncapsulatedPtr<T>(v) {
        if (v)
            post();
    }
    RelocatablePtr(const RelocatablePtr<T> &v) : EncapsulatedPtr<T>(v) {
        if (this->value)
            post();
    }

    ~RelocatablePtr() {
        if (this->value)
            relocate(this->value->runtime());
    }

    RelocatablePtr<T> &operator=(T *v) {
        this->pre();
        JS_ASSERT(!IsPoisonedPtr<T>(v));
        if (v) {
            this->value = v;
            post();
        } else if (this->value) {
            JSRuntime *rt = this->value->runtime();
            this->value = v;
            relocate(rt);
        }
        return *this;
    }

    RelocatablePtr<T> &operator=(const RelocatablePtr<T> &v) {
        this->pre();
        JS_ASSERT(!IsPoisonedPtr<T>(v.value));
        if (v.value) {
            this->value = v.value;
            post();
        } else if (this->value) {
            JSRuntime *rt = this->value->runtime();
            this->value = v;
            relocate(rt);
        }
        return *this;
    }

  protected:
    inline void post();
    inline void relocate(JSRuntime *rt);
};

/*
 * This is a hack for RegExpStatics::updateFromMatch. It allows us to do two
 * barriers with only one branch to check if we're in an incremental GC.
 */
template<class T1, class T2>
static inline void
BarrieredSetPair(Zone *zone,
                 HeapPtr<T1> &v1, T1 *val1,
                 HeapPtr<T2> &v2, T2 *val2)
{
    if (T1::needWriteBarrierPre(zone)) {
        v1.pre();
        v2.pre();
    }
    v1.unsafeSet(val1);
    v2.unsafeSet(val2);
    v1.post();
    v2.post();
}

class Shape;
class BaseShape;
namespace types { struct TypeObject; }

typedef EncapsulatedPtr<JSObject> EncapsulatedPtrObject;
typedef EncapsulatedPtr<JSScript> EncapsulatedPtrScript;

typedef RelocatablePtr<JSObject> RelocatablePtrObject;
typedef RelocatablePtr<JSScript> RelocatablePtrScript;

typedef HeapPtr<JSObject> HeapPtrObject;
typedef HeapPtr<JSFunction> HeapPtrFunction;
typedef HeapPtr<JSString> HeapPtrString;
typedef HeapPtr<PropertyName> HeapPtrPropertyName;
typedef HeapPtr<JSScript> HeapPtrScript;
typedef HeapPtr<Shape> HeapPtrShape;
typedef HeapPtr<BaseShape> HeapPtrBaseShape;
typedef HeapPtr<types::TypeObject> HeapPtrTypeObject;

/* Useful for hashtables with a HeapPtr as key. */
template<class T>
struct HeapPtrHasher
{
    typedef HeapPtr<T> Key;
    typedef T *Lookup;

    static HashNumber hash(Lookup obj) { return DefaultHasher<T *>::hash(obj); }
    static bool match(const Key &k, Lookup l) { return k.get() == l; }
};

/* Specialized hashing policy for HeapPtrs. */
template <class T>
struct DefaultHasher< HeapPtr<T> > : HeapPtrHasher<T> { };

template<class T>
struct EncapsulatedPtrHasher
{
    typedef EncapsulatedPtr<T> Key;
    typedef T *Lookup;

    static HashNumber hash(Lookup obj) { return DefaultHasher<T *>::hash(obj); }
    static bool match(const Key &k, Lookup l) { return k.get() == l; }
};

template <class T>
struct DefaultHasher< EncapsulatedPtr<T> > : EncapsulatedPtrHasher<T> { };

class EncapsulatedValue : public ValueOperations<EncapsulatedValue>
{
  protected:
    Value value;

    /*
     * Ensure that EncapsulatedValue is not constructable, except by our
     * implementations.
     */
    EncapsulatedValue() MOZ_DELETE;

  public:
    EncapsulatedValue(const Value &v) : value(v) {
        JS_ASSERT(!IsPoisonedValue(v));
    }
    EncapsulatedValue(const EncapsulatedValue &v) : value(v) {
        JS_ASSERT(!IsPoisonedValue(v));
    }
    inline ~EncapsulatedValue();

    inline void init(const Value &v);
    inline void init(JSRuntime *rt, const Value &v);

    inline EncapsulatedValue &operator=(const Value &v);
    inline EncapsulatedValue &operator=(const EncapsulatedValue &v);

    bool operator==(const EncapsulatedValue &v) const { return value == v.value; }
    bool operator!=(const EncapsulatedValue &v) const { return value != v.value; }

    const Value &get() const { return value; }
    Value *unsafeGet() { return &value; }
    operator const Value &() const { return value; }

    JSGCTraceKind gcKind() const { return value.gcKind(); }

    uint64_t asRawBits() const { return value.asRawBits(); }

    static inline void writeBarrierPre(const Value &v);
    static inline void writeBarrierPre(Zone *zone, const Value &v);

  protected:
    inline void pre();
    inline void pre(Zone *zone);

    static inline JSRuntime *runtime(const Value &v) {
        JS_ASSERT(v.isMarkable());
        return static_cast<js::gc::Cell *>(v.toGCThing())->runtime();
    }

  private:
    friend class ValueOperations<EncapsulatedValue>;
    const Value * extract() const { return &value; }
};

class HeapValue : public EncapsulatedValue
{
  public:
    explicit inline HeapValue();
    explicit inline HeapValue(const Value &v);
    explicit inline HeapValue(const HeapValue &v);
    inline ~HeapValue();

    inline void init(const Value &v);
    inline void init(JSRuntime *rt, const Value &v);

    inline HeapValue &operator=(const Value &v);
    inline HeapValue &operator=(const HeapValue &v);

    /*
     * This is a faster version of operator=. Normally, operator= has to
     * determine the compartment of the value before it can decide whether to do
     * the barrier. If you already know the compartment, it's faster to pass it
     * in.
     */
    inline void set(Zone *zone, const Value &v);

    static inline void writeBarrierPost(const Value &v, Value *addr);
    static inline void writeBarrierPost(JSRuntime *rt, const Value &v, Value *addr);

  private:
    inline void post();
    inline void post(JSRuntime *rt);
};

class RelocatableValue : public EncapsulatedValue
{
  public:
    explicit inline RelocatableValue();
    explicit inline RelocatableValue(const Value &v);
    inline RelocatableValue(const RelocatableValue &v);
    inline ~RelocatableValue();

    inline RelocatableValue &operator=(const Value &v);
    inline RelocatableValue &operator=(const RelocatableValue &v);

  private:
    inline void post();
    inline void relocate(JSRuntime *rt);
};

class HeapSlot : public EncapsulatedValue
{
    /*
     * Operator= is not valid for HeapSlot because is must take the object and
     * slot offset to provide to the post/generational barrier.
     */
    inline HeapSlot &operator=(const Value &v) MOZ_DELETE;
    inline HeapSlot &operator=(const HeapValue &v) MOZ_DELETE;
    inline HeapSlot &operator=(const HeapSlot &v) MOZ_DELETE;

  public:
    enum Kind {
        Slot,
        Element
    };

    explicit inline HeapSlot() MOZ_DELETE;
    explicit inline HeapSlot(JSObject *obj, Kind kind, uint32_t slot, const Value &v);
    explicit inline HeapSlot(JSObject *obj, Kind kind, uint32_t slot, const HeapSlot &v);
    inline ~HeapSlot();

    inline void init(JSObject *owner, Kind kind, uint32_t slot, const Value &v);
    inline void init(JSRuntime *rt, JSObject *owner, Kind kind, uint32_t slot, const Value &v);

    inline void set(JSObject *owner, Kind kind, uint32_t slot, const Value &v);
    inline void set(Zone *zone, JSObject *owner, Kind kind, uint32_t slot, const Value &v);

    static inline void writeBarrierPost(JSObject *obj, Kind kind, uint32_t slot);
    static inline void writeBarrierPost(JSRuntime *rt, JSObject *obj, Kind kind, uint32_t slot);

  private:
    inline void post(JSObject *owner, Kind kind, uint32_t slot);
    inline void post(JSRuntime *rt, JSObject *owner, Kind kind, uint32_t slot);
};

/*
 * NOTE: This is a placeholder for bug 619558.
 *
 * Run a post write barrier that encompasses multiple contiguous slots in a
 * single step.
 */
inline void
DenseRangeWriteBarrierPost(JSRuntime *rt, JSObject *obj, uint32_t start, uint32_t count);

static inline const Value *
Valueify(const EncapsulatedValue *array)
{
    JS_STATIC_ASSERT(sizeof(HeapValue) == sizeof(Value));
    JS_STATIC_ASSERT(sizeof(HeapSlot) == sizeof(Value));
    return (const Value *)array;
}

static inline HeapValue *
HeapValueify(Value *v)
{
    JS_STATIC_ASSERT(sizeof(HeapValue) == sizeof(Value));
    JS_STATIC_ASSERT(sizeof(HeapSlot) == sizeof(Value));
    return (HeapValue *)v;
}

class HeapSlotArray
{
    HeapSlot *array;

  public:
    HeapSlotArray(HeapSlot *array) : array(array) {}

    operator const Value *() const { return Valueify(array); }
    operator HeapSlot *() const { return array; }

    HeapSlotArray operator +(int offset) const { return HeapSlotArray(array + offset); }
    HeapSlotArray operator +(uint32_t offset) const { return HeapSlotArray(array + offset); }
};

class EncapsulatedId
{
  protected:
    jsid value;

  private:
    EncapsulatedId(const EncapsulatedId &v) MOZ_DELETE;

  public:
    explicit EncapsulatedId() : value(JSID_VOID) {}
    explicit EncapsulatedId(jsid id) : value(id) {}
    ~EncapsulatedId();

    inline EncapsulatedId &operator=(const EncapsulatedId &v);

    bool operator==(jsid id) const { return value == id; }
    bool operator!=(jsid id) const { return value != id; }

    jsid get() const { return value; }
    jsid *unsafeGet() { return &value; }
    operator jsid() const { return value; }

  protected:
    inline void pre();
};

class RelocatableId : public EncapsulatedId
{
  public:
    explicit RelocatableId() : EncapsulatedId() {}
    explicit inline RelocatableId(jsid id) : EncapsulatedId(id) {}
    inline ~RelocatableId();

    inline RelocatableId &operator=(jsid id);
    inline RelocatableId &operator=(const RelocatableId &v);
};

class HeapId : public EncapsulatedId
{
  public:
    explicit HeapId() : EncapsulatedId() {}
    explicit inline HeapId(jsid id);
    inline ~HeapId();

    inline void init(jsid id);

    inline HeapId &operator=(jsid id);
    inline HeapId &operator=(const HeapId &v);

  private:
    inline void post();

    HeapId(const HeapId &v) MOZ_DELETE;
};

/*
 * Incremental GC requires that weak pointers have read barriers. This is mostly
 * an issue for empty shapes stored in JSCompartment. The problem happens when,
 * during an incremental GC, some JS code stores one of the compartment's empty
 * shapes into an object already marked black. Normally, this would not be a
 * problem, because the empty shape would have been part of the initial snapshot
 * when the GC started. However, since this is a weak pointer, it isn't. So we
 * may collect the empty shape even though a live object points to it. To fix
 * this, we mark these empty shapes black whenever they get read out.
 */
template<class T>
class ReadBarriered
{
    T *value;

  public:
    ReadBarriered() : value(NULL) {}
    ReadBarriered(T *value) : value(value) {}
    ReadBarriered(const Rooted<T*> &rooted) : value(rooted) {}

    T *get() const {
        if (!value)
            return NULL;
        T::readBarrier(value);
        return value;
    }

    operator T*() const { return get(); }

    T &operator*() const { return *get(); }
    T *operator->() const { return get(); }

    T **unsafeGet() { return &value; }
    T * const * unsafeGet() const { return &value; }

    void set(T *v) { value = v; }

    operator bool() { return !!value; }
};

class ReadBarrieredValue
{
    Value value;

  public:
    ReadBarrieredValue() : value(UndefinedValue()) {}
    ReadBarrieredValue(const Value &value) : value(value) {}

    inline const Value &get() const;
    Value *unsafeGet() { return &value; }
    inline operator const Value &() const;

    inline JSObject &toObject() const;
};

namespace tl {

template <class T> struct IsRelocatableHeapType<HeapPtr<T> >
                                                    { static const bool result = false; };
template <> struct IsRelocatableHeapType<HeapSlot>  { static const bool result = false; };
template <> struct IsRelocatableHeapType<HeapValue> { static const bool result = false; };
template <> struct IsRelocatableHeapType<HeapId>    { static const bool result = false; };

} /* namespace tl */
} /* namespace js */

#endif /* gc_Barrier_h */