DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Mercurial (5b81998bb7ab)

VCS Links

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454
/* This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this file,
 * You can obtain one at http://mozilla.org/MPL/2.0/. */

#ifndef GFX_TILEDLAYERBUFFER_H
#define GFX_TILEDLAYERBUFFER_H

#define TILEDLAYERBUFFER_TILE_SIZE 256

#ifdef MOZ_ANDROID_OMTC
  // This needs to go away as we enabled tiled
  // layers everywhere.
  #define FORCE_BASICTILEDTHEBESLAYER
#endif
// Debug defines
//#define GFX_TILEDLAYER_DEBUG_OVERLAY
//#define GFX_TILEDLAYER_PREF_WARNINGS

#include "nsRect.h"
#include "nsRegion.h"
#include "nsTArray.h"

namespace mozilla {
namespace layers {

// An abstract implementation of a tile buffer. This code covers the logic of
// moving and reusing tiles and leaves the validation up to the implementor. To
// avoid the overhead of virtual dispatch, we employ the curiously recurring
// template pattern.
//
// Tiles are aligned to a grid with one of the grid points at (0,0) and other
// grid points spaced evenly in the x- and y-directions by GetTileLength()
// multiplied by mResolution. GetScaledTileLength() provides convenience for
// accessing these values.
//
// This tile buffer stores a valid region, which defines the areas that have
// up-to-date content. The contents of tiles within this region will be reused
// from paint to paint. It also stores the region that was modified in the last
// paint operation; this is useful when one tiled layer buffer shadows another
// (as in an off-main-thread-compositing scenario), so that the shadow tiled
// layer buffer can correctly reflect the updates of the master layer buffer.
//
// The associated Tile may be of any type as long as the derived class can
// validate and return tiles of that type. Tiles will be frequently copied, so
// the tile type should be a reference or some other type with an efficient
// copy constructor.
//
// It is required that the derived class specify the base class as a friend. It
// must also implement the following public method:
//
//   Tile GetPlaceholderTile() const;
//
//   Returns a temporary placeholder tile used as a marker. This placeholder tile
//   must never be returned by validateTile and must be == to every instance
//   of a placeholder tile.
//
// Additionally, it must implement the following protected methods:
//
//   Tile ValidateTile(Tile aTile, const nsIntPoint& aTileOrigin,
//                     const nsIntRegion& aDirtyRect);
//
//   Validates the dirtyRect. The returned Tile will replace the tile.
//
//   void ReleaseTile(Tile aTile);
//
//   Destroys the given tile.
//
//   void SwapTiles(Tile& aTileA, Tile& aTileB);
//
//   Swaps two tiles.
//
// The contents of the tile buffer will be rendered at the resolution specified
// in mResolution, which can be altered with SetResolution. The resolution
// should always be a factor of the tile length, to avoid tiles covering
// non-integer amounts of pixels.

template<typename Derived, typename Tile>
class TiledLayerBuffer
{
public:
  TiledLayerBuffer()
    : mRetainedWidth(0)
    , mRetainedHeight(0)
    , mResolution(1)
  {}

  ~TiledLayerBuffer() {}

  // Given a tile origin aligned to a multiple of GetScaledTileLength,
  // return the tile that describes that region.
  // NOTE: To get the valid area of that tile you must intersect
  //       (aTileOrigin.x, aTileOrigin.y,
  //        GetScaledTileLength(), GetScaledTileLength())
  //       and GetValidRegion() to get the area of the tile that is valid.
  Tile GetTile(const nsIntPoint& aTileOrigin) const;

  // Given a tile x, y relative to the top left of the layer, this function
  // will return the tile for
  // (x*GetScaledTileLength(), y*GetScaledTileLength(),
  //  GetScaledTileLength(), GetScaledTileLength())
  Tile GetTile(int x, int y) const;

  // This operates the same as GetTile(aTileOrigin), but will also replace the
  // specified tile with the placeholder tile. This does not call ReleaseTile
  // on the removed tile.
  bool RemoveTile(const nsIntPoint& aTileOrigin, Tile& aRemovedTile);

  // This operates the same as GetTile(x, y), but will also replace the
  // specified tile with the placeholder tile. This does not call ReleaseTile
  // on the removed tile.
  bool RemoveTile(int x, int y, Tile& aRemovedTile);

  uint16_t GetTileLength() const { return TILEDLAYERBUFFER_TILE_SIZE; }

#ifdef MOZ_WIDGET_ANDROID
  MOZ_NEVER_INLINE // bug 881018 causes wrong results when GetScaledTileLength is inlined
#endif
  uint32_t GetScaledTileLength() const { return TILEDLAYERBUFFER_TILE_SIZE / mResolution; }

  unsigned int GetTileCount() const { return mRetainedTiles.Length(); }

  const nsIntRegion& GetValidRegion() const { return mValidRegion; }
  const nsIntRegion& GetPaintedRegion() const { return mPaintedRegion; }
  void ClearPaintedRegion() { mPaintedRegion.SetEmpty(); }

  // Given a position i, this function returns the position inside the current tile.
  int GetTileStart(int i) const {
    return (i >= 0) ? (i % GetScaledTileLength())
                    : ((GetScaledTileLength() - (-i % GetScaledTileLength())) %
                       GetScaledTileLength());
  }

  // Rounds the given coordinate down to the nearest tile boundary.
  int RoundDownToTileEdge(int aX) const { return aX - GetTileStart(aX); }

  // Get and set draw scaling. mResolution affects the resolution at which the
  // contents of the buffer are drawn. mResolution has no effect on the
  // coordinate space of the valid region, but does affect the size of an
  // individual tile's rect in relation to the valid region.
  // Setting the resolution will invalidate the buffer.
  float GetResolution() const { return mResolution; }
  void SetResolution(float aResolution) {
    if (mResolution == aResolution) {
      return;
    }

    Update(nsIntRegion(), nsIntRegion());
    mResolution = aResolution;
  }
  bool IsLowPrecision() const { return mResolution < 1; }

  typedef Tile* Iterator;
  Iterator TilesBegin() { return mRetainedTiles.Elements(); }
  Iterator TilesEnd() { return mRetainedTiles.Elements() + mRetainedTiles.Length(); }

protected:
  // The implementor should call Update() to change
  // the new valid region. This implementation will call
  // validateTile on each tile that is dirty, which is left
  // to the implementor.
  void Update(const nsIntRegion& aNewValidRegion, const nsIntRegion& aPaintRegion);

  nsIntRegion     mValidRegion;
  nsIntRegion     mPaintedRegion;

  /**
   * mRetainedTiles is a rectangular buffer of mRetainedWidth x mRetainedHeight
   * stored as column major with the same origin as mValidRegion.GetBounds().
   * Any tile that does not intersect mValidRegion is a PlaceholderTile.
   * Only the region intersecting with mValidRegion should be read from a tile,
   * another other region is assumed to be uninitialized. The contents of the
   * tiles is scaled by mResolution.
   */
  nsTArray<Tile>  mRetainedTiles;
  int             mRetainedWidth;  // in tiles
  int             mRetainedHeight; // in tiles
  float           mResolution;

private:
  const Derived& AsDerived() const { return *static_cast<const Derived*>(this); }
  Derived& AsDerived() { return *static_cast<Derived*>(this); }

  bool IsPlaceholder(Tile aTile) const { return aTile == AsDerived().GetPlaceholderTile(); }
};

class BasicTiledLayerBuffer;

// Shadow layers may implement this interface in order to be notified when a
// tiled layer buffer is updated.
class TiledLayerComposer
{
public:
  /**
   * Update the current retained layer with the updated layer data.
   * The BasicTiledLayerBuffer is expected to be in the ReadLock state
   * prior to this being called. aTiledBuffer is copy constructed and
   * is retained until it has been uploaded/copyed and unlocked.
   */
  virtual void PaintedTiledLayerBuffer(const BasicTiledLayerBuffer* aTiledBuffer) = 0;

  /**
   * If some part of the buffer is being rendered at a lower precision, this
   * returns that region. If it is not, an empty region will be returned.
   */
  virtual const nsIntRegion& GetValidLowPrecisionRegion() const = 0;
};

// Normal integer division truncates towards zero,
// we instead want to floor to hangle negative numbers.
static inline int floor_div(int a, int b)
{
  int rem = a % b;
  int div = a/b;
  if (rem == 0) {
    return div;
  } else {
    // If the signs are different substract 1.
    int sub;
    sub = a ^ b;
    // The results of this shift is either 0 or -1.
    sub >>= 8*sizeof(int)-1;
    return div+sub;
  }
}

template<typename Derived, typename Tile> Tile
TiledLayerBuffer<Derived, Tile>::GetTile(const nsIntPoint& aTileOrigin) const
{
  // TODO Cache firstTileOriginX/firstTileOriginY
  // Find the tile x/y of the first tile and the target tile relative to the (0, 0)
  // origin, the difference is the tile x/y relative to the start of the tile buffer.
  int firstTileX = floor_div(mValidRegion.GetBounds().x, GetScaledTileLength());
  int firstTileY = floor_div(mValidRegion.GetBounds().y, GetScaledTileLength());
  return GetTile(floor_div(aTileOrigin.x, GetScaledTileLength()) - firstTileX,
                 floor_div(aTileOrigin.y, GetScaledTileLength()) - firstTileY);
}

template<typename Derived, typename Tile> Tile
TiledLayerBuffer<Derived, Tile>::GetTile(int x, int y) const
{
  int index = x * mRetainedHeight + y;
  return mRetainedTiles.SafeElementAt(index, AsDerived().GetPlaceholderTile());
}

template<typename Derived, typename Tile> bool
TiledLayerBuffer<Derived, Tile>::RemoveTile(const nsIntPoint& aTileOrigin,
                                            Tile& aRemovedTile)
{
  int firstTileX = floor_div(mValidRegion.GetBounds().x, GetScaledTileLength());
  int firstTileY = floor_div(mValidRegion.GetBounds().y, GetScaledTileLength());
  return RemoveTile(floor_div(aTileOrigin.x, GetScaledTileLength()) - firstTileX,
                    floor_div(aTileOrigin.y, GetScaledTileLength()) - firstTileY,
                    aRemovedTile);
}

template<typename Derived, typename Tile> bool
TiledLayerBuffer<Derived, Tile>::RemoveTile(int x, int y, Tile& aRemovedTile)
{
  int index = x * mRetainedHeight + y;
  const Tile& tileToRemove = mRetainedTiles.SafeElementAt(index, AsDerived().GetPlaceholderTile());
  if (!IsPlaceholder(tileToRemove)) {
    aRemovedTile = tileToRemove;
    mRetainedTiles[index] = AsDerived().GetPlaceholderTile();
    return true;
  }
  return false;
}

template<typename Derived, typename Tile> void
TiledLayerBuffer<Derived, Tile>::Update(const nsIntRegion& aNewValidRegion,
                                        const nsIntRegion& aPaintRegion)
{
  nsTArray<Tile>  newRetainedTiles;
  nsTArray<Tile>& oldRetainedTiles = mRetainedTiles;
  const nsIntRect oldBound = mValidRegion.GetBounds();
  const nsIntRect newBound = aNewValidRegion.GetBounds();
  const nsIntPoint oldBufferOrigin(RoundDownToTileEdge(oldBound.x),
                                   RoundDownToTileEdge(oldBound.y));
  const nsIntPoint newBufferOrigin(RoundDownToTileEdge(newBound.x),
                                   RoundDownToTileEdge(newBound.y));
  const nsIntRegion& oldValidRegion = mValidRegion;
  const nsIntRegion& newValidRegion = aNewValidRegion;
  const int oldRetainedHeight = mRetainedHeight;

  // Pass 1: Recycle valid content from the old buffer
  // Recycle tiles from the old buffer that contain valid regions.
  // Insert placeholders tiles if we have no valid area for that tile
  // which we will allocate in pass 2.
  // TODO: Add a tile pool to reduce new allocation
  int tileX = 0;
  int tileY = 0;
  // Iterate over the new drawing bounds in steps of tiles.
  for (int32_t x = newBound.x; x < newBound.XMost(); tileX++) {
    // Compute tileRect(x,y,width,height) in layer space coordinate
    // giving us the rect of the tile that hits the newBounds.
    int width = GetScaledTileLength() - GetTileStart(x);
    if (x + width > newBound.XMost()) {
      width = newBound.x + newBound.width - x;
    }

    tileY = 0;
    for (int32_t y = newBound.y; y < newBound.YMost(); tileY++) {
      int height = GetScaledTileLength() - GetTileStart(y);
      if (y + height > newBound.y + newBound.height) {
        height = newBound.y + newBound.height - y;
      }

      const nsIntRect tileRect(x,y,width,height);
      if (oldValidRegion.Intersects(tileRect) && newValidRegion.Intersects(tileRect)) {
        // This old tiles contains some valid area so move it to the new tile
        // buffer. Replace the tile in the old buffer with a placeholder
        // to leave the old buffer index unaffected.
        int tileX = floor_div(x - oldBufferOrigin.x, GetScaledTileLength());
        int tileY = floor_div(y - oldBufferOrigin.y, GetScaledTileLength());
        int index = tileX * oldRetainedHeight + tileY;

        // The tile may have been removed, skip over it in this case.
        if (IsPlaceholder(oldRetainedTiles.
                          SafeElementAt(index, AsDerived().GetPlaceholderTile()))) {
          newRetainedTiles.AppendElement(AsDerived().GetPlaceholderTile());
        } else {
          Tile tileWithPartialValidContent = oldRetainedTiles[index];
          newRetainedTiles.AppendElement(tileWithPartialValidContent);
          oldRetainedTiles[index] = AsDerived().GetPlaceholderTile();
        }

      } else {
        // This tile is either:
        // 1) Outside the new valid region and will simply be an empty
        // placeholder forever.
        // 2) The old buffer didn't have any data for this tile. We postpone
        // the allocation of this tile after we've reused any tile with
        // valid content because then we know we can safely recycle
        // with taking from a tile that has recyclable content.
        newRetainedTiles.AppendElement(AsDerived().GetPlaceholderTile());
      }

      y += height;
    }

    x += width;
  }

  // Keep track of the number of horizontal/vertical tiles
  // in the buffer so that we can easily look up a tile.
  mRetainedWidth = tileX;
  mRetainedHeight = tileY;

  NS_ABORT_IF_FALSE(aNewValidRegion.Contains(aPaintRegion), "Painting a region outside the visible region");
#ifdef DEBUG
  nsIntRegion oldAndPainted(oldValidRegion);
  oldAndPainted.Or(oldAndPainted, aPaintRegion);
#endif
  NS_ABORT_IF_FALSE(oldAndPainted.Contains(newValidRegion), "newValidRegion has not been fully painted");

  nsIntRegion regionToPaint(aPaintRegion);

  // Pass 2: Validate
  // We know at this point that any tile in the new buffer that had valid content
  // from the previous buffer is placed correctly in the new buffer.
  // We know that any tile in the old buffer that isn't a place holder is
  // of no use and can be recycled.
  // We also know that any place holder tile in the new buffer must be
  // allocated.
  tileX = 0;
#ifdef GFX_TILEDLAYER_PREF_WARNINGS
  printf_stderr("Update %i, %i, %i, %i\n", newBound.x, newBound.y, newBound.width, newBound.height);
#endif
  for (int x = newBound.x; x < newBound.x + newBound.width; tileX++) {
    // Compute tileRect(x,y,width,height) in layer space coordinate
    // giving us the rect of the tile that hits the newBounds.
    int tileStartX = RoundDownToTileEdge(x);
    int width = GetScaledTileLength() - GetTileStart(x);
    if (x + width > newBound.XMost())
      width = newBound.XMost() - x;

    tileY = 0;
    for (int y = newBound.y; y < newBound.y + newBound.height; tileY++) {
      int tileStartY = RoundDownToTileEdge(y);
      int height = GetScaledTileLength() - GetTileStart(y);
      if (y + height > newBound.YMost()) {
        height = newBound.YMost() - y;
      }

      const nsIntRect tileRect(x, y, width, height);

      nsIntRegion tileDrawRegion;
      tileDrawRegion.And(tileRect, regionToPaint);

      if (tileDrawRegion.IsEmpty()) {
        // We have a tile but it doesn't hit the draw region
        // because we can reuse all of the content from the
        // previous buffer.
#ifdef DEBUG
        int currTileX = floor_div(x - newBufferOrigin.x, GetScaledTileLength());
        int currTileY = floor_div(y - newBufferOrigin.y, GetScaledTileLength());
        int index = currTileX * mRetainedHeight + currTileY;
        NS_ABORT_IF_FALSE(!newValidRegion.Intersects(tileRect) ||
                          !IsPlaceholder(newRetainedTiles.
                                         SafeElementAt(index, AsDerived().GetPlaceholderTile())),
                          "If we don't draw a tile we shouldn't have a placeholder there.");
#endif
        y += height;
        continue;
      }

      int tileX = floor_div(x - newBufferOrigin.x, GetScaledTileLength());
      int tileY = floor_div(y - newBufferOrigin.y, GetScaledTileLength());
      int index = tileX * mRetainedHeight + tileY;
      NS_ABORT_IF_FALSE(index >= 0 &&
                        static_cast<unsigned>(index) < newRetainedTiles.Length(),
                        "index out of range");

      Tile newTile = newRetainedTiles[index];
      while (IsPlaceholder(newTile) && oldRetainedTiles.Length() > 0) {
        AsDerived().SwapTiles(newTile, oldRetainedTiles[oldRetainedTiles.Length()-1]);
        oldRetainedTiles.RemoveElementAt(oldRetainedTiles.Length()-1);
      }

      // We've done our best effort to recycle a tile but it can be null
      // in which case it's up to the derived class's ValidateTile()
      // implementation to allocate a new tile before drawing
      nsIntPoint tileOrigin(tileStartX, tileStartY);
      newTile = AsDerived().ValidateTile(newTile, nsIntPoint(tileStartX, tileStartY),
                                         tileDrawRegion);
      NS_ABORT_IF_FALSE(!IsPlaceholder(newTile), "index out of range");
#ifdef GFX_TILEDLAYER_PREF_WARNINGS
      printf_stderr("Store Validate tile %i, %i -> %i\n", tileStartX, tileStartY, index);
#endif
      newRetainedTiles[index] = newTile;

      y += height;
    }

    x += width;
  }

  // Throw away any tiles we didn't recycle
  // TODO: Add a tile pool
  while (oldRetainedTiles.Length() > 0) {
    Tile oldTile = oldRetainedTiles[oldRetainedTiles.Length()-1];
    oldRetainedTiles.RemoveElementAt(oldRetainedTiles.Length()-1);
    AsDerived().ReleaseTile(oldTile);
  }

  mRetainedTiles = newRetainedTiles;
  mValidRegion = aNewValidRegion;
  mPaintedRegion.Or(mPaintedRegion, aPaintRegion);
}

} // layers
} // mozilla

#endif // GFX_TILEDLAYERBUFFER_H