DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Mercurial (5b81998bb7ab)

VCS Links

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298
/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim:set ts=2 sw=2 sts=2 et cindent: */
/* This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */

#ifndef mozilla_TimeStamp_h
#define mozilla_TimeStamp_h

#include "mozilla/Assertions.h"

#include "prinrval.h"
#include "nsDebug.h"
#include "prlong.h"

namespace IPC {
template <typename T> struct ParamTraits;
}

namespace mozilla {

class TimeStamp;

/**
 * Instances of this class represent the length of an interval of time.
 * Negative durations are allowed, meaning the end is before the start.
 * 
 * Internally the duration is stored as a int64_t in units of
 * PR_TicksPerSecond() when building with NSPR interval timers, or a
 * system-dependent unit when building with system clocks.  The
 * system-dependent unit must be constant, otherwise the semantics of
 * this class would be broken.
 */
class TimeDuration
{
public:
  // The default duration is 0.
  TimeDuration() : mValue(0) {}
  // Allow construction using '0' as the initial value, for readability,
  // but no other numbers (so we don't have any implicit unit conversions).
  struct _SomethingVeryRandomHere;
  TimeDuration(_SomethingVeryRandomHere* aZero) : mValue(0) {
    MOZ_ASSERT(!aZero, "Who's playing funny games here?");
  }
  // Default copy-constructor and assignment are OK

  double ToSeconds() const;
  // Return a duration value that includes digits of time we think to
  // be significant.  This method should be used when displaying a
  // time to humans.
  double ToSecondsSigDigits() const;
  double ToMilliseconds() const {
    return ToSeconds() * 1000.0;
  }
  double ToMicroseconds() const {
    return ToMilliseconds() * 1000.0;
  }

  // Using a double here is safe enough; with 53 bits we can represent
  // durations up to over 280,000 years exactly.  If the units of
  // mValue do not allow us to represent durations of that length,
  // long durations are clamped to the max/min representable value
  // instead of overflowing.
  static inline TimeDuration FromSeconds(double aSeconds) {
    return FromMilliseconds(aSeconds * 1000.0);
  }
  static TimeDuration FromMilliseconds(double aMilliseconds);
  static inline TimeDuration FromMicroseconds(double aMicroseconds) {
    return FromMilliseconds(aMicroseconds / 1000.0);
  }

  TimeDuration operator+(const TimeDuration& aOther) const {
    return TimeDuration::FromTicks(mValue + aOther.mValue);
  }
  TimeDuration operator-(const TimeDuration& aOther) const {
    return TimeDuration::FromTicks(mValue - aOther.mValue);
  }
  TimeDuration& operator+=(const TimeDuration& aOther) {
    mValue += aOther.mValue;
    return *this;
  }
  TimeDuration& operator-=(const TimeDuration& aOther) {
    mValue -= aOther.mValue;
    return *this;
  }
  double operator/(const TimeDuration& aOther) {
    return static_cast<double>(mValue) / aOther.mValue;
  }

  bool operator<(const TimeDuration& aOther) const {
    return mValue < aOther.mValue;
  }
  bool operator<=(const TimeDuration& aOther) const {
    return mValue <= aOther.mValue;
  }
  bool operator>=(const TimeDuration& aOther) const {
    return mValue >= aOther.mValue;
  }
  bool operator>(const TimeDuration& aOther) const {
    return mValue > aOther.mValue;
  }
  bool operator==(const TimeDuration& aOther) const {
    return mValue == aOther.mValue;
  }

  // Return a best guess at the system's current timing resolution,
  // which might be variable.  TimeDurations below this order of
  // magnitude are meaningless, and those at the same order of
  // magnitude or just above are suspect.
  static TimeDuration Resolution();

  // We could define additional operators here:
  // -- convert to/from other time units
  // -- scale duration by a float
  // but let's do that on demand.
  // Comparing durations for equality will only lead to bugs on
  // platforms with high-resolution timers.

private:
  friend class TimeStamp;
  friend struct IPC::ParamTraits<mozilla::TimeDuration>;

  static TimeDuration FromTicks(int64_t aTicks) {
    TimeDuration t;
    t.mValue = aTicks;
    return t;
  }

  static TimeDuration FromTicks(double aTicks) {
    // NOTE: this MUST be a >= test, because int64_t(double(INT64_MAX))
    // overflows and gives LL_MININT.
    if (aTicks >= double(INT64_MAX))
      return TimeDuration::FromTicks(INT64_MAX);

    // This MUST be a <= test.
    if (aTicks <= double(INT64_MIN))
      return TimeDuration::FromTicks(INT64_MIN);

    return TimeDuration::FromTicks(int64_t(aTicks));
  }

  // Duration in PRIntervalTime units
  int64_t mValue;
};

/**
 * Instances of this class represent moments in time, or a special
 * "null" moment. We do not use the non-monotonic system clock or
 * local time, since they can be reset, causing apparent backward
 * travel in time, which can confuse algorithms. Instead we measure
 * elapsed time according to the system.  This time can never go
 * backwards (i.e. it never wraps around, at least not in less than
 * five million years of system elapsed time). It might not advance
 * while the system is sleeping. If TimeStamp::SetNow() is not called
 * at all for hours or days, we might not notice the passage of some
 * of that time.
 * 
 * We deliberately do not expose a way to convert TimeStamps to some
 * particular unit. All you can do is compute a difference between two
 * TimeStamps to get a TimeDuration. You can also add a TimeDuration
 * to a TimeStamp to get a new TimeStamp. You can't do something
 * meaningless like add two TimeStamps.
 *
 * Internally this is implemented as either a wrapper around
 *   - high-resolution, monotonic, system clocks if they exist on this
 *     platform
 *   - PRIntervalTime otherwise.  We detect wraparounds of
 *     PRIntervalTime and work around them.
 *
 * This class is similar to C++11's time_point, however it is
 * explicitly nullable and provides an IsNull() method. time_point
 * is initialized to the clock's epoch and provides a
 * time_since_epoch() method that functions similiarly. i.e.
 * t.IsNull() is equivalent to t.time_since_epoch() == decltype(t)::duration::zero();
 */
class TimeStamp
{
public:
  /**
   * Initialize to the "null" moment
   */
  TimeStamp() : mValue(0) {}
  // Default copy-constructor and assignment are OK

  /**
   * Return true if this is the "null" moment
   */
  bool IsNull() const { return mValue == 0; }
  /**
   * Return a timestamp reflecting the current elapsed system time. This
   * is monotonically increasing (i.e., does not decrease) over the
   * lifetime of this process' XPCOM session.
   */
  static TimeStamp Now();
  /**
   * Compute the difference between two timestamps. Both must be non-null.
   */
  TimeDuration operator-(const TimeStamp& aOther) const {
    MOZ_ASSERT(!IsNull(), "Cannot compute with a null value");
    MOZ_ASSERT(!aOther.IsNull(), "Cannot compute with aOther null value");
    PR_STATIC_ASSERT(-LL_MAXINT > LL_MININT);
    int64_t ticks = int64_t(mValue - aOther.mValue);
    // Check for overflow.
    if (mValue > aOther.mValue) {
      if (ticks < 0) {
        ticks = LL_MAXINT;
      }
    } else {
      if (ticks > 0) {
        ticks = LL_MININT;
      }
    }
    return TimeDuration::FromTicks(ticks);
  }

  TimeStamp operator+(const TimeDuration& aOther) const {
    MOZ_ASSERT(!IsNull(), "Cannot compute with a null value");
    return TimeStamp(mValue + aOther.mValue);
  }
  TimeStamp operator-(const TimeDuration& aOther) const {
    MOZ_ASSERT(!IsNull(), "Cannot compute with a null value");
    return TimeStamp(mValue - aOther.mValue);
  }
  TimeStamp& operator+=(const TimeDuration& aOther) {
    MOZ_ASSERT(!IsNull(), "Cannot compute with a null value");
    mValue += aOther.mValue;
    return *this;
  }
  TimeStamp& operator-=(const TimeDuration& aOther) {
    MOZ_ASSERT(!IsNull(), "Cannot compute with a null value");
    mValue -= aOther.mValue;
    return *this;
  }

  bool operator<(const TimeStamp& aOther) const {
    MOZ_ASSERT(!IsNull(), "Cannot compute with a null value");
    MOZ_ASSERT(!aOther.IsNull(), "Cannot compute with aOther null value");
    return mValue < aOther.mValue;
  }
  bool operator<=(const TimeStamp& aOther) const {
    MOZ_ASSERT(!IsNull(), "Cannot compute with a null value");
    MOZ_ASSERT(!aOther.IsNull(), "Cannot compute with aOther null value");
    return mValue <= aOther.mValue;
  }
  bool operator>=(const TimeStamp& aOther) const {
    MOZ_ASSERT(!IsNull(), "Cannot compute with a null value");
    MOZ_ASSERT(!aOther.IsNull(), "Cannot compute with aOther null value");
    return mValue >= aOther.mValue;
  }
  bool operator>(const TimeStamp& aOther) const {
    MOZ_ASSERT(!IsNull(), "Cannot compute with a null value");
    MOZ_ASSERT(!aOther.IsNull(), "Cannot compute with aOther null value");
    return mValue > aOther.mValue;
  }
  bool operator==(const TimeStamp& aOther) const {
    // Maybe it's ok to check == with null timestamps?
    MOZ_ASSERT(!IsNull() && "Cannot compute with a null value");
    MOZ_ASSERT(!aOther.IsNull(), "Cannot compute with aOther null value");
    return mValue == aOther.mValue;
  }
  bool operator!=(const TimeStamp& aOther) const {
    // Maybe it's ok to check != with null timestamps?
    MOZ_ASSERT(!IsNull(), "Cannot compute with a null value");
    MOZ_ASSERT(!aOther.IsNull(), "Cannot compute with aOther null value");
    return mValue != aOther.mValue;
  }

  // Comparing TimeStamps for equality should be discouraged. Adding
  // two TimeStamps, or scaling TimeStamps, is nonsense and must never
  // be allowed.

  static NS_HIDDEN_(nsresult) Startup();
  static NS_HIDDEN_(void) Shutdown();

private:
  friend struct IPC::ParamTraits<mozilla::TimeStamp>;

  TimeStamp(uint64_t aValue) : mValue(aValue) {}

  /**
   * When built with PRIntervalTime, a value of 0 means this instance
   * is "null". Otherwise, the low 32 bits represent a PRIntervalTime,
   * and the high 32 bits represent a counter of the number of
   * rollovers of PRIntervalTime that we've seen. This counter starts
   * at 1 to avoid a real time colliding with the "null" value.
   * 
   * PR_INTERVAL_MAX is set at 100,000 ticks per second. So the minimum
   * time to wrap around is about 2^64/100000 seconds, i.e. about
   * 5,849,424 years.
   *
   * When using a system clock, a value is system dependent.
   */
  uint64_t mValue;
};

}

#endif /* mozilla_TimeStamp_h */