DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Mercurial (5b81998bb7ab)

VCS Links

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846
/* -*- Mode: C; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*-
 *
 * This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <time.h>
#include <ctype.h>
#include <errno.h>
#include <math.h>

#include "nspr.h"
#include "tmreader.h"

#define ERROR_REPORT(num, val, msg)   fprintf(stderr, "error(%d):\t\"%s\"\t%s\n", (num), (val), (msg));
#define CLEANUP(ptr)    do { if(NULL != ptr) { free(ptr); ptr = NULL; } } while(0)


#define COST_RESOLUTION 1000
#define COST_PRINTABLE(cost) ((double)(cost) / (double)COST_RESOLUTION)


typedef struct __struct_Options
/*
**  Options to control how we perform.
**
**  mProgramName    Used in help text.
**  mInputName      Name of the file.
**  mOutput         Output file, append.
**                  Default is stdout.
**  mOutputName     Name of the file.
**  mHelp           Whether or not help should be shown.
**  mOverhead       How much overhead an allocation will have.
**  mAlignment      What boundry will the end of an allocation line up on.
**  mAverages       Whether or not to display averages.
**  mDeviances      Whether or not to display standard deviations.
**  mRunLength      Whether or not to display run length.
*/
{
    const char* mProgramName;
    char* mInputName;
    FILE* mOutput;
    char* mOutputName;
    int mHelp;
    unsigned mOverhead;
    unsigned mAlignment;
    int mAverages;
    int mDeviances;
    int mRunLength;
}
Options;


typedef struct __struct_Switch
/*
**  Command line options.
*/
{
    const char* mLongName;
    const char* mShortName;
    int mHasValue;
    const char* mValue;
    const char* mDescription;
}
Switch;

#define DESC_NEWLINE "\n\t\t"

static Switch gInputSwitch = {"--input", "-i", 1, NULL, "Specify input file." DESC_NEWLINE "stdin is default."};
static Switch gOutputSwitch = {"--output", "-o", 1, NULL, "Specify output file." DESC_NEWLINE "Appends if file exists." DESC_NEWLINE "stdout is default."};
static Switch gHelpSwitch = {"--help", "-h", 0, NULL, "Information on usage."};
static Switch gAlignmentSwitch = {"--alignment", "-al", 1, NULL, "All allocation sizes are made to be a multiple of this number." DESC_NEWLINE "Closer to actual heap conditions; set to 1 for true sizes." DESC_NEWLINE "Default value is 16."};
static Switch gOverheadSwitch = {"--overhead", "-ov", 1, NULL, "After alignment, all allocations are made to increase by this number." DESC_NEWLINE "Closer to actual heap conditions; set to 0 for true sizes." DESC_NEWLINE "Default value is 8."};
static Switch gAveragesSwitch = {"--averages", "-avg", 0, NULL, "Display averages."};
static Switch gDeviationsSwitch = {"--deviations", "-dev", 0, NULL, "Display standard deviations from the average."  DESC_NEWLINE "Implies --averages."};
static Switch gRunLengthSwitch = {"--run-length", "-rl", 0, NULL, "Display the run length in seconds."};

static Switch* gSwitches[] = {
        &gInputSwitch,
        &gOutputSwitch,
        &gAlignmentSwitch,
        &gOverheadSwitch,
        &gAveragesSwitch,
        &gDeviationsSwitch,
        &gRunLengthSwitch,
        &gHelpSwitch
};


typedef struct _struct_VarianceState
/*
**  State for a single pass variance calculation.
*/
{
    unsigned mCount;
    uint64_t mSum;
    uint64_t mSquaredSum;
}
VarianceState;


typedef struct __struct_TMStats
/*
**  Stats we are trying to calculate.
**
**  mOptions        Obilgatory options pointer.
**  uMemoryInUse    Current tally of memory in use.
**  uPeakMemory     Heap topped out at this byte level.
**  uObjectsInUse   Different allocations outstanding.
**  uPeakObjects    Highest object count.
**  uMallocs        Number of malloc calls.
**  uCallocs        Number of calloc calls.
**  uReallocs       Number of realloc calls.
**  uFrees          Number of free calls.
**  uMallocSize     Bytes from malloc.
**  uCallocSize     Bytes from calloc.
**  uReallocSize    Bytes from realloc.
**  uFreeSize       Bytes from free.
**  mMallocSizeVar  Variance of bytes.
**  mCallocSizeVar  Variance of bytes.
**  mReallocSizeVar Variance of bytes.
**  mFreeSizeVar    Variance of bytes.
**  uMallocCost     Time of mallocs.
**  uCallocCost     Time of callocs.
**  uReallocCost    Time of reallocs.
**  uFreeCost       Time of frees.
**  mMallocCostVar  Variance of cost.
**  mCallocCostVar  Variance of cost.
**  mReallocCostVar Variance of cost.
**  mFreeCostVar    Variance of cost.
**  uMinTicks       Start of run.
**  uMaxTicks       End of run.
*/
{
    Options* mOptions;
    unsigned uMemoryInUse;
    unsigned uPeakMemory;
    unsigned uObjectsInUse;
    unsigned uPeakObjects;
    unsigned uMallocs;
    unsigned uCallocs;
    unsigned uReallocs;
    unsigned uFrees;

    unsigned uMallocSize;
    unsigned uCallocSize;
    unsigned uReallocSize;
    unsigned uFreeSize;
    VarianceState mMallocSizeVar;
    VarianceState mCallocSizeVar;
    VarianceState mReallocSizeVar;
    VarianceState mFreeSizeVar;

    unsigned uMallocCost;
    unsigned uCallocCost;
    unsigned uReallocCost;
    unsigned uFreeCost;
    VarianceState mMallocCostVar;
    VarianceState mCallocCostVar;
    VarianceState mReallocCostVar;
    VarianceState mFreeCostVar;

    unsigned uMinTicks;
    unsigned uMaxTicks;
}
TMStats;


int initOptions(Options* outOptions, int inArgc, char** inArgv)
/*
**  returns int     0 if successful.
*/
{
    int retval = 0;
    int loop = 0;
    int switchLoop = 0;
    int match = 0;
    const int switchCount = sizeof(gSwitches) / sizeof(gSwitches[0]);
    Switch* current = NULL;

    /*
    **  Set any defaults.
    */
    memset(outOptions, 0, sizeof(Options));
    outOptions->mProgramName = inArgv[0];
    outOptions->mInputName = strdup("-");
    outOptions->mOutput = stdout;
    outOptions->mOutputName = strdup("stdout");
    outOptions->mAlignment = 16;
    outOptions->mOverhead = 8;

    if(NULL == outOptions->mOutputName || NULL == outOptions->mInputName)
    {
        retval = __LINE__;
        ERROR_REPORT(retval, "stdin/stdout", "Unable to strdup.");
    }

    /*
    **  Go through and attempt to do the right thing.
    */
    for(loop = 1; loop < inArgc && 0 == retval; loop++)
    {
        match = 0;
        current = NULL;

        for(switchLoop = 0; switchLoop < switchCount && 0 == retval; switchLoop++)
        {
            if(0 == strcmp(gSwitches[switchLoop]->mLongName, inArgv[loop]))
            {
                match = __LINE__;
            }
            else if(0 == strcmp(gSwitches[switchLoop]->mShortName, inArgv[loop]))
            {
                match = __LINE__;
            }

            if(match)
            {
                if(gSwitches[switchLoop]->mHasValue)
                {
                    /*
                    **  Attempt to absorb next option to fullfill value.
                    */
                    if(loop + 1 < inArgc)
                    {
                        loop++;

                        current = gSwitches[switchLoop];
                        current->mValue = inArgv[loop];
                    }
                }
                else
                {
                    current = gSwitches[switchLoop];
                }

                break;
            }
        }

        if(0 == match)
        {
            outOptions->mHelp = __LINE__;
            retval = __LINE__;
            ERROR_REPORT(retval, inArgv[loop], "Unknown command line switch.");
        }
        else if(NULL == current)
        {
            outOptions->mHelp = __LINE__;
            retval = __LINE__;
            ERROR_REPORT(retval, inArgv[loop], "Command line switch requires a value.");
        }
        else
        {
            /*
            ** Do something based on address/swtich.
            */
            if(current == &gInputSwitch)
            {
                CLEANUP(outOptions->mInputName);
                outOptions->mInputName = strdup(current->mValue);
                if(NULL == outOptions->mInputName)
                {
                    retval = __LINE__;
                    ERROR_REPORT(retval, current->mValue, "Unable to strdup.");
                }
            }
            else if(current == &gOutputSwitch)
            {
                CLEANUP(outOptions->mOutputName);
                if(NULL != outOptions->mOutput && stdout != outOptions->mOutput)
                {
                    fclose(outOptions->mOutput);
                    outOptions->mOutput = NULL;
                }

                outOptions->mOutput = fopen(current->mValue, "a");
                if(NULL == outOptions->mOutput)
                {
                    retval = __LINE__;
                    ERROR_REPORT(retval, current->mValue, "Unable to open output file.");
                }
                else
                {
                    outOptions->mOutputName = strdup(current->mValue);
                    if(NULL == outOptions->mOutputName)
                    {
                        retval = __LINE__;
                        ERROR_REPORT(retval, current->mValue, "Unable to strdup.");
                    }
                }
            }
            else if(current == &gHelpSwitch)
            {
                outOptions->mHelp = __LINE__;
            }
            else if(current == &gAlignmentSwitch)
            {
                unsigned arg = 0;
                char* endScan = NULL;

                errno = 0;
                arg = strtoul(current->mValue, &endScan, 0);
                if(0 == errno && endScan != current->mValue)
                {
                    outOptions->mAlignment = arg;
                }
                else
                {
                    retval = __LINE__;
                    ERROR_REPORT(retval, current->mValue, "Unable to convert to a number.");
                }
            }
            else if(current == &gOverheadSwitch)
            {
                unsigned arg = 0;
                char* endScan = NULL;

                errno = 0;
                arg = strtoul(current->mValue, &endScan, 0);
                if(0 == errno && endScan != current->mValue)
                {
                    outOptions->mOverhead = arg;
                }
                else
                {
                    retval = __LINE__;
                    ERROR_REPORT(retval, current->mValue, "Unable to convert to a number.");
                }
            }
            else if(current == &gAveragesSwitch)
            {
                outOptions->mAverages = __LINE__;
            }
            else if(current == &gDeviationsSwitch)
            {
                outOptions->mAverages = __LINE__;
                outOptions->mDeviances = __LINE__;
            }
            else if(current == &gRunLengthSwitch)
            {
                outOptions->mRunLength = __LINE__;
            }
            else
            {
                retval = __LINE__;
                ERROR_REPORT(retval, current->mLongName, "No handler for command line switch.");
            }
        }
    }

    return retval;
}


void cleanOptions(Options* inOptions)
/*
**  Clean up any open handles.
*/
{
    unsigned loop = 0;

    CLEANUP(inOptions->mInputName);
    CLEANUP(inOptions->mOutputName);
    if(NULL != inOptions->mOutput && stdout != inOptions->mOutput)
    {
        fclose(inOptions->mOutput);
    }

    memset(inOptions, 0, sizeof(Options));
}


void showHelp(Options* inOptions)
/*
**  Show some simple help text on usage.
*/
{
    int loop = 0;
    const int switchCount = sizeof(gSwitches) / sizeof(gSwitches[0]);
    const char* valueText = NULL;

    printf("usage:\t%s [arguments]\n", inOptions->mProgramName);
    printf("\n");
    printf("arguments:\n");

    for(loop = 0; loop < switchCount; loop++)
    {
        if(gSwitches[loop]->mHasValue)
        {
            valueText = " <value>";
        }
        else
        {
            valueText = "";
        }

        printf("\t%s%s\n", gSwitches[loop]->mLongName, valueText);
        printf("\t %s%s", gSwitches[loop]->mShortName, valueText);
        printf(DESC_NEWLINE "%s\n\n", gSwitches[loop]->mDescription);
    }

    printf("This tool reports simple heap usage and allocation call counts.\n");
    printf("Useful for eyeballing trace-malloc numbers quickly.\n");
}


void addVariance(VarianceState* inVariance, unsigned inValue)
/*
**  Add a value to a variance state.
*/
{
    uint64_t squared;
    uint64_t bigValue;
    
    LL_UI2L(bigValue, inValue);

    LL_ADD(inVariance->mSum, inVariance->mSum, bigValue);

    LL_MUL(squared, bigValue, bigValue);
    LL_ADD(inVariance->mSquaredSum, inVariance->mSquaredSum, squared);

    inVariance->mCount++;
}


double getAverage(VarianceState* inVariance)
/*
**  Determine the mean/average based on the given state.
*/
{
    double retval = 0.0;

    if(NULL != inVariance && 0 < inVariance->mCount)
    {
        double count;
        double sum;
        int64_t isum;

        /*
        **  Avoids a compiler error (not impl) under MSVC.
        */
        isum = inVariance->mSum;

        count = (double)inVariance->mCount;
        LL_L2F(sum, isum);

        retval = sum / count;
    }

    return retval;
}


double getVariance(VarianceState* inVariance)
/*
**  Determine the variance based on the given state.
*/
{
    double retval = 0.0;

    if(NULL != inVariance && 1 < inVariance->mCount)
    {
        double count;
        double squaredSum;
        double avg;
        double squaredAvg;
        int64_t isquaredSum;

        /*
        **  Avoids a compiler error (not impl) under MSVC.
        */
        isquaredSum = inVariance->mSquaredSum;

        count = (double)inVariance->mCount;
        LL_L2F(squaredSum, isquaredSum);

        avg = getAverage(inVariance);
        squaredAvg = avg * avg;

        retval = (squaredSum - (count * squaredAvg)) / (count - 1.0);
    }

    return retval;
}


double getStdDev(VarianceState* inVariance)
/*
**  Determine the standard deviation based on the given state.
*/
{
    double retval = 0.0;
    double variance;

    variance = getVariance(inVariance);
    retval = sqrt(variance);

    return retval;
}


unsigned actualByteSize(Options* inOptions, unsigned retval)
/*
**  Apply alignment and overhead to size to figure out actual byte size.
**  This by default mimics spacetrace with default options (msvc crt heap).
*/
{
    if(0 != retval)
    {
        unsigned eval = 0;
        unsigned over = 0;

        eval = retval - 1;
        if(0 != inOptions->mAlignment)
        {
            over = eval % inOptions->mAlignment;
        }
        retval = eval + inOptions->mOverhead + inOptions->mAlignment - over;
    }

    return retval;
}


uint32_t ticks2xsec(tmreader* aReader, uint32_t aTicks, uint32_t aResolution)
/*
** Convert platform specific ticks to second units
** Returns 0 on success.
*/
{
    uint32_t retval = 0;
    uint64_t bigone;
    uint64_t tmp64;

    LL_UI2L(bigone, aResolution);
    LL_UI2L(tmp64, aTicks);
    LL_MUL(bigone, bigone, tmp64);
    LL_UI2L(tmp64, aReader->ticksPerSec);
    LL_DIV(bigone, bigone, tmp64);
    LL_L2UI(retval, bigone);

    return retval;
}
#define ticks2msec(reader, ticks) ticks2xsec((reader), (ticks), 1000)


void tmEventHandler(tmreader* inReader, tmevent* inEvent)
/*
**  Callback from the tmreader_eventloop.
**  Keep it simple in here, this is where we'll spend the most time.
**  The goal is to be fast.
*/
{
    TMStats* stats = (TMStats*)inReader->data;
    Options* options = (Options*)stats->mOptions;
    char type = inEvent->type;
    unsigned size = inEvent->u.alloc.size;
    unsigned actualSize = 0;
    unsigned actualOldSize = 0;
    uint32_t interval = 0;

    /*
    **  To match spacetrace stats, reallocs of size zero are frees.
    **  Adjust the size to match what free expects.
    */
    if(TM_EVENT_REALLOC == type && 0 == size)
    {
        type = TM_EVENT_FREE;
        if(0 != inEvent->u.alloc.oldserial)
        {
            size = inEvent->u.alloc.oldsize;
        }
    }

    /*
    **  Adjust the size due to the options.
    */
    actualSize = actualByteSize(options, size);
    if(TM_EVENT_REALLOC == type && 0 != inEvent->u.alloc.oldserial)
    {
        actualOldSize = actualByteSize(options, inEvent->u.alloc.oldsize);
    }

    /*
    **  Modify event specific data.
    */
    switch(type)
    {
    case TM_EVENT_MALLOC:
        stats->uMallocs++;
        stats->uMallocSize += actualSize;
        stats->uMallocCost += ticks2msec(inReader, inEvent->u.alloc.cost);
        stats->uMemoryInUse += actualSize;
        stats->uObjectsInUse++;

        addVariance(&stats->mMallocSizeVar, actualSize);
        addVariance(&stats->mMallocCostVar,  inEvent->u.alloc.cost);
        break;

    case TM_EVENT_CALLOC:
        stats->uCallocs++;
        stats->uCallocSize += actualSize;
        stats->uCallocCost += ticks2msec(inReader, inEvent->u.alloc.cost);
        stats->uMemoryInUse += actualSize;
        stats->uObjectsInUse++;

        addVariance(&stats->mCallocSizeVar, actualSize);
        addVariance(&stats->mCallocCostVar,  inEvent->u.alloc.cost);
        break;

    case TM_EVENT_REALLOC:
        stats->uReallocs++;
        stats->uReallocSize -= actualOldSize;
        stats->uReallocSize += actualSize;
        stats->uReallocCost += ticks2msec(inReader, inEvent->u.alloc.cost);
        stats->uMemoryInUse -= actualOldSize;
        stats->uMemoryInUse += actualSize;
        if(0 == inEvent->u.alloc.oldserial)
        {
            stats->uObjectsInUse++;
        }

        if(actualSize > actualOldSize)
        {
            addVariance(&stats->mReallocSizeVar, actualSize - actualOldSize);
        }
        else
        {
            addVariance(&stats->mReallocSizeVar, actualOldSize - actualSize);
        }
        addVariance(&stats->mReallocCostVar,  inEvent->u.alloc.cost);
        break;

    case TM_EVENT_FREE:
        stats->uFrees++;
        stats->uFreeSize += actualSize;
        stats->uFreeCost += ticks2msec(inReader, inEvent->u.alloc.cost);
        stats->uMemoryInUse -= actualSize;
        stats->uObjectsInUse--;

        addVariance(&stats->mFreeSizeVar, actualSize);
        addVariance(&stats->mFreeCostVar,  inEvent->u.alloc.cost);
        break;

    default:
        /*
        **  Don't care.
        */
        break;
    }

    switch(type)
    {
    case TM_EVENT_MALLOC:
    case TM_EVENT_CALLOC:
    case TM_EVENT_REALLOC:
        /*
        **  Check the peaks.
        */
        if(stats->uMemoryInUse > stats->uPeakMemory)
        {
            stats->uPeakMemory = stats->uMemoryInUse;
        }
        if(stats->uObjectsInUse > stats->uPeakObjects)
        {
            stats->uPeakObjects = stats->uObjectsInUse;
        }

        /*
        **  Falling through.
        */

    case TM_EVENT_FREE:
        /*
        **  Check the overall time.
        */
        interval = ticks2msec(inReader, inEvent->u.alloc.interval);
        if(stats->uMinTicks > interval)
        {
            stats->uMinTicks = interval;
        }
        if(stats->uMaxTicks < interval)
        {
            stats->uMaxTicks = interval;
        }
        break;

    default:
        /*
        **  Don't care.
        */
        break;
    }

}

int report_stats(Options* inOptions, TMStats* inStats)
{
    int retval = 0;

    fprintf(inOptions->mOutput, "Peak Memory Usage:                   %11d\n", inStats->uPeakMemory);
    fprintf(inOptions->mOutput, "Memory Leaked:                       %11d\n", inStats->uMemoryInUse);
    fprintf(inOptions->mOutput, "\n");

    fprintf(inOptions->mOutput, "Peak Object Count:                   %11d\n", inStats->uPeakObjects);
    fprintf(inOptions->mOutput, "Objects Leaked:                      %11d\n", inStats->uObjectsInUse);
    if(0 != inOptions->mAverages && 0 != inStats->uObjectsInUse)
    {
        fprintf(inOptions->mOutput, "Average Leaked Object Size:          %11.4f\n", (double)inStats->uMemoryInUse / (double)inStats->uObjectsInUse);
    }
    fprintf(inOptions->mOutput, "\n");

    fprintf(inOptions->mOutput, "Call Total:                          %11d\n", inStats->uMallocs + inStats->uCallocs + inStats->uReallocs + inStats->uFrees);
    fprintf(inOptions->mOutput, "        malloc:                      %11d\n", inStats->uMallocs);
    fprintf(inOptions->mOutput, "        calloc:                      %11d\n", inStats->uCallocs);
    fprintf(inOptions->mOutput, "       realloc:                      %11d\n", inStats->uReallocs);
    fprintf(inOptions->mOutput, "          free:                      %11d\n", inStats->uFrees);
    fprintf(inOptions->mOutput, "\n");

    fprintf(inOptions->mOutput, "Byte Total (sans free):              %11d\n", inStats->uMallocSize + inStats->uCallocSize + inStats->uReallocSize);
    fprintf(inOptions->mOutput, "        malloc:                      %11d\n", inStats->uMallocSize);
    fprintf(inOptions->mOutput, "        calloc:                      %11d\n", inStats->uCallocSize);
    fprintf(inOptions->mOutput, "       realloc:                      %11d\n", inStats->uReallocSize);
    fprintf(inOptions->mOutput, "          free:                      %11d\n", inStats->uFreeSize);
    if(0 != inOptions->mAverages)
    {
        fprintf(inOptions->mOutput, "Byte Averages:\n");
        fprintf(inOptions->mOutput, "        malloc:                      %11.4f\n", getAverage(&inStats->mMallocSizeVar));
        fprintf(inOptions->mOutput, "        calloc:                      %11.4f\n", getAverage(&inStats->mCallocSizeVar));
        fprintf(inOptions->mOutput, "       realloc:                      %11.4f\n", getAverage(&inStats->mReallocSizeVar));
        fprintf(inOptions->mOutput, "          free:                      %11.4f\n", getAverage(&inStats->mFreeSizeVar));
    }
    if(0 != inOptions->mDeviances)
    {
        fprintf(inOptions->mOutput, "Byte Standard Deviations:\n");
        fprintf(inOptions->mOutput, "        malloc:                      %11.4f\n", getStdDev(&inStats->mMallocSizeVar));
        fprintf(inOptions->mOutput, "        calloc:                      %11.4f\n", getStdDev(&inStats->mCallocSizeVar));
        fprintf(inOptions->mOutput, "       realloc:                      %11.4f\n", getStdDev(&inStats->mReallocSizeVar));
        fprintf(inOptions->mOutput, "          free:                      %11.4f\n", getStdDev(&inStats->mFreeSizeVar));
    }
    fprintf(inOptions->mOutput, "\n");
    
    fprintf(inOptions->mOutput, "Overhead Total:                      %11.4f\n", COST_PRINTABLE(inStats->uMallocCost) + COST_PRINTABLE(inStats->uCallocCost) + COST_PRINTABLE(inStats->uReallocCost) + COST_PRINTABLE(inStats->uFreeCost));
    fprintf(inOptions->mOutput, "        malloc:                      %11.4f\n", COST_PRINTABLE(inStats->uMallocCost));
    fprintf(inOptions->mOutput, "        calloc:                      %11.4f\n", COST_PRINTABLE(inStats->uCallocCost));
    fprintf(inOptions->mOutput, "       realloc:                      %11.4f\n", COST_PRINTABLE(inStats->uReallocCost));
    fprintf(inOptions->mOutput, "          free:                      %11.4f\n", COST_PRINTABLE(inStats->uFreeCost));
    if(0 != inOptions->mAverages)
    {
        fprintf(inOptions->mOutput, "Overhead Averages:\n");
        fprintf(inOptions->mOutput, "        malloc:                      %11.4f\n", COST_PRINTABLE(getAverage(&inStats->mMallocCostVar)));
        fprintf(inOptions->mOutput, "        calloc:                      %11.4f\n", COST_PRINTABLE(getAverage(&inStats->mCallocCostVar)));
        fprintf(inOptions->mOutput, "       realloc:                      %11.4f\n", COST_PRINTABLE(getAverage(&inStats->mReallocCostVar)));
        fprintf(inOptions->mOutput, "          free:                      %11.4f\n", COST_PRINTABLE(getAverage(&inStats->mFreeCostVar)));
    }
    if(0 != inOptions->mDeviances)
    {
        fprintf(inOptions->mOutput, "Overhead Standard Deviations:\n");
        fprintf(inOptions->mOutput, "        malloc:                      %11.4f\n", COST_PRINTABLE(getStdDev(&inStats->mMallocCostVar)));
        fprintf(inOptions->mOutput, "        calloc:                      %11.4f\n", COST_PRINTABLE(getStdDev(&inStats->mCallocCostVar)));
        fprintf(inOptions->mOutput, "       realloc:                      %11.4f\n", COST_PRINTABLE(getStdDev(&inStats->mReallocCostVar)));
        fprintf(inOptions->mOutput, "          free:                      %11.4f\n", COST_PRINTABLE(getStdDev(&inStats->mFreeCostVar)));
    }
    fprintf(inOptions->mOutput, "\n");
    
    if(0 != inOptions->mRunLength)
    {
        unsigned length = inStats->uMaxTicks - inStats->uMinTicks;

        fprintf(inOptions->mOutput, "Run Length:                          %11.4f\n", COST_PRINTABLE(length));
        fprintf(inOptions->mOutput, "\n");
    }

    return retval;
}


int tmstats(Options* inOptions)
/*
**  As quick as possible, load the input file and report stats.
*/
{
    int retval = 0;
    tmreader* tmr = NULL;
    TMStats stats;

    memset(&stats, 0, sizeof(stats));
    stats.mOptions = inOptions;
    stats.uMinTicks = 0xFFFFFFFFU;

    /*
    **  Need a tmreader.
    */
    tmr = tmreader_new(inOptions->mProgramName, &stats);
    if(NULL != tmr)
    {
        int tmResult = 0;

        tmResult = tmreader_eventloop(tmr, inOptions->mInputName, tmEventHandler);
        if(0 == tmResult)
        {
            retval = __LINE__;
            ERROR_REPORT(retval, inOptions->mInputName, "Problem reading trace-malloc data.");
        }

        tmreader_destroy(tmr);
        tmr = NULL;

        if(0 == retval)
        {
            retval = report_stats(inOptions, &stats);
        }
    }
    else
    {
        retval = __LINE__;
        ERROR_REPORT(retval, inOptions->mProgramName, "Unable to obtain tmreader.");
    }

    return retval;
}


int main(int inArgc, char** inArgv)
{
    int retval = 0;
    Options options;

    retval = initOptions(&options, inArgc, inArgv);
    if(options.mHelp)
    {
        showHelp(&options);
    }
    else if(0 == retval)
    {
        retval = tmstats(&options);
    }

    cleanOptions(&options);
    return retval;
}