DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Mercurial (5b81998bb7ab)

VCS Links

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960
/* -*- Mode: C; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*-
 *
 * This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <time.h>
#include <ctype.h>
#include <errno.h>
#include <math.h>

#include "nspr.h"
#include "tmreader.h"


#define ERROR_REPORT(num, val, msg)   fprintf(stderr, "error(%d):\t\"%s\"\t%s\n", (num), (val), (msg));
#define CLEANUP(ptr)    do { if(NULL != ptr) { free(ptr); ptr = NULL; } } while(0)


#define ticks2msec(reader, ticks) ticks2xsec((reader), (ticks), 1000)
#define ticks2usec(reader, ticks) ticks2xsec((reader), (ticks), 1000000)
#define TICK_RESOLUTION 1000
#define TICK_PRINTABLE(timeval) ((double)(timeval) / (double)ST_TIMEVAL_RESOLUTION)


typedef struct __struct_Options
/*
**  Options to control how we perform.
**
**  mProgramName    Used in help text.
**  mInputName      Name of the file.
**  mOutput         Output file, append.
**                  Default is stdout.
**  mOutputName     Name of the file.
**  mHelp           Whether or not help should be shown.
**  mOverhead       How much overhead an allocation will have.
**  mAlignment      What boundry will the end of an allocation line up on.
**  mPageSize       Controls the page size.  A page containing only fragments
**                      is not fragmented.  A page containing any life memory
**                      costs mPageSize in bytes.
*/
{
    const char* mProgramName;
    char* mInputName;
    FILE* mOutput;
    char* mOutputName;
    int mHelp;
    unsigned mOverhead;
    unsigned mAlignment;
    unsigned mPageSize;
}
Options;


typedef struct __struct_Switch
/*
**  Command line options.
*/
{
    const char* mLongName;
    const char* mShortName;
    int mHasValue;
    const char* mValue;
    const char* mDescription;
}
Switch;

#define DESC_NEWLINE "\n\t\t"

static Switch gInputSwitch = {"--input", "-i", 1, NULL, "Specify input file." DESC_NEWLINE "stdin is default."};
static Switch gOutputSwitch = {"--output", "-o", 1, NULL, "Specify output file." DESC_NEWLINE "Appends if file exists." DESC_NEWLINE "stdout is default."};
static Switch gHelpSwitch = {"--help", "-h", 0, NULL, "Information on usage."};
static Switch gAlignmentSwitch = {"--alignment", "-al", 1, NULL, "All allocation sizes are made to be a multiple of this number." DESC_NEWLINE "Closer to actual heap conditions; set to 1 for true sizes." DESC_NEWLINE "Default value is 16."};
static Switch gOverheadSwitch = {"--overhead", "-ov", 1, NULL, "After alignment, all allocations are made to increase by this number." DESC_NEWLINE "Closer to actual heap conditions; set to 0 for true sizes." DESC_NEWLINE "Default value is 8."};
static Switch gPageSizeSwitch = {"--page-size", "-ps", 1, NULL, "Sets the page size which aids the identification of fragmentation." DESC_NEWLINE "Closer to actual heap conditions; set to 4294967295 for true sizes."  DESC_NEWLINE "Default value is 4096."};

static Switch* gSwitches[] = {
        &gInputSwitch,
        &gOutputSwitch,
        &gAlignmentSwitch,
        &gOverheadSwitch,
        &gPageSizeSwitch,
        &gHelpSwitch
};


typedef struct __struct_AnyArray
/*
**  Variable sized item array.
**
**  mItems      The void pointer items.
**  mItemSize   Size of each different item.
**  mCount      The number of items in the array.
**  mCapacity   How many more items we can hold before reallocing.
**  mGrowBy     How many items we allocate when we grow.
*/
{
    void* mItems;
    unsigned mItemSize;
    unsigned mCount;
    unsigned mCapacity;
    unsigned mGrowBy;
}
AnyArray;


typedef int (*arrayMatchFunc)(void* inContext, AnyArray* inArray, void* inItem, unsigned inItemIndex)
/*
**  Callback function for the arrayIndexFn function.
**  Used to determine an item match by customizable criteria.
**
**  inContext       The criteria and state of the search.
**                  User specified/created.
**  inArray         The array the item is in.
**  inItem          The item to evaluate for match.
**  inItemIndex     The index of this particular item in the array.
**
**  return int      0 to specify a match.
**                  !0 to continue the search performed by arrayIndexFn.
*/
;


typedef enum __enum_HeapEventType
/*
**  Simple heap events are really one of two things.
*/
{
    FREE,
    ALLOC
}
HeapEventType;


typedef enum __enum_HeapObjectType
/*
**  The various types of heap objects we track.
*/
{
    ALLOCATION,
    FRAGMENT
}
HeapObjectType;


typedef struct __struct_HeapObject HeapObject;
typedef struct __struct_HeapHistory
/*
**  A marker as to what has happened.
**
**  mTimestamp      When history occurred.
**  mTMRSerial      The historical state as known to the tmreader.
**  mObjectIndex    Index to the object that was before or after this event.
**                  The index as in the index according to all heap objects
**                      kept in the TMState structure.
**                  We use an index instead of a pointer as the array of
**                      objects can change location in the heap.
*/
{
    unsigned mTimestamp;
    unsigned mTMRSerial;
    unsigned mObjectIndex;
}
HeapHistory;


struct __struct_HeapObject
/*
**  An object in the heap.
**
**  A special case should be noted here.  If either the birth or death
**      history leads to an object of the same type, then this object
**      is the same as that object, but was modified somehow.
**  Also note that multiple objects may have the same birth object,
**      as well as the same death object.
**
**  mUniqueID           Each object is unique.
**  mType               Either allocation or fragment.
**  mHeapOffset         Where in the heap the object is.
**  mSize               How much of the heap the object takes.
**  mBirth              History about the birth event.
**  mDeath              History about the death event.
*/
{
    unsigned mUniqueID;

    HeapObjectType mType;
    unsigned mHeapOffset;
    unsigned mSize;

    HeapHistory mBirth;
    HeapHistory mDeath;
};


typedef struct __struct_TMState
/*
**  State of our current operation.
**  Stats we are trying to calculate.
**
**  mOptions        Obilgatory options pointer.
**  mTMR            The tmreader, used in tmreader API calls.
**  mLoopExitTMR    Set to non zero in order to quickly exit from tmreader
**                      input loop.  This will also result in an error.
**  uMinTicks       Start of run, milliseconds.
**  uMaxTicks       End of run, milliseconds.
*/
{
    Options* mOptions;
    tmreader* mTMR;

    int mLoopExitTMR;

    unsigned uMinTicks;
    unsigned uMaxTicks;
}
TMState;


int initOptions(Options* outOptions, int inArgc, char** inArgv)
/*
**  returns int     0 if successful.
*/
{
    int retval = 0;
    int loop = 0;
    int switchLoop = 0;
    int match = 0;
    const int switchCount = sizeof(gSwitches) / sizeof(gSwitches[0]);
    Switch* current = NULL;

    /*
    **  Set any defaults.
    */
    memset(outOptions, 0, sizeof(Options));
    outOptions->mProgramName = inArgv[0];
    outOptions->mInputName = strdup("-");
    outOptions->mOutput = stdout;
    outOptions->mOutputName = strdup("stdout");
    outOptions->mAlignment = 16;
    outOptions->mOverhead = 8;

    if(NULL == outOptions->mOutputName || NULL == outOptions->mInputName)
    {
        retval = __LINE__;
        ERROR_REPORT(retval, "stdin/stdout", "Unable to strdup.");
    }

    /*
    **  Go through and attempt to do the right thing.
    */
    for(loop = 1; loop < inArgc && 0 == retval; loop++)
    {
        match = 0;
        current = NULL;

        for(switchLoop = 0; switchLoop < switchCount && 0 == retval; switchLoop++)
        {
            if(0 == strcmp(gSwitches[switchLoop]->mLongName, inArgv[loop]))
            {
                match = __LINE__;
            }
            else if(0 == strcmp(gSwitches[switchLoop]->mShortName, inArgv[loop]))
            {
                match = __LINE__;
            }

            if(match)
            {
                if(gSwitches[switchLoop]->mHasValue)
                {
                    /*
                    **  Attempt to absorb next option to fullfill value.
                    */
                    if(loop + 1 < inArgc)
                    {
                        loop++;

                        current = gSwitches[switchLoop];
                        current->mValue = inArgv[loop];
                    }
                }
                else
                {
                    current = gSwitches[switchLoop];
                }

                break;
            }
        }

        if(0 == match)
        {
            outOptions->mHelp = __LINE__;
            retval = __LINE__;
            ERROR_REPORT(retval, inArgv[loop], "Unknown command line switch.");
        }
        else if(NULL == current)
        {
            outOptions->mHelp = __LINE__;
            retval = __LINE__;
            ERROR_REPORT(retval, inArgv[loop], "Command line switch requires a value.");
        }
        else
        {
            /*
            ** Do something based on address/swtich.
            */
            if(current == &gInputSwitch)
            {
                CLEANUP(outOptions->mInputName);
                outOptions->mInputName = strdup(current->mValue);
                if(NULL == outOptions->mInputName)
                {
                    retval = __LINE__;
                    ERROR_REPORT(retval, current->mValue, "Unable to strdup.");
                }
            }
            else if(current == &gOutputSwitch)
            {
                CLEANUP(outOptions->mOutputName);
                if(NULL != outOptions->mOutput && stdout != outOptions->mOutput)
                {
                    fclose(outOptions->mOutput);
                    outOptions->mOutput = NULL;
                }

                outOptions->mOutput = fopen(current->mValue, "a");
                if(NULL == outOptions->mOutput)
                {
                    retval = __LINE__;
                    ERROR_REPORT(retval, current->mValue, "Unable to open output file.");
                }
                else
                {
                    outOptions->mOutputName = strdup(current->mValue);
                    if(NULL == outOptions->mOutputName)
                    {
                        retval = __LINE__;
                        ERROR_REPORT(retval, current->mValue, "Unable to strdup.");
                    }
                }
            }
            else if(current == &gHelpSwitch)
            {
                outOptions->mHelp = __LINE__;
            }
            else if(current == &gAlignmentSwitch)
            {
                unsigned arg = 0;
                char* endScan = NULL;

                errno = 0;
                arg = strtoul(current->mValue, &endScan, 0);
                if(0 == errno && endScan != current->mValue)
                {
                    outOptions->mAlignment = arg;
                }
                else
                {
                    retval = __LINE__;
                    ERROR_REPORT(retval, current->mValue, "Unable to convert to a number.");
                }
            }
            else if(current == &gOverheadSwitch)
            {
                unsigned arg = 0;
                char* endScan = NULL;

                errno = 0;
                arg = strtoul(current->mValue, &endScan, 0);
                if(0 == errno && endScan != current->mValue)
                {
                    outOptions->mOverhead = arg;
                }
                else
                {
                    retval = __LINE__;
                    ERROR_REPORT(retval, current->mValue, "Unable to convert to a number.");
                }
            }
            else if(current == &gPageSizeSwitch)
            {
                unsigned arg = 0;
                char* endScan = NULL;

                errno = 0;
                arg = strtoul(current->mValue, &endScan, 0);
                if(0 == errno && endScan != current->mValue)
                {
                    outOptions->mPageSize = arg;
                }
                else
                {
                    retval = __LINE__;
                    ERROR_REPORT(retval, current->mValue, "Unable to convert to a number.");
                }
            }
            else
            {
                retval = __LINE__;
                ERROR_REPORT(retval, current->mLongName, "No handler for command line switch.");
            }
        }
    }

    return retval;
}


uint32_t ticks2xsec(tmreader* aReader, uint32_t aTicks, uint32_t aResolution)
/*
** Convert platform specific ticks to second units
*/
{
    uint32_t retval = 0;
    uint64_t bigone;
    uint64_t tmp64;

    LL_UI2L(bigone, aResolution);
    LL_UI2L(tmp64, aTicks);
    LL_MUL(bigone, bigone, tmp64);
    LL_UI2L(tmp64, aReader->ticksPerSec);
    LL_DIV(bigone, bigone, tmp64);
    LL_L2UI(retval, bigone);
    return retval;
}


void cleanOptions(Options* inOptions)
/*
**  Clean up any open handles.
*/
{
    unsigned loop = 0;

    CLEANUP(inOptions->mInputName);
    CLEANUP(inOptions->mOutputName);
    if(NULL != inOptions->mOutput && stdout != inOptions->mOutput)
    {
        fclose(inOptions->mOutput);
    }

    memset(inOptions, 0, sizeof(Options));
}


void showHelp(Options* inOptions)
/*
**  Show some simple help text on usage.
*/
{
    int loop = 0;
    const int switchCount = sizeof(gSwitches) / sizeof(gSwitches[0]);
    const char* valueText = NULL;

    printf("usage:\t%s [arguments]\n", inOptions->mProgramName);
    printf("\n");
    printf("arguments:\n");

    for(loop = 0; loop < switchCount; loop++)
    {
        if(gSwitches[loop]->mHasValue)
        {
            valueText = " <value>";
        }
        else
        {
            valueText = "";
        }

        printf("\t%s%s\n", gSwitches[loop]->mLongName, valueText);
        printf("\t %s%s", gSwitches[loop]->mShortName, valueText);
        printf(DESC_NEWLINE "%s\n\n", gSwitches[loop]->mDescription);
    }

    printf("This tool reports heap fragmentation stats from a trace-malloc log.\n");
}


AnyArray* arrayCreate(unsigned inItemSize, unsigned inGrowBy)
/*
**  Create an array container object.
*/
{
    AnyArray* retval = NULL;

    if(0 != inGrowBy && 0 != inItemSize)
    {
        retval = (AnyArray*)calloc(1, sizeof(AnyArray));
        retval->mItemSize = inItemSize;
        retval->mGrowBy = inGrowBy;
    }

    return retval;
}


void arrayDestroy(AnyArray* inArray)
/*
**  Release the memory the array contains.
**  This will release the items as well.
*/
{
    if(NULL != inArray)
    {
        if(NULL != inArray->mItems)
        {
            free(inArray->mItems);
        }
        free(inArray);
    }
}


unsigned arrayAlloc(AnyArray* inArray, unsigned inItems)
/*
**  Resize the item array capcity to a specific number of items.
**  This could possibly truncate the array, so handle that as well.
**
**  returns unsigned        <= inArray->mCapacity on success.
*/
{
    unsigned retval = (unsigned)-1;

    if(NULL != inArray)
    {
        void* moved = NULL;

        moved = realloc(inArray->mItems, inItems * inArray->mItemSize);
        if(NULL != moved)
        {
            inArray->mItems = moved;
            inArray->mCapacity = inItems;
            if(inArray->mCount > inItems)
            {
                inArray->mCount = inItems;
            }

            retval = inItems;
        }
    }

    return retval;
}


void* arrayItem(AnyArray* inArray, unsigned inIndex)
/*
**  Return the array item at said index.
**  Zero based index.
**
**  returns void*       NULL on failure.
*/
{
    void* retval = NULL;

    if(NULL != inArray && inIndex < inArray->mCount)
    {
        retval = (void*)((char*)inArray->mItems + (inArray->mItemSize * inIndex));
    }

    return retval;
}


unsigned arrayIndex(AnyArray* inArray, void* inItem, unsigned inStartIndex)
/*
**  Go through the array from the index specified looking for an item
**      match based on byte for byte comparison.
**  We allow specifying the start index in order to handle arrays with
**      duplicate items.
**
**  returns unsigned        >= inArray->mCount on failure.
*/
{
    unsigned retval = (unsigned)-1;

    if(NULL != inArray && NULL != inItem && inStartIndex < inArray->mCount)
    {
        void* curItem = NULL;

        for(retval = inStartIndex; retval < inArray->mCount; retval++)
        {
            curItem = arrayItem(inArray, retval);
            if(0 == memcmp(inItem, curItem, inArray->mItemSize))
            {
                break;
            }
        }
    }


    return retval;
}


unsigned arrayIndexFn(AnyArray* inArray, arrayMatchFunc inFunc, void* inFuncContext, unsigned inStartIndex)
/*
**  Go through the array from the index specified looking for an item
**      match based upon the return value of inFunc (0, Zero, is a match).
**  We allow specifying the start index in order to facilitate looping over
**      the array which could have multiple matches.
**
**  returns unsigned        >= inArray->mCount on failure.
*/
{
    unsigned retval = (unsigned)-1;

    if(NULL != inArray && NULL != inFunc && inStartIndex < inArray->mCount)
    {
        void* curItem = NULL;

        for(retval = inStartIndex; retval < inArray->mCount; retval++)
        {
            curItem = arrayItem(inArray, retval);
            if(0 == inFunc(inFuncContext, inArray, curItem, retval))
            {
                break;
            }
        }
    }

    return retval;
}


unsigned arrayAddItem(AnyArray* inArray, void* inItem)
/*
**  Add a new item to the array.
**  This is done by copying the item.
**
**  returns unsigned        < inArray->mCount on success.
*/
{
    unsigned retval = (unsigned)-1;

    if(NULL != inArray && NULL != inItem)
    {
        int noCopy = 0;

        /*
        **  See if the array should grow.
        */
        if(inArray->mCount == inArray->mCapacity)
        {
            unsigned allocRes = 0;

            allocRes = arrayAlloc(inArray, inArray->mCapacity + inArray->mGrowBy);
            if(allocRes > inArray->mCapacity)
            {
                noCopy = __LINE__;
            }
        }

        if(0 == noCopy)
        {
            retval = inArray->mCount;

            inArray->mCount++;
            memcpy(arrayItem(inArray, retval), inItem, inArray->mItemSize);
        }
    }

    return retval;
}


HeapObject* initHeapObject(HeapObject* inObject)
/*
**  Function to init the heap object just right.
**  Sets the unique ID to something unique.
*/
{
    HeapObject* retval = inObject;

    if(NULL != inObject)
    {
        static unsigned uniqueGenerator = 0;

        memset(inObject, -1, sizeof(HeapObject));

        inObject->mUniqueID = uniqueGenerator;
        uniqueGenerator++;
    }

    return retval;
}


int simpleHeapEvent(TMState* inStats, HeapEventType inType, unsigned mTimestamp, unsigned inSerial, unsigned inHeapID, unsigned inSize)
/*
**  A new heap event will cause the creation of a new heap object.
**  The new heap object will displace, or replace, a heap object of a different type.
*/
{
    int retval = 0;
    HeapObject newObject;

    /*
    **  Set the most basic object details.
    */
    initHeapObject(&newObject);
    newObject.mHeapOffset = inHeapID;
    newObject.mSize = inSize;
    if(FREE == inType)
    {
        newObject.mType = FRAGMENT;
    }
    else if(ALLOC == inType)
    {
        newObject.mType = ALLOCATION;
    }

    /*
    **  Add it to the heap object array.
    */

    /*
    **  TODO GAB
    **
    **  First thing to do is to add the new object to the heap in order to
    **      obtain a valid index.
    **
    **  Next, find all matches to this range of heap memory that this event
    **      refers to, that are alive during this timestamp (no death yet).
    **  Fill in the death event of those objects.
    **  If the objects contain some portions outside of the range, then
    **      new objects for those ranges need to be created that carry on
    **      the same object type, have the index of the old object for birth,
    **      and the serial of the old object, new timestamp of course.
    **  The old object's death points to the new object, which tells why the
    **      fragmentation took place.
    **  The new object birth points to the old object only if a fragment.
    **  An allocation only has a birth object when it is a realloc (complex)
    **      heap event.
    **
    **  I believe this give us enough information to look up particular
    **      details of the heap at any given time.
    */

    return retval;
}


int complexHeapEvent(TMState* inStats, unsigned mTimestamp, unsigned inOldSerial, unsigned inOldHeapID, unsigned inOSize, unsigned inNewSerial, unsigned inNewHeapID, unsigned inNewSize)
/*
**  Generally, this event intends to chain one old heap object to a newer heap object.
**  Otherwise, the functionality should recognizable ala simpleHeapEvent.
*/
{
    int retval = 0;

    /*
    **  TODO GAB
    */

    return retval;
}


unsigned actualByteSize(Options* inOptions, unsigned retval)
/*
**  Apply alignment and overhead to size to figure out actual byte size.
**  This by default mimics spacetrace with default options (msvc crt heap).
*/
{
    if(0 != retval)
    {
        unsigned eval = 0;
        unsigned over = 0;

        eval = retval - 1;
        if(0 != inOptions->mAlignment)
        {
            over = eval % inOptions->mAlignment;
        }
        retval = eval + inOptions->mOverhead + inOptions->mAlignment - over;
    }

    return retval;
}


void tmEventHandler(tmreader* inReader, tmevent* inEvent)
/*
**  Callback from the tmreader_eventloop.
**  Build up our fragmentation information herein.
*/
{
    char type = inEvent->type;
    TMState* stats = (TMState*)inReader->data;

    /*
    **  Only intersted in handling events of a particular type.
    */
    switch(type)
    {
    default:
        return;

    case TM_EVENT_MALLOC:
    case TM_EVENT_CALLOC:
    case TM_EVENT_REALLOC:
    case TM_EVENT_FREE:
        break;
    }

    /*
    **  Should we even try to look?
    **  Set mLoopExitTMR to non-zero to abort the read loop faster.
    */
    if(0 == stats->mLoopExitTMR)
    {
        Options* options = (Options*)stats->mOptions;
        unsigned timestamp = ticks2msec(stats->mTMR, inEvent->u.alloc.interval);
        unsigned actualSize = actualByteSize(options, inEvent->u.alloc.size);
        unsigned heapID = inEvent->u.alloc.ptr;
        unsigned serial = inEvent->serial;
        
        /*
        **  Check the timestamp range of our overall state.
        */
        if(stats->uMinTicks > timestamp)
        {
            stats->uMinTicks = timestamp;
        }
        if(stats->uMaxTicks < timestamp)
        {
            stats->uMaxTicks = timestamp;
        }
        
        /*
        **  Realloc in general deserves some special attention if dealing
        **      with an old allocation (not new memory).
        */
        if(TM_EVENT_REALLOC == type && 0 != inEvent->u.alloc.oldserial)
        {
            unsigned oldActualSize = actualByteSize(options, inEvent->u.alloc.oldsize);
            unsigned oldHeapID = inEvent->u.alloc.oldptr;
            unsigned oldSerial = inEvent->u.alloc.oldserial;

            if(0 == actualSize)
            {
                /*
                **  Reallocs of size zero are to become free events.
                */
                stats->mLoopExitTMR = simpleHeapEvent(stats, FREE, timestamp, serial, oldHeapID, oldActualSize);
            }
            else if(heapID != oldHeapID || actualSize != oldActualSize)
            {
                /*
                **  Reallocs which moved generate two events.
                **  Reallocs which changed size generate two events.
                **
                **  One event to free the old memory area.
                **  Another event to allocate the new memory area.
                **  They are to be linked to one another, so the history
                **      and true origin can be tracked.
                */
                stats->mLoopExitTMR = complexHeapEvent(stats, timestamp, oldSerial, oldHeapID, oldActualSize, serial, heapID, actualSize);
            }
            else
            {
                /*
                **  The realloc is not considered an operation and is skipped.
                **  It is not an operation, because it did not move or change
                **      size; this can happen if a realloc falls within the
                **      alignment of an allocation.
                **  Say if you realloc a 1 byte allocation to 2 bytes, it will
                **      not really change heap impact unless you have 1 set as
                **      the alignment of your allocations.
                */
            }
        }
        else if(TM_EVENT_FREE == type)
        {
            /*
            **  Generate a free event to create a fragment.
            */
            stats->mLoopExitTMR = simpleHeapEvent(stats, FREE, timestamp, serial, heapID, actualSize);
        }
        else
        {
            /*
            **  Generate an allocation event to clear fragments.
            */
            stats->mLoopExitTMR = simpleHeapEvent(stats, ALLOC, timestamp, serial, heapID, actualSize);
        }
    }
}


int tmfrags(Options* inOptions)
/*
**  Load the input file and report stats.
*/
{
    int retval = 0;
    TMState stats;

    memset(&stats, 0, sizeof(stats));
    stats.mOptions = inOptions;
    stats.uMinTicks = 0xFFFFFFFFU;

    /*
    **  Need a tmreader.
    */
    stats.mTMR = tmreader_new(inOptions->mProgramName, &stats);
    if(NULL != stats.mTMR)
    {
        int tmResult = 0;

        tmResult = tmreader_eventloop(stats.mTMR, inOptions->mInputName, tmEventHandler);
        if(0 == tmResult)
        {
            retval = __LINE__;
            ERROR_REPORT(retval, inOptions->mInputName, "Problem reading trace-malloc data.");
        }
        if(0 != stats.mLoopExitTMR)
        {
            retval = stats.mLoopExitTMR;
            ERROR_REPORT(retval, inOptions->mInputName, "Aborted trace-malloc input loop.");
        }

        tmreader_destroy(stats.mTMR);
        stats.mTMR = NULL;
    }
    else
    {
        retval = __LINE__;
        ERROR_REPORT(retval, inOptions->mProgramName, "Unable to obtain tmreader.");
    }

    return retval;
}


int main(int inArgc, char** inArgv)
{
    int retval = 0;
    Options options;

    retval = initOptions(&options, inArgc, inArgv);
    if(options.mHelp)
    {
        showHelp(&options);
    }
    else if(0 == retval)
    {
        retval = tmfrags(&options);
    }

    cleanOptions(&options);
    return retval;
}