DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Mercurial (5b81998bb7ab)

VCS Links

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400
# HG changeset patch
# User Matt Woodrow <mwoodrow@mozilla.com>
# Date 1339988782 -43200
# Node ID 1e9dae659ee6c992f719fd4136efbcc5410ded37
# Parent 946750f6d95febd199fb7b748e9d2c48fd01c8a6
[mq]: skia-windows-gradients

diff --git a/gfx/skia/src/effects/SkGradientShader.cpp b/gfx/skia/src/effects/SkGradientShader.cpp
--- a/gfx/skia/src/effects/SkGradientShader.cpp
+++ b/gfx/skia/src/effects/SkGradientShader.cpp
@@ -847,16 +847,19 @@ bool Linear_Gradient::setContext(const S
         fFlags |= SkShader::kConstInY32_Flag;
         if ((fFlags & SkShader::kHasSpan16_Flag) && !paint.isDither()) {
             // only claim this if we do have a 16bit mode (i.e. none of our
             // colors have alpha), and if we are not dithering (which obviously
             // is not const in Y).
             fFlags |= SkShader::kConstInY16_Flag;
         }
     }
+    if (fStart == fEnd) {
+        fFlags &= ~kOpaqueAlpha_Flag;
+    }
     return true;
 }
 
 #define NO_CHECK_ITER               \
     do {                            \
     unsigned fi = fx >> Gradient_Shader::kCache32Shift; \
     SkASSERT(fi <= 0xFF);           \
     fx += dx;                       \
@@ -976,16 +979,21 @@ void Linear_Gradient::shadeSpan(int x, i
     TileProc            proc = fTileProc;
     const SkPMColor* SK_RESTRICT cache = this->getCache32();
 #ifdef USE_DITHER_32BIT_GRADIENT
     int                 toggle = ((x ^ y) & 1) * kDitherStride32;
 #else
     int toggle = 0;
 #endif
 
+    if (fStart == fEnd) {
+        sk_bzero(dstC, count * sizeof(*dstC));
+        return;
+    }
+
     if (fDstToIndexClass != kPerspective_MatrixClass) {
         dstProc(fDstToIndex, SkIntToScalar(x) + SK_ScalarHalf,
                              SkIntToScalar(y) + SK_ScalarHalf, &srcPt);
         SkFixed dx, fx = SkScalarToFixed(srcPt.fX);
 
         if (fDstToIndexClass == kFixedStepInX_MatrixClass) {
             SkFixed dxStorage[1];
             (void)fDstToIndex.fixedStepInX(SkIntToScalar(y), dxStorage, NULL);
@@ -1169,16 +1177,21 @@ void Linear_Gradient::shadeSpan16(int x,
     SkASSERT(count > 0);
 
     SkPoint             srcPt;
     SkMatrix::MapXYProc dstProc = fDstToIndexProc;
     TileProc            proc = fTileProc;
     const uint16_t* SK_RESTRICT cache = this->getCache16();
     int                 toggle = ((x ^ y) & 1) * kDitherStride16;
 
+    if (fStart == fEnd) {
+        sk_bzero(dstC, count * sizeof(*dstC));
+        return;
+    }
+
     if (fDstToIndexClass != kPerspective_MatrixClass) {
         dstProc(fDstToIndex, SkIntToScalar(x) + SK_ScalarHalf,
                              SkIntToScalar(y) + SK_ScalarHalf, &srcPt);
         SkFixed dx, fx = SkScalarToFixed(srcPt.fX);
 
         if (fDstToIndexClass == kFixedStepInX_MatrixClass) {
             SkFixed dxStorage[1];
             (void)fDstToIndex.fixedStepInX(SkIntToScalar(y), dxStorage, NULL);
@@ -1739,21 +1752,25 @@ void Radial_Gradient::shadeSpan(int x, i
    possible circles on which the point may fall.  Solving for t yields
    the gradient value to use.
 
    If a<0, the start circle is entirely contained in the
    end circle, and one of the roots will be <0 or >1 (off the line
    segment).  If a>0, the start circle falls at least partially
    outside the end circle (or vice versa), and the gradient
    defines a "tube" where a point may be on one circle (on the
-   inside of the tube) or the other (outside of the tube).  We choose
-   one arbitrarily.
+   inside of the tube) or the other (outside of the tube). We choose
+   the one with the highest t value, as long as the radius that it 
+   corresponds to is >=0. In the case where neither root has a positive
+   radius, we don't draw anything.
 
+   XXXmattwoodrow: I've removed this for now since it breaks
+   down when Dr == 0. Is there something else we can do instead?
    In order to keep the math to within the limits of fixed point,
-   we divide the entire quadratic by Dr^2, and replace
+   we divide the entire quadratic by Dr, and replace
    (x - Sx)/Dr with x' and (y - Sy)/Dr with y', giving
 
    [Dx^2 / Dr^2 + Dy^2 / Dr^2 - 1)] * t^2
    + 2 * [x' * Dx / Dr + y' * Dy / Dr - Sr / Dr] * t
    + [x'^2 + y'^2 - Sr^2/Dr^2] = 0
 
    (x' and y' are computed by appending the subtract and scale to the
    fDstToIndex matrix in the constructor).
@@ -1763,99 +1780,122 @@ void Radial_Gradient::shadeSpan(int x, i
    x' and y', if x and y are linear in the span, 'B' can be computed
    incrementally with a simple delta (db below).  If it is not (e.g.,
    a perspective projection), it must be computed in the loop.
 
 */
 
 namespace {
 
-inline SkFixed two_point_radial(SkScalar b, SkScalar fx, SkScalar fy,
-                                SkScalar sr2d2, SkScalar foura,
-                                SkScalar oneOverTwoA, bool posRoot) {
+inline bool two_point_radial(SkScalar b, SkScalar fx, SkScalar fy,
+                             SkScalar sr2d2, SkScalar foura,
+                             SkScalar oneOverTwoA, SkScalar diffRadius, 
+                             SkScalar startRadius, SkFixed& t) {
     SkScalar c = SkScalarSquare(fx) + SkScalarSquare(fy) - sr2d2;
     if (0 == foura) {
-        return SkScalarToFixed(SkScalarDiv(-c, b));
+        SkScalar result = SkScalarDiv(-c, b);
+        if (result * diffRadius + startRadius >= 0) {
+            t = SkScalarToFixed(result);
+            return true;
+        }
+        return false;
     }
 
     SkScalar discrim = SkScalarSquare(b) - SkScalarMul(foura, c);
     if (discrim < 0) {
-        discrim = -discrim;
+        return false;
     }
     SkScalar rootDiscrim = SkScalarSqrt(discrim);
-    SkScalar result;
-    if (posRoot) {
-        result = SkScalarMul(-b + rootDiscrim, oneOverTwoA);
-    } else {
-        result = SkScalarMul(-b - rootDiscrim, oneOverTwoA);
+
+    // Make sure the results corresponds to a positive radius.
+    SkScalar result = SkScalarMul(-b + rootDiscrim, oneOverTwoA);
+    if (result * diffRadius + startRadius >= 0) {
+        t = SkScalarToFixed(result);
+        return true;
     }
-    return SkScalarToFixed(result);
+    result = SkScalarMul(-b - rootDiscrim, oneOverTwoA);
+    if (result * diffRadius + startRadius >= 0) {
+        t = SkScalarToFixed(result);
+        return true;
+    }
+
+    return false;
 }
 
 typedef void (* TwoPointRadialShadeProc)(SkScalar fx, SkScalar dx,
         SkScalar fy, SkScalar dy,
         SkScalar b, SkScalar db,
-        SkScalar fSr2D2, SkScalar foura, SkScalar fOneOverTwoA, bool posRoot,
+        SkScalar fSr2D2, SkScalar foura, SkScalar fOneOverTwoA,
+        SkScalar fDiffRadius, SkScalar fRadius1,
         SkPMColor* SK_RESTRICT dstC, const SkPMColor* SK_RESTRICT cache,
         int count);
 
 void shadeSpan_twopoint_clamp(SkScalar fx, SkScalar dx,
         SkScalar fy, SkScalar dy,
         SkScalar b, SkScalar db,
-        SkScalar fSr2D2, SkScalar foura, SkScalar fOneOverTwoA, bool posRoot,
+        SkScalar fSr2D2, SkScalar foura, SkScalar fOneOverTwoA,
+        SkScalar fDiffRadius, SkScalar fRadius1,
         SkPMColor* SK_RESTRICT dstC, const SkPMColor* SK_RESTRICT cache,
         int count) {
     for (; count > 0; --count) {
-        SkFixed t = two_point_radial(b, fx, fy, fSr2D2, foura,
-                                     fOneOverTwoA, posRoot);
-
-        if (t < 0) {
+        SkFixed t;
+        if (!two_point_radial(b, fx, fy, fSr2D2, foura, fOneOverTwoA, fDiffRadius, fRadius1, t)) {
+          *(dstC++) = 0;
+        } else if (t < 0) {
             *dstC++ = cache[-1];
         } else if (t > 0xFFFF) {
             *dstC++ = cache[Gradient_Shader::kCache32Count * 2];
         } else {
             SkASSERT(t <= 0xFFFF);
             *dstC++ = cache[t >> Gradient_Shader::kCache32Shift];
         }
 
         fx += dx;
         fy += dy;
         b += db;
     }
 }
 void shadeSpan_twopoint_mirror(SkScalar fx, SkScalar dx,
         SkScalar fy, SkScalar dy,
         SkScalar b, SkScalar db,
-        SkScalar fSr2D2, SkScalar foura, SkScalar fOneOverTwoA, bool posRoot,
+        SkScalar fSr2D2, SkScalar foura, SkScalar fOneOverTwoA,
+        SkScalar fDiffRadius, SkScalar fRadius1,
         SkPMColor* SK_RESTRICT dstC, const SkPMColor* SK_RESTRICT cache,
         int count) {
     for (; count > 0; --count) {
-        SkFixed t = two_point_radial(b, fx, fy, fSr2D2, foura,
-                                     fOneOverTwoA, posRoot);
-        SkFixed index = mirror_tileproc(t);
-        SkASSERT(index <= 0xFFFF);
-        *dstC++ = cache[index >> Gradient_Shader::kCache32Shift];
+        SkFixed t;
+        if (!two_point_radial(b, fx, fy, fSr2D2, foura, fOneOverTwoA, fDiffRadius, fRadius1, t)) {
+          *(dstC++) = 0;
+        } else {
+          SkFixed index = mirror_tileproc(t);
+          SkASSERT(index <= 0xFFFF);
+          *dstC++ = cache[index >> (16 - Gradient_Shader::kCache32Shift)];
+        }
         fx += dx;
         fy += dy;
         b += db;
     }
 }
 
 void shadeSpan_twopoint_repeat(SkScalar fx, SkScalar dx,
         SkScalar fy, SkScalar dy,
         SkScalar b, SkScalar db,
-        SkScalar fSr2D2, SkScalar foura, SkScalar fOneOverTwoA, bool posRoot,
+        SkScalar fSr2D2, SkScalar foura, SkScalar fOneOverTwoA, 
+        SkScalar fDiffRadius, SkScalar fRadius1,
         SkPMColor* SK_RESTRICT dstC, const SkPMColor* SK_RESTRICT cache,
         int count) {
     for (; count > 0; --count) {
-        SkFixed t = two_point_radial(b, fx, fy, fSr2D2, foura,
-                                     fOneOverTwoA, posRoot);
-        SkFixed index = repeat_tileproc(t);
-        SkASSERT(index <= 0xFFFF);
-        *dstC++ = cache[index >> Gradient_Shader::kCache32Shift];
+        SkFixed t;
+        if (!two_point_radial(b, fx, fy, fSr2D2, foura, fOneOverTwoA, fDiffRadius, fRadius1, t)) {
+          *(dstC++) = 0;
+        } else {
+          SkFixed index = repeat_tileproc(t);
+          SkASSERT(index <= 0xFFFF);
+          *dstC++ = cache[index >> (16 - Gradient_Shader::kCache32Shift)];
+        }
         fx += dx;
         fy += dy;
         b += db;
     }
 }
 
 
 
@@ -1935,17 +1975,16 @@ public:
           sk_bzero(dstC, count * sizeof(*dstC));
           return;
         }
         SkMatrix::MapXYProc dstProc = fDstToIndexProc;
         TileProc            proc = fTileProc;
         const SkPMColor* SK_RESTRICT cache = this->getCache32();
 
         SkScalar foura = fA * 4;
-        bool posRoot = fDiffRadius < 0;
         if (fDstToIndexClass != kPerspective_MatrixClass) {
             SkPoint srcPt;
             dstProc(fDstToIndex, SkIntToScalar(x) + SK_ScalarHalf,
                                  SkIntToScalar(y) + SK_ScalarHalf, &srcPt);
             SkScalar dx, fx = srcPt.fX;
             SkScalar dy, fy = srcPt.fY;
 
             if (fDstToIndexClass == kFixedStepInX_MatrixClass) {
@@ -1954,60 +1993,69 @@ public:
                 dx = SkFixedToScalar(fixedX);
                 dy = SkFixedToScalar(fixedY);
             } else {
                 SkASSERT(fDstToIndexClass == kLinear_MatrixClass);
                 dx = fDstToIndex.getScaleX();
                 dy = fDstToIndex.getSkewY();
             }
             SkScalar b = (SkScalarMul(fDiff.fX, fx) +
-                         SkScalarMul(fDiff.fY, fy) - fStartRadius) * 2;
+                          SkScalarMul(fDiff.fY, fy) - fStartRadius * fDiffRadius) * 2;
             SkScalar db = (SkScalarMul(fDiff.fX, dx) +
                           SkScalarMul(fDiff.fY, dy)) * 2;
 
             TwoPointRadialShadeProc shadeProc = shadeSpan_twopoint_repeat;
             if (proc == clamp_tileproc) {
                 shadeProc = shadeSpan_twopoint_clamp;
             } else if (proc == mirror_tileproc) {
                 shadeProc = shadeSpan_twopoint_mirror;
             } else {
                 SkASSERT(proc == repeat_tileproc);
             }
             (*shadeProc)(fx, dx, fy, dy, b, db,
-                         fSr2D2, foura, fOneOverTwoA, posRoot,
+                         fSr2D2, foura, fOneOverTwoA, fDiffRadius, fRadius1,
                          dstC, cache, count);
         } else {    // perspective case
             SkScalar dstX = SkIntToScalar(x);
             SkScalar dstY = SkIntToScalar(y);
             for (; count > 0; --count) {
                 SkPoint             srcPt;
                 dstProc(fDstToIndex, dstX, dstY, &srcPt);
                 SkScalar fx = srcPt.fX;
                 SkScalar fy = srcPt.fY;
                 SkScalar b = (SkScalarMul(fDiff.fX, fx) +
                              SkScalarMul(fDiff.fY, fy) - fStartRadius) * 2;
-                SkFixed t = two_point_radial(b, fx, fy, fSr2D2, foura,
-                                             fOneOverTwoA, posRoot);
-                SkFixed index = proc(t);
-                SkASSERT(index <= 0xFFFF);
-                *dstC++ = cache[index >> Gradient_Shader::kCache32Shift];
+                SkFixed t;
+                if (!two_point_radial(b, fx, fy, fSr2D2, foura, fOneOverTwoA, fDiffRadius, fRadius1, t)) {
+                  *(dstC++) = 0;
+                } else {
+                  SkFixed index = proc(t);
+                  SkASSERT(index <= 0xFFFF);
+                  *dstC++ = cache[index >> (16 - kCache32Bits)];
+                }
                 dstX += SK_Scalar1;
             }
         }
     }
 
     virtual bool setContext(const SkBitmap& device,
                             const SkPaint& paint,
                             const SkMatrix& matrix) SK_OVERRIDE {
         if (!this->INHERITED::setContext(device, paint, matrix)) {
             return false;
         }
 
         // we don't have a span16 proc
         fFlags &= ~kHasSpan16_Flag;
+
+        // If we might end up wanting to draw nothing as part of the gradient
+        // then we should mark ourselves as not being opaque.
+        if (fA >= 0 || (fDiffRadius == 0 && fCenter1 == fCenter2)) {
+            fFlags &= ~kOpaqueAlpha_Flag;
+        }
         return true;
     }
 
     SK_DECLARE_PUBLIC_FLATTENABLE_DESERIALIZATION_PROCS(Two_Point_Radial_Gradient)
 
 protected:
     Two_Point_Radial_Gradient(SkFlattenableReadBuffer& buffer)
             : INHERITED(buffer),
@@ -2033,26 +2081,22 @@ private:
     const SkScalar fRadius1;
     const SkScalar fRadius2;
     SkPoint fDiff;
     SkScalar fStartRadius, fDiffRadius, fSr2D2, fA, fOneOverTwoA;
 
     void init() {
         fDiff = fCenter1 - fCenter2;
         fDiffRadius = fRadius2 - fRadius1;
-        SkScalar inv = SkScalarInvert(fDiffRadius);
-        fDiff.fX = SkScalarMul(fDiff.fX, inv);
-        fDiff.fY = SkScalarMul(fDiff.fY, inv);
-        fStartRadius = SkScalarMul(fRadius1, inv);
+        fStartRadius = fRadius1;
         fSr2D2 = SkScalarSquare(fStartRadius);
-        fA = SkScalarSquare(fDiff.fX) + SkScalarSquare(fDiff.fY) - SK_Scalar1;
+        fA = SkScalarSquare(fDiff.fX) + SkScalarSquare(fDiff.fY) - SkScalarSquare(fDiffRadius);
         fOneOverTwoA = fA ? SkScalarInvert(fA * 2) : 0;
 
         fPtsToUnit.setTranslate(-fCenter1.fX, -fCenter1.fY);
-        fPtsToUnit.postScale(inv, inv);
     }
 };
 
 ///////////////////////////////////////////////////////////////////////////////
 
 class Sweep_Gradient : public Gradient_Shader {
 public:
     Sweep_Gradient(SkScalar cx, SkScalar cy, const SkColor colors[],
@@ -2488,16 +2532,20 @@ SkShader* SkGradientShader::CreateTwoPoi
                                                  int colorCount,
                                                  SkShader::TileMode mode,
                                                  SkUnitMapper* mapper) {
     if (startRadius < 0 || endRadius < 0 || NULL == colors || colorCount < 1) {
         return NULL;
     }
     EXPAND_1_COLOR(colorCount);
 
+    if (start == end && startRadius == 0) {
+        return CreateRadial(start, endRadius, colors, pos, colorCount, mode, mapper);
+    }
+
     return SkNEW_ARGS(Two_Point_Radial_Gradient,
                       (start, startRadius, end, endRadius, colors, pos,
                        colorCount, mode, mapper));
 }
 
 SkShader* SkGradientShader::CreateSweep(SkScalar cx, SkScalar cy,
                                         const SkColor colors[],
                                         const SkScalar pos[],