DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Header

Mercurial (5b81998bb7ab)

VCS Links

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500
/* This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */

#include "mozilla/gfx/Blur.h"

#include <algorithm>
#include <math.h>
#include <string.h>

#include "mozilla/CheckedInt.h"
#include "mozilla/Constants.h"
#include "mozilla/Util.h"

using namespace std;

namespace mozilla {
namespace gfx {

/**
 * Box blur involves looking at one pixel, and setting its value to the average
 * of its neighbouring pixels.
 * @param aInput The input buffer.
 * @param aOutput The output buffer.
 * @param aLeftLobe The number of pixels to blend on the left.
 * @param aRightLobe The number of pixels to blend on the right.
 * @param aWidth The number of columns in the buffers.
 * @param aRows The number of rows in the buffers.
 * @param aSkipRect An area to skip blurring in.
 * XXX shouldn't we pass stride in separately here?
 */
static void
BoxBlurHorizontal(unsigned char* aInput,
                  unsigned char* aOutput,
                  int32_t aLeftLobe,
                  int32_t aRightLobe,
                  int32_t aWidth,
                  int32_t aRows,
                  const IntRect& aSkipRect)
{
    MOZ_ASSERT(aWidth > 0);

    int32_t boxSize = aLeftLobe + aRightLobe + 1;
    bool skipRectCoversWholeRow = 0 >= aSkipRect.x &&
                                  aWidth <= aSkipRect.XMost();
    if (boxSize == 1) {
        memcpy(aOutput, aInput, aWidth*aRows);
        return;
    }
    uint32_t reciprocal = (uint64_t(1) << 32) / boxSize;

    for (int32_t y = 0; y < aRows; y++) {
        // Check whether the skip rect intersects this row. If the skip
        // rect covers the whole surface in this row, we can avoid
        // this row entirely (and any others along the skip rect).
        bool inSkipRectY = y >= aSkipRect.y &&
                           y < aSkipRect.YMost();
        if (inSkipRectY && skipRectCoversWholeRow) {
            y = aSkipRect.YMost() - 1;
            continue;
        }

        uint32_t alphaSum = 0;
        for (int32_t i = 0; i < boxSize; i++) {
            int32_t pos = i - aLeftLobe;
            // See assertion above; if aWidth is zero, then we would have no
            // valid position to clamp to.
            pos = max(pos, 0);
            pos = min(pos, aWidth - 1);
            alphaSum += aInput[aWidth * y + pos];
        }
        for (int32_t x = 0; x < aWidth; x++) {
            // Check whether we are within the skip rect. If so, go
            // to the next point outside the skip rect.
            if (inSkipRectY && x >= aSkipRect.x &&
                x < aSkipRect.XMost()) {
                x = aSkipRect.XMost();
                if (x >= aWidth)
                    break;

                // Recalculate the neighbouring alpha values for
                // our new point on the surface.
                alphaSum = 0;
                for (int32_t i = 0; i < boxSize; i++) {
                    int32_t pos = x + i - aLeftLobe;
                    // See assertion above; if aWidth is zero, then we would have no
                    // valid position to clamp to.
                    pos = max(pos, 0);
                    pos = min(pos, aWidth - 1);
                    alphaSum += aInput[aWidth * y + pos];
                }
            }
            int32_t tmp = x - aLeftLobe;
            int32_t last = max(tmp, 0);
            int32_t next = min(tmp + boxSize, aWidth - 1);

            aOutput[aWidth * y + x] = (uint64_t(alphaSum) * reciprocal) >> 32;

            alphaSum += aInput[aWidth * y + next] -
                        aInput[aWidth * y + last];
        }
    }
}

/**
 * Identical to BoxBlurHorizontal, except it blurs top and bottom instead of
 * left and right.
 * XXX shouldn't we pass stride in separately here?
 */
static void
BoxBlurVertical(unsigned char* aInput,
                unsigned char* aOutput,
                int32_t aTopLobe,
                int32_t aBottomLobe,
                int32_t aWidth,
                int32_t aRows,
                const IntRect& aSkipRect)
{
    MOZ_ASSERT(aRows > 0);

    int32_t boxSize = aTopLobe + aBottomLobe + 1;
    bool skipRectCoversWholeColumn = 0 >= aSkipRect.y &&
                                     aRows <= aSkipRect.YMost();
    if (boxSize == 1) {
        memcpy(aOutput, aInput, aWidth*aRows);
        return;
    }
    uint32_t reciprocal = (uint64_t(1) << 32) / boxSize;

    for (int32_t x = 0; x < aWidth; x++) {
        bool inSkipRectX = x >= aSkipRect.x &&
                           x < aSkipRect.XMost();
        if (inSkipRectX && skipRectCoversWholeColumn) {
            x = aSkipRect.XMost() - 1;
            continue;
        }

        uint32_t alphaSum = 0;
        for (int32_t i = 0; i < boxSize; i++) {
            int32_t pos = i - aTopLobe;
            // See assertion above; if aRows is zero, then we would have no
            // valid position to clamp to.
            pos = max(pos, 0);
            pos = min(pos, aRows - 1);
            alphaSum += aInput[aWidth * pos + x];
        }
        for (int32_t y = 0; y < aRows; y++) {
            if (inSkipRectX && y >= aSkipRect.y &&
                y < aSkipRect.YMost()) {
                y = aSkipRect.YMost();
                if (y >= aRows)
                    break;

                alphaSum = 0;
                for (int32_t i = 0; i < boxSize; i++) {
                    int32_t pos = y + i - aTopLobe;
                    // See assertion above; if aRows is zero, then we would have no
                    // valid position to clamp to.
                    pos = max(pos, 0);
                    pos = min(pos, aRows - 1);
                    alphaSum += aInput[aWidth * pos + x];
                }
            }
            int32_t tmp = y - aTopLobe;
            int32_t last = max(tmp, 0);
            int32_t next = min(tmp + boxSize, aRows - 1);

            aOutput[aWidth * y + x] = (uint64_t(alphaSum) * reciprocal) >> 32;

            alphaSum += aInput[aWidth * next + x] -
                        aInput[aWidth * last + x];
        }
    }
}

static void ComputeLobes(int32_t aRadius, int32_t aLobes[3][2])
{
    int32_t major, minor, final;

    /* See http://www.w3.org/TR/SVG/filters.html#feGaussianBlur for
     * some notes about approximating the Gaussian blur with box-blurs.
     * The comments below are in the terminology of that page.
     */
    int32_t z = aRadius / 3;
    switch (aRadius % 3) {
    case 0:
        // aRadius = z*3; choose d = 2*z + 1
        major = minor = final = z;
        break;
    case 1:
        // aRadius = z*3 + 1
        // This is a tricky case since there is no value of d which will
        // yield a radius of exactly aRadius. If d is odd, i.e. d=2*k + 1
        // for some integer k, then the radius will be 3*k. If d is even,
        // i.e. d=2*k, then the radius will be 3*k - 1.
        // So we have to choose values that don't match the standard
        // algorithm.
        major = z + 1;
        minor = final = z;
        break;
    case 2:
        // aRadius = z*3 + 2; choose d = 2*z + 2
        major = final = z + 1;
        minor = z;
        break;
    default:
        // Mathematical impossibility!
        MOZ_ASSERT(false);
        major = minor = final = 0;
    }
    MOZ_ASSERT(major + minor + final == aRadius);

    aLobes[0][0] = major;
    aLobes[0][1] = minor;
    aLobes[1][0] = minor;
    aLobes[1][1] = major;
    aLobes[2][0] = final;
    aLobes[2][1] = final;
}

static void
SpreadHorizontal(unsigned char* aInput,
                 unsigned char* aOutput,
                 int32_t aRadius,
                 int32_t aWidth,
                 int32_t aRows,
                 int32_t aStride,
                 const IntRect& aSkipRect)
{
    if (aRadius == 0) {
        memcpy(aOutput, aInput, aStride * aRows);
        return;
    }

    bool skipRectCoversWholeRow = 0 >= aSkipRect.x &&
                                    aWidth <= aSkipRect.XMost();
    for (int32_t y = 0; y < aRows; y++) {
        // Check whether the skip rect intersects this row. If the skip
        // rect covers the whole surface in this row, we can avoid
        // this row entirely (and any others along the skip rect).
        bool inSkipRectY = y >= aSkipRect.y &&
                             y < aSkipRect.YMost();
        if (inSkipRectY && skipRectCoversWholeRow) {
            y = aSkipRect.YMost() - 1;
            continue;
        }

        for (int32_t x = 0; x < aWidth; x++) {
            // Check whether we are within the skip rect. If so, go
            // to the next point outside the skip rect.
            if (inSkipRectY && x >= aSkipRect.x &&
                x < aSkipRect.XMost()) {
                x = aSkipRect.XMost();
                if (x >= aWidth)
                    break;
            }

            int32_t sMin = max(x - aRadius, 0);
            int32_t sMax = min(x + aRadius, aWidth - 1);
            int32_t v = 0;
            for (int32_t s = sMin; s <= sMax; ++s) {
                v = max<int32_t>(v, aInput[aStride * y + s]);
            }
            aOutput[aStride * y + x] = v;
        }
    }
}

static void
SpreadVertical(unsigned char* aInput,
               unsigned char* aOutput,
               int32_t aRadius,
               int32_t aWidth,
               int32_t aRows,
               int32_t aStride,
               const IntRect& aSkipRect)
{
    if (aRadius == 0) {
        memcpy(aOutput, aInput, aStride * aRows);
        return;
    }

    bool skipRectCoversWholeColumn = 0 >= aSkipRect.y &&
                                     aRows <= aSkipRect.YMost();
    for (int32_t x = 0; x < aWidth; x++) {
        bool inSkipRectX = x >= aSkipRect.x &&
                           x < aSkipRect.XMost();
        if (inSkipRectX && skipRectCoversWholeColumn) {
            x = aSkipRect.XMost() - 1;
            continue;
        }

        for (int32_t y = 0; y < aRows; y++) {
            // Check whether we are within the skip rect. If so, go
            // to the next point outside the skip rect.
            if (inSkipRectX && y >= aSkipRect.y &&
                y < aSkipRect.YMost()) {
                y = aSkipRect.YMost();
                if (y >= aRows)
                    break;
            }

            int32_t sMin = max(y - aRadius, 0);
            int32_t sMax = min(y + aRadius, aRows - 1);
            int32_t v = 0;
            for (int32_t s = sMin; s <= sMax; ++s) {
                v = max<int32_t>(v, aInput[aStride * s + x]);
            }
            aOutput[aStride * y + x] = v;
        }
    }
}

static CheckedInt<int32_t>
RoundUpToMultipleOf4(int32_t aVal)
{
  CheckedInt<int32_t> val(aVal);

  val += 3;
  val /= 4;
  val *= 4;

  return val;
}

AlphaBoxBlur::AlphaBoxBlur(const Rect& aRect,
                           const IntSize& aSpreadRadius,
                           const IntSize& aBlurRadius,
                           const Rect* aDirtyRect,
                           const Rect* aSkipRect)
 : mSpreadRadius(aSpreadRadius),
   mBlurRadius(aBlurRadius),
   mData(nullptr)
{
  Rect rect(aRect);
  rect.Inflate(Size(aBlurRadius + aSpreadRadius));
  rect.RoundOut();

  if (aDirtyRect) {
    // If we get passed a dirty rect from layout, we can minimize the
    // shadow size and make painting faster.
    mHasDirtyRect = true;
    mDirtyRect = *aDirtyRect;
    Rect requiredBlurArea = mDirtyRect.Intersect(rect);
    requiredBlurArea.Inflate(Size(aBlurRadius + aSpreadRadius));
    rect = requiredBlurArea.Intersect(rect);
  } else {
    mHasDirtyRect = false;
  }

  mRect = IntRect(rect.x, rect.y, rect.width, rect.height);
  if (mRect.IsEmpty()) {
    return;
  }

  if (aSkipRect) {
    // If we get passed a skip rect, we can lower the amount of
    // blurring/spreading we need to do. We convert it to IntRect to avoid
    // expensive int<->float conversions if we were to use Rect instead.
    Rect skipRect = *aSkipRect;
    skipRect.RoundIn();
    skipRect.Deflate(Size(aBlurRadius + aSpreadRadius));
    mSkipRect = IntRect(skipRect.x, skipRect.y, skipRect.width, skipRect.height);

    mSkipRect = mSkipRect.Intersect(mRect);
    if (mSkipRect.IsEqualInterior(mRect))
      return;

    mSkipRect -= mRect.TopLeft();
  } else {
    mSkipRect = IntRect(0, 0, 0, 0);
  }

  CheckedInt<int32_t> stride = RoundUpToMultipleOf4(mRect.width);
  if (stride.isValid()) {
    mStride = stride.value();

    CheckedInt<int32_t> size = CheckedInt<int32_t>(mStride) * mRect.height *
                               sizeof(unsigned char);
    if (size.isValid()) {
      mData = static_cast<unsigned char*>(malloc(size.value()));
      memset(mData, 0, size.value());
    }
  }
}

AlphaBoxBlur::~AlphaBoxBlur()
{
  free(mData);
}

unsigned char*
AlphaBoxBlur::GetData()
{
  return mData;
}

IntSize
AlphaBoxBlur::GetSize()
{
  IntSize size(mRect.width, mRect.height);
  return size;
}

int32_t
AlphaBoxBlur::GetStride()
{
  return mStride;
}

IntRect
AlphaBoxBlur::GetRect()
{
  return mRect;
}

Rect*
AlphaBoxBlur::GetDirtyRect()
{
  if (mHasDirtyRect) {
    return &mDirtyRect;
  }

  return nullptr;
}

void
AlphaBoxBlur::Blur()
{
  if (!mData) {
    return;
  }

  // no need to do all this if not blurring or spreading
  if (mBlurRadius != IntSize(0,0) || mSpreadRadius != IntSize(0,0)) {
    int32_t stride = GetStride();

    // No need to use CheckedInt here - we have validated it in the constructor.
    size_t szB = stride * GetSize().height * sizeof(unsigned char);
    unsigned char* tmpData = static_cast<unsigned char*>(malloc(szB));
    if (!tmpData)
      return; // OOM

    memset(tmpData, 0, szB);

    if (mSpreadRadius.width > 0 || mSpreadRadius.height > 0) {
      SpreadHorizontal(mData, tmpData, mSpreadRadius.width, GetSize().width, GetSize().height, stride, mSkipRect);
      SpreadVertical(tmpData, mData, mSpreadRadius.height, GetSize().width, GetSize().height, stride, mSkipRect);
    }

    if (mBlurRadius.width > 0) {
      int32_t lobes[3][2];
      ComputeLobes(mBlurRadius.width, lobes);
      BoxBlurHorizontal(mData, tmpData, lobes[0][0], lobes[0][1], stride, GetSize().height, mSkipRect);
      BoxBlurHorizontal(tmpData, mData, lobes[1][0], lobes[1][1], stride, GetSize().height, mSkipRect);
      BoxBlurHorizontal(mData, tmpData, lobes[2][0], lobes[2][1], stride, GetSize().height, mSkipRect);
    } else {
      memcpy(tmpData, mData, stride * GetSize().height);
    }

    if (mBlurRadius.height > 0) {
      int32_t lobes[3][2];
      ComputeLobes(mBlurRadius.height, lobes);
      BoxBlurVertical(tmpData, mData, lobes[0][0], lobes[0][1], stride, GetSize().height, mSkipRect);
      BoxBlurVertical(mData, tmpData, lobes[1][0], lobes[1][1], stride, GetSize().height, mSkipRect);
      BoxBlurVertical(tmpData, mData, lobes[2][0], lobes[2][1], stride, GetSize().height, mSkipRect);
    } else {
      memcpy(mData, tmpData, stride * GetSize().height);
    }

    free(tmpData);
  }

}

/**
 * Compute the box blur size (which we're calling the blur radius) from
 * the standard deviation.
 *
 * Much of this, the 3 * sqrt(2 * pi) / 4, is the known value for
 * approximating a Gaussian using box blurs.  This yields quite a good
 * approximation for a Gaussian.  Then we multiply this by 1.5 since our
 * code wants the radius of the entire triple-box-blur kernel instead of
 * the diameter of an individual box blur.  For more details, see:
 *   http://www.w3.org/TR/SVG11/filters.html#feGaussianBlurElement
 *   https://bugzilla.mozilla.org/show_bug.cgi?id=590039#c19
 */
static const Float GAUSSIAN_SCALE_FACTOR = (3 * sqrt(2 * M_PI) / 4) * 1.5;

IntSize
AlphaBoxBlur::CalculateBlurRadius(const Point& aStd)
{
    IntSize size(static_cast<int32_t>(floor(aStd.x * GAUSSIAN_SCALE_FACTOR + 0.5)),
                 static_cast<int32_t>(floor(aStd.y * GAUSSIAN_SCALE_FACTOR + 0.5)));

    return size;
}

}
}