DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Mercurial (a81015259a98)

VCS Links

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595
/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim:set ts=2 sw=2 sts=2 et cindent: */
/* ***** BEGIN LICENSE BLOCK *****
 * Version: MPL 1.1/GPL 2.0/LGPL 2.1
 *
 * The contents of this file are subject to the Mozilla Public License Version
 * 1.1 (the "License"); you may not use this file except in compliance with
 * the License. You may obtain a copy of the License at
 * http://www.mozilla.org/MPL/
 *
 * Software distributed under the License is distributed on an "AS IS" basis,
 * WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License
 * for the specific language governing rights and limitations under the
 * License.
 *
 * The Original Code is Mozilla code.
 *
 * The Initial Developer of the Original Code is the Mozilla Corporation.
 * Portions created by the Initial Developer are Copyright (C) 2009
 * the Initial Developer. All Rights Reserved.
 *
 * Contributor(s):
 *  Benoit Jacob <bjacob@mozilla.com>
 *  Jeff Muizelaar <jmuizelaar@mozilla.com>
 *
 * Alternatively, the contents of this file may be used under the terms of
 * either the GNU General Public License Version 2 or later (the "GPL"), or
 * the GNU Lesser General Public License Version 2.1 or later (the "LGPL"),
 * in which case the provisions of the GPL or the LGPL are applicable instead
 * of those above. If you wish to allow use of your version of this file only
 * under the terms of either the GPL or the LGPL, and not to allow others to
 * use your version of this file under the terms of the MPL, indicate your
 * decision by deleting the provisions above and replace them with the notice
 * and other provisions required by the GPL or the LGPL. If you do not delete
 * the provisions above, a recipient may use your version of this file under
 * the terms of any one of the MPL, the GPL or the LGPL.
 *
 * ***** END LICENSE BLOCK ***** */

#ifndef mozilla_CheckedInt_h
#define mozilla_CheckedInt_h

#include "prtypes.h"

#include <climits>

namespace mozilla {

namespace CheckedInt_internal {

/* we don't want to use std::numeric_limits here because PRInt... types may not support it,
 * depending on the platform, e.g. on certain platforms they use nonstandard built-in types
 */

/*** Step 1: manually record information for all the types that we want to support
 ***/

struct unsupported_type {};

template<typename T> struct integer_type_manually_recorded_info
{
    enum { is_supported = 0 };
    typedef unsupported_type twice_bigger_type;
    typedef unsupported_type unsigned_type;
};


#define CHECKEDINT_REGISTER_SUPPORTED_TYPE(T,_twice_bigger_type,_unsigned_type)  \
template<> struct integer_type_manually_recorded_info<T>       \
{                                                              \
    enum { is_supported = 1 };                                 \
    typedef _twice_bigger_type twice_bigger_type;              \
    typedef _unsigned_type unsigned_type;                      \
    static void TYPE_NOT_SUPPORTED_BY_CheckedInt() {}          \
};

//                                 Type      Twice Bigger Type     Unsigned Type
CHECKEDINT_REGISTER_SUPPORTED_TYPE(PRInt8,   PRInt16,              PRUint8)
CHECKEDINT_REGISTER_SUPPORTED_TYPE(PRUint8,  PRUint16,             PRUint8)
CHECKEDINT_REGISTER_SUPPORTED_TYPE(PRInt16,  PRInt32,              PRUint16)
CHECKEDINT_REGISTER_SUPPORTED_TYPE(PRUint16, PRUint32,             PRUint16)
CHECKEDINT_REGISTER_SUPPORTED_TYPE(PRInt32,  PRInt64,              PRUint32)
CHECKEDINT_REGISTER_SUPPORTED_TYPE(PRUint32, PRUint64,             PRUint32)
CHECKEDINT_REGISTER_SUPPORTED_TYPE(PRInt64,  unsupported_type,     PRUint64)
CHECKEDINT_REGISTER_SUPPORTED_TYPE(PRUint64, unsupported_type,     PRUint64)


/*** Step 2: record some info about a given integer type,
 ***         including whether it is supported, whether a twice bigger integer type
 ***         is supported, what that twice bigger type is, and some stuff as found
 ***         in std::numeric_limits (which we don't use because PRInt.. types may
 ***         not support it, if they are defined directly from compiler built-in types).
 ***         We use function names min_value() and max_value() instead of min() and max()
 ***         because of stupid min/max macros in Windows headers.
 ***/

template<typename T> struct is_unsupported_type { enum { answer = 0 }; };
template<> struct is_unsupported_type<unsupported_type> { enum { answer = 1 }; };

template<typename T> struct integer_traits
{
    typedef typename integer_type_manually_recorded_info<T>::twice_bigger_type twice_bigger_type;
    typedef typename integer_type_manually_recorded_info<T>::unsigned_type unsigned_type;

    enum {
        is_supported = integer_type_manually_recorded_info<T>::is_supported,
        twice_bigger_type_is_supported
            = is_unsupported_type<
                  typename integer_type_manually_recorded_info<T>::twice_bigger_type
              >::answer ? 0 : 1,
        size = sizeof(T),
        position_of_sign_bit = CHAR_BIT * size - 1,
        is_signed = (T(-1) > T(0)) ? 0 : 1
    };

    static T min_value()
    {
        // bitwise ops may return a larger type, that's why we cast explicitly to T
        // in C++, left bit shifts on signed values is undefined by the standard unless the shifted value is representable.
        // notice that signed-to-unsigned conversions are always well-defined in the standard,
        // as the value congruent to 2^n as expected. By contrast, unsigned-to-signed is only well-defined if the value is
        // representable.
        return is_signed ? T(unsigned_type(1) << position_of_sign_bit) : T(0);
    }

    static T max_value()
    {
        return ~min_value();
    }
};

/*** Step 3: Implement the actual validity checks --- ideas taken from IntegerLib, code different.
 ***/

// bitwise ops may return a larger type, so it's good to use these inline helpers guaranteeing that
// the result is really of type T

template<typename T> inline T has_sign_bit(T x)
{
    // in C++, right bit shifts on negative values is undefined by the standard.
    // notice that signed-to-unsigned conversions are always well-defined in the standard,
    // as the value congruent modulo 2^n as expected. By contrast, unsigned-to-signed is only well-defined if the value is
    // representable. Here the unsigned-to-signed conversion is OK because the value (the result of the shift) is 0 or 1.
    typedef typename integer_traits<T>::unsigned_type unsigned_T;
    return T(unsigned_T(x) >> integer_traits<T>::position_of_sign_bit);
}

template<typename T> inline T binary_complement(T x)
{
    return ~x;
}

template<typename T, typename U,
         bool is_T_signed = integer_traits<T>::is_signed,
         bool is_U_signed = integer_traits<U>::is_signed>
struct is_in_range_impl {};

template<typename T, typename U>
struct is_in_range_impl<T, U, true, true>
{
    static T run(U x)
    {
        return (x <= integer_traits<T>::max_value()) &&
               (x >= integer_traits<T>::min_value());
    }
};

template<typename T, typename U>
struct is_in_range_impl<T, U, false, false>
{
    static T run(U x)
    {
        return x <= integer_traits<T>::max_value();
    }
};

template<typename T, typename U>
struct is_in_range_impl<T, U, true, false>
{
    static T run(U x)
    {
        if (sizeof(T) > sizeof(U))
            return 1;
        else
            return x <= U(integer_traits<T>::max_value());
    }
};

template<typename T, typename U>
struct is_in_range_impl<T, U, false, true>
{
    static T run(U x)
    {
        if (sizeof(T) >= sizeof(U))
            return x >= 0;
        else
            return (x >= 0) && (x <= U(integer_traits<T>::max_value()));
    }
};

template<typename T, typename U> inline T is_in_range(U x)
{
    return is_in_range_impl<T, U>::run(x);
}

template<typename T> inline T is_add_valid(T x, T y, T result)
{
    return integer_traits<T>::is_signed ?
                        // addition is valid if the sign of x+y is equal to either that of x or that of y.
                        // Beware! These bitwise operations can return a larger integer type, if T was a
                        // small type like int8, so we explicitly cast to T.
                        has_sign_bit(binary_complement(T((result^x) & (result^y))))
                    :
                        binary_complement(x) >= y;
}

template<typename T> inline T is_sub_valid(T x, T y, T result)
{
    return integer_traits<T>::is_signed ?
                        // substraction is valid if either x and y have same sign, or x-y and x have same sign
                        has_sign_bit(binary_complement(T((result^x) & (x^y))))
                    :
                        x >= y;
}

template<typename T,
         bool is_signed =  integer_traits<T>::is_signed,
         bool twice_bigger_type_is_supported = integer_traits<T>::twice_bigger_type_is_supported>
struct is_mul_valid_impl {};

template<typename T, bool is_signed>
struct is_mul_valid_impl<T, is_signed, true>
{
    static T run(T x, T y)
    {
        typedef typename integer_traits<T>::twice_bigger_type twice_bigger_type;
        twice_bigger_type product = twice_bigger_type(x) * twice_bigger_type(y);
        return is_in_range<T>(product);
    }
};

template<typename T>
struct is_mul_valid_impl<T, true, false>
{
    static T run(T x, T y)
    {
        const T max_value = integer_traits<T>::max_value();
        const T min_value = integer_traits<T>::min_value();

        if (x == 0 || y == 0) return true;

        if (x > 0) {
            if (y > 0)
                return x <= max_value / y;
            else
                return y >= min_value / x;
        } else {
            if (y > 0)
                return x >= min_value / y;
            else
                return y >= max_value / x;
        }
    }
};

template<typename T>
struct is_mul_valid_impl<T, false, false>
{
    static T run(T x, T y)
    {
        const T max_value = integer_traits<T>::max_value();
        if (x == 0 || y == 0) return true;
        return x <= max_value / y;
    }
};

template<typename T> inline T is_mul_valid(T x, T y, T /*result not used*/)
{
    return is_mul_valid_impl<T>::run(x, y);
}

template<typename T> inline T is_div_valid(T x, T y)
{
    return integer_traits<T>::is_signed ?
                        // keep in mind that min/-1 is invalid because abs(min)>max
                        (y != 0) && (x != integer_traits<T>::min_value() || y != T(-1))
                    :
                        y != 0;
}

// this is just to shut up msvc warnings about negating unsigned ints.
template<typename T, bool is_signed = integer_traits<T>::is_signed>
struct opposite_if_signed_impl
{
    static T run(T x) { return -x; }
};
template<typename T>
struct opposite_if_signed_impl<T, false>
{
    static T run(T x) { return x; }
};
template<typename T>
inline T opposite_if_signed(T x) { return opposite_if_signed_impl<T>::run(x); }



} // end namespace CheckedInt_internal


/*** Step 4: Now define the CheckedInt class.
 ***/

/** \class CheckedInt
  * \brief Integer wrapper class checking for integer overflow and other errors
  * \param T the integer type to wrap. Can be any of PRInt8, PRUint8, PRInt16, PRUint16,
  *          PRInt32, PRUint32, PRInt64, PRUint64.
  *
  * This class implements guarded integer arithmetic. Do a computation, check that
  * valid() returns true, you then have a guarantee that no problem, such as integer overflow,
  * happened during this computation.
  *
  * The arithmetic operators in this class are guaranteed not to crash your app
  * in case of a division by zero.
  *
  * For example, suppose that you want to implement a function that computes (x+y)/z,
  * that doesn't crash if z==0, and that reports on error (divide by zero or integer overflow).
  * You could code it as follows:
    \code
    bool compute_x_plus_y_over_z(PRInt32 x, PRInt32 y, PRInt32 z, PRInt32 *result)
    {
        CheckedInt<PRInt32> checked_result = (CheckedInt<PRInt32>(x) + y) / z;
        *result = checked_result.value();
        return checked_result.valid();
    }
    \endcode
  *
  * Implicit conversion from plain integers to checked integers is allowed. The plain integer
  * is checked to be in range before being casted to the destination type. This means that the following
  * lines all compile, and the resulting CheckedInts are correctly detected as valid or invalid:
  * \code
    CheckedInt<PRUint8> x(1);   // 1 is of type int, is found to be in range for PRUint8, x is valid
    CheckedInt<PRUint8> x(-1);  // -1 is of type int, is found not to be in range for PRUint8, x is invalid
    CheckedInt<PRInt8> x(-1);   // -1 is of type int, is found to be in range for PRInt8, x is valid
    CheckedInt<PRInt8> x(PRInt16(1000)); // 1000 is of type PRInt16, is found not to be in range for PRInt8, x is invalid
    CheckedInt<PRInt32> x(PRUint32(3123456789)); // 3123456789 is of type PRUint32, is found not to be in range
                                             // for PRInt32, x is invalid
  * \endcode
  * Implicit conversion from
  * checked integers to plain integers is not allowed. As shown in the
  * above example, to get the value of a checked integer as a normal integer, call value().
  *
  * Arithmetic operations between checked and plain integers is allowed; the result type
  * is the type of the checked integer.
  *
  * Checked integers of different types cannot be used in the same arithmetic expression.
  *
  * There are convenience typedefs for all PR integer types, of the following form (these are just 2 examples):
    \code
    typedef CheckedInt<PRInt32> CheckedInt32;
    typedef CheckedInt<PRUint16> CheckedUint16;
    \endcode
  */
template<typename T>
class CheckedInt
{
protected:
    T mValue;
    T mIsValid; // stored as a T to limit the number of integer conversions when
                // evaluating nested arithmetic expressions.

    template<typename U>
    CheckedInt(U value, T isValid) : mValue(value), mIsValid(isValid)
    {
        CheckedInt_internal::integer_type_manually_recorded_info<T>
            ::TYPE_NOT_SUPPORTED_BY_CheckedInt();
    }

public:
    /** Constructs a checked integer with given \a value. The checked integer is initialized as valid or invalid
      * depending on whether the \a value is in range.
      *
      * This constructor is not explicit. Instead, the type of its argument is a separate template parameter,
      * ensuring that no conversion is performed before this constructor is actually called.
      * As explained in the above documentation for class CheckedInt, this constructor checks that its argument is
      * valid.
      */
    template<typename U>
    CheckedInt(U value)
        : mValue(T(value)),
          mIsValid(CheckedInt_internal::is_in_range<T>(value))
    {
        CheckedInt_internal::integer_type_manually_recorded_info<T>
            ::TYPE_NOT_SUPPORTED_BY_CheckedInt();
    }

    /** Constructs a valid checked integer with initial value 0 */
    CheckedInt() : mValue(0), mIsValid(1)
    {
        CheckedInt_internal::integer_type_manually_recorded_info<T>
            ::TYPE_NOT_SUPPORTED_BY_CheckedInt();
    }

    /** \returns the actual value */
    T value() const { return mValue; }

    /** \returns true if the checked integer is valid, i.e. is not the result
      * of an invalid operation or of an operation involving an invalid checked integer
      */
    bool valid() const
    {
        return bool(mIsValid);
    }

    /** \returns the sum. Checks for overflow. */
    template<typename U> friend CheckedInt<U> operator +(const CheckedInt<U>& lhs, const CheckedInt<U>& rhs);
    /** Adds. Checks for overflow. \returns self reference */
    template<typename U> CheckedInt& operator +=(U rhs);
    /** \returns the difference. Checks for overflow. */
    template<typename U> friend CheckedInt<U> operator -(const CheckedInt<U>& lhs, const CheckedInt<U> &rhs);
    /** Substracts. Checks for overflow. \returns self reference */
    template<typename U> CheckedInt& operator -=(U rhs);
    /** \returns the product. Checks for overflow. */
    template<typename U> friend CheckedInt<U> operator *(const CheckedInt<U>& lhs, const CheckedInt<U> &rhs);
    /** Multiplies. Checks for overflow. \returns self reference */
    template<typename U> CheckedInt& operator *=(U rhs);
    /** \returns the quotient. Checks for overflow and for divide-by-zero. */
    template<typename U> friend CheckedInt<U> operator /(const CheckedInt<U>& lhs, const CheckedInt<U> &rhs);
    /** Divides. Checks for overflow and for divide-by-zero. \returns self reference */
    template<typename U> CheckedInt& operator /=(U rhs);

    /** \returns the opposite value. Checks for overflow. */
    CheckedInt operator -() const
    {
        // circumvent msvc warning about - applied to unsigned int.
        // if we're unsigned, the only valid case anyway is 0 in which case - is a no-op.
        T result = CheckedInt_internal::opposite_if_signed(value());
        /* give the compiler a good chance to perform RVO */
        return CheckedInt(result,
                          mIsValid & CheckedInt_internal::is_sub_valid(T(0), value(), result));
    }

    /** \returns true if the left and right hand sides are valid and have the same value. */
    bool operator ==(const CheckedInt& other) const
    {
        return bool(mIsValid & other.mIsValid & (value() == other.mValue));
    }

    /** prefix ++ */
    CheckedInt& operator++()
    {
        *this = *this + 1;
        return *this;
    }

    /** postfix ++ */
    CheckedInt operator++(int)
    {
        CheckedInt tmp = *this;
        *this = *this + 1;
        return tmp;
    }

    /** prefix -- */
    CheckedInt& operator--()
    {
        *this = *this - 1;
        return *this;
    }

    /** postfix -- */
    CheckedInt operator--(int)
    {
        CheckedInt tmp = *this;
        *this = *this - 1;
        return tmp;
    }

private:
    /** operator!= is disabled. Indeed, (a!=b) should be the same as !(a==b) but that
      * would mean that if a or b is invalid, (a!=b) is always true, which is very tricky.
      */
    template<typename U>
    bool operator !=(U other) const { return !(*this == other); }
};

#define CHECKEDINT_BASIC_BINARY_OPERATOR(NAME, OP)               \
template<typename T>                                          \
inline CheckedInt<T> operator OP(const CheckedInt<T> &lhs, const CheckedInt<T> &rhs) \
{                                                                     \
    T x = lhs.mValue;                                                \
    T y = rhs.mValue;                                                \
    T result = x OP y;                                                \
    T is_op_valid                                                     \
        = CheckedInt_internal::is_##NAME##_valid(x, y, result);       \
    /* give the compiler a good chance to perform RVO */              \
    return CheckedInt<T>(result,                                      \
                         lhs.mIsValid & rhs.mIsValid & is_op_valid);  \
}

CHECKEDINT_BASIC_BINARY_OPERATOR(add, +)
CHECKEDINT_BASIC_BINARY_OPERATOR(sub, -)
CHECKEDINT_BASIC_BINARY_OPERATOR(mul, *)

// division can't be implemented by CHECKEDINT_BASIC_BINARY_OPERATOR
// because if rhs == 0, we are not allowed to even try to compute the quotient.
template<typename T>
inline CheckedInt<T> operator /(const CheckedInt<T> &lhs, const CheckedInt<T> &rhs)
{
    T x = lhs.mValue;
    T y = rhs.mValue;
    T is_op_valid = CheckedInt_internal::is_div_valid(x, y);
    T result = is_op_valid ? (x / y) : 0;
    /* give the compiler a good chance to perform RVO */
    return CheckedInt<T>(result,
                         lhs.mIsValid & rhs.mIsValid & is_op_valid);
}

// implement cast_to_CheckedInt<T>(x), making sure that
//  - it allows x to be either a CheckedInt<T> or any integer type that can be casted to T
//  - if x is already a CheckedInt<T>, we just return a reference to it, instead of copying it (optimization)

template<typename T, typename U>
struct cast_to_CheckedInt_impl
{
    typedef CheckedInt<T> return_type;
    static CheckedInt<T> run(U u) { return u; }
};

template<typename T>
struct cast_to_CheckedInt_impl<T, CheckedInt<T> >
{
    typedef const CheckedInt<T>& return_type;
    static const CheckedInt<T>& run(const CheckedInt<T>& u) { return u; }
};

template<typename T, typename U>
inline typename cast_to_CheckedInt_impl<T, U>::return_type
cast_to_CheckedInt(U u)
{
    return cast_to_CheckedInt_impl<T, U>::run(u);
}

#define CHECKEDINT_CONVENIENCE_BINARY_OPERATORS(OP, COMPOUND_OP) \
template<typename T>                                          \
template<typename U>                                          \
CheckedInt<T>& CheckedInt<T>::operator COMPOUND_OP(U rhs)    \
{                                                             \
    *this = *this OP cast_to_CheckedInt<T>(rhs);                 \
    return *this;                                             \
}                                                             \
template<typename T, typename U>                              \
inline CheckedInt<T> operator OP(const CheckedInt<T> &lhs, U rhs) \
{                                                             \
    return lhs OP cast_to_CheckedInt<T>(rhs);                    \
}                                                             \
template<typename T, typename U>                              \
inline CheckedInt<T> operator OP(U lhs, const CheckedInt<T> &rhs) \
{                                                             \
    return cast_to_CheckedInt<T>(lhs) OP rhs;                    \
}

CHECKEDINT_CONVENIENCE_BINARY_OPERATORS(+, +=)
CHECKEDINT_CONVENIENCE_BINARY_OPERATORS(*, *=)
CHECKEDINT_CONVENIENCE_BINARY_OPERATORS(-, -=)
CHECKEDINT_CONVENIENCE_BINARY_OPERATORS(/, /=)

template<typename T, typename U>
inline bool operator ==(const CheckedInt<T> &lhs, U rhs)
{
    return lhs == cast_to_CheckedInt<T>(rhs);
}

template<typename T, typename U>
inline bool operator ==(U  lhs, const CheckedInt<T> &rhs)
{
    return cast_to_CheckedInt<T>(lhs) == rhs;
}

// convenience typedefs.
// the use of a macro here helps make sure that we don't let a typo slip into some of these.
#define CHECKEDINT_MAKE_TYPEDEF(Type) \
typedef CheckedInt<PR##Type> Checked##Type;

CHECKEDINT_MAKE_TYPEDEF(Int8)
CHECKEDINT_MAKE_TYPEDEF(Uint8)
CHECKEDINT_MAKE_TYPEDEF(Int16)
CHECKEDINT_MAKE_TYPEDEF(Uint16)
CHECKEDINT_MAKE_TYPEDEF(Int32)
CHECKEDINT_MAKE_TYPEDEF(Uint32)
CHECKEDINT_MAKE_TYPEDEF(Int64)
CHECKEDINT_MAKE_TYPEDEF(Uint64)

} // end namespace mozilla

#endif /* mozilla_CheckedInt_h */