DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Header

Mercurial (a81015259a98)

VCS Links

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104
/* -*- Mode: C++; tab-width: 20; indent-tabs-mode: nil; c-basic-offset: 4 -*-
 * ***** BEGIN LICENSE BLOCK *****
 * Version: MPL 1.1/GPL 2.0/LGPL 2.1
 *
 * The contents of this file are subject to the Mozilla Public License Version
 * 1.1 (the "License"); you may not use this file except in compliance with
 * the License. You may obtain a copy of the License at
 * http://www.mozilla.org/MPL/
 *
 * Software distributed under the License is distributed on an "AS IS" basis,
 * WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License
 * for the specific language governing rights and limitations under the
 * License.
 *
 * The Original Code is Oracle Corporation code.
 *
 * The Initial Developer of the Original Code is Oracle Corporation.
 * Portions created by the Initial Developer are Copyright (C) 2005
 * the Initial Developer. All Rights Reserved.
 *
 * Contributor(s):
 *   Stuart Parmenter <pavlov@pavlov.net>
 *   Vladimir Vukicevic <vladimir@pobox.com>
 *
 * Alternatively, the contents of this file may be used under the terms of
 * either the GNU General Public License Version 2 or later (the "GPL"), or
 * the GNU Lesser General Public License Version 2.1 or later (the "LGPL"),
 * in which case the provisions of the GPL or the LGPL are applicable instead
 * of those above. If you wish to allow use of your version of this file only
 * under the terms of either the GPL or the LGPL, and not to allow others to
 * use your version of this file under the terms of the MPL, indicate your
 * decision by deleting the provisions above and replace them with the notice
 * and other provisions required by the GPL or the LGPL. If you do not delete
 * the provisions above, a recipient may use your version of this file under
 * the terms of any one of the MPL, the GPL or the LGPL.
 *
 * ***** END LICENSE BLOCK ***** */

#ifdef _MSC_VER
#define _USE_MATH_DEFINES
#endif
#include <math.h>

#ifndef M_PI
#define M_PI 3.14159265358979323846
#endif

#include "cairo.h"

#include "gfxContext.h"

#include "gfxColor.h"
#include "gfxMatrix.h"
#include "gfxASurface.h"
#include "gfxPattern.h"
#include "gfxPlatform.h"
#include "gfxTeeSurface.h"

gfxContext::gfxContext(gfxASurface *surface) :
    mSurface(surface)
{
    MOZ_COUNT_CTOR(gfxContext);

    mCairo = cairo_create(surface->CairoSurface());
    mFlags = surface->GetDefaultContextFlags();
    if (mSurface->GetRotateForLandscape()) {
        // Rotate page 90 degrees to draw landscape page on portrait paper
        gfxIntSize size = mSurface->GetSize();
        Translate(gfxPoint(0, size.width));
        gfxMatrix matrix(0, -1,
                         1,  0,
                         0,  0);
        Multiply(matrix);
    }
}
gfxContext::~gfxContext()
{
    cairo_destroy(mCairo);

    MOZ_COUNT_DTOR(gfxContext);
}

gfxASurface *
gfxContext::OriginalSurface()
{
    return mSurface;
}

already_AddRefed<gfxASurface>
gfxContext::CurrentSurface(gfxFloat *dx, gfxFloat *dy)
{
    cairo_surface_t *s = cairo_get_group_target(mCairo);
    if (s == mSurface->CairoSurface()) {
        if (dx && dy)
            cairo_surface_get_device_offset(s, dx, dy);
        gfxASurface *ret = mSurface;
        NS_ADDREF(ret);
        return ret;
    }

    if (dx && dy)
        cairo_surface_get_device_offset(s, dx, dy);
    return gfxASurface::Wrap(s);
}

void
gfxContext::Save()
{
    cairo_save(mCairo);
}

void
gfxContext::Restore()
{
    cairo_restore(mCairo);
}

// drawing
void
gfxContext::NewPath()
{
    cairo_new_path(mCairo);
}

void
gfxContext::ClosePath()
{
    cairo_close_path(mCairo);
}

already_AddRefed<gfxPath> gfxContext::CopyPath() const
{
    nsRefPtr<gfxPath> path = new gfxPath(cairo_copy_path(mCairo));
    return path.forget();
}

void gfxContext::AppendPath(gfxPath* path)
{
    if (path->mPath->status == CAIRO_STATUS_SUCCESS && path->mPath->num_data != 0)
        cairo_append_path(mCairo, path->mPath);
}

gfxPoint
gfxContext::CurrentPoint() const
{
    double x, y;
    cairo_get_current_point(mCairo, &x, &y);
    return gfxPoint(x, y);
}

void
gfxContext::Stroke()
{
    cairo_stroke_preserve(mCairo);
}

void
gfxContext::Fill()
{
    cairo_fill_preserve(mCairo);
}

void
gfxContext::FillWithOpacity(gfxFloat aOpacity)
{
  // This method exists in the hope that one day cairo gets a direct
  // API for this, and then we would change this method to use that
  // API instead.
  if (aOpacity != 1.0) {
    gfxContextAutoSaveRestore saveRestore(this);
    Clip();
    Paint(aOpacity);
  } else {
    Fill();
  }
}

void
gfxContext::MoveTo(const gfxPoint& pt)
{
    cairo_move_to(mCairo, pt.x, pt.y);
}

void
gfxContext::NewSubPath()
{
    cairo_new_sub_path(mCairo);
}

void
gfxContext::LineTo(const gfxPoint& pt)
{
    cairo_line_to(mCairo, pt.x, pt.y);
}

void
gfxContext::CurveTo(const gfxPoint& pt1, const gfxPoint& pt2, const gfxPoint& pt3)
{
    cairo_curve_to(mCairo, pt1.x, pt1.y, pt2.x, pt2.y, pt3.x, pt3.y);
}

void
gfxContext::QuadraticCurveTo(const gfxPoint& pt1, const gfxPoint& pt2)
{
    double cx, cy;
    cairo_get_current_point(mCairo, &cx, &cy);
    cairo_curve_to(mCairo,
                   (cx + pt1.x * 2.0) / 3.0,
                   (cy + pt1.y * 2.0) / 3.0,
                   (pt1.x * 2.0 + pt2.x) / 3.0,
                   (pt1.y * 2.0 + pt2.y) / 3.0,
                   pt2.x,
                   pt2.y);
}

void
gfxContext::Arc(const gfxPoint& center, gfxFloat radius,
                gfxFloat angle1, gfxFloat angle2)
{
    cairo_arc(mCairo, center.x, center.y, radius, angle1, angle2);
}

void
gfxContext::NegativeArc(const gfxPoint& center, gfxFloat radius,
                        gfxFloat angle1, gfxFloat angle2)
{
    cairo_arc_negative(mCairo, center.x, center.y, radius, angle1, angle2);
}

void
gfxContext::Line(const gfxPoint& start, const gfxPoint& end)
{
    MoveTo(start);
    LineTo(end);
}

// XXX snapToPixels is only valid when snapping for filled
// rectangles and for even-width stroked rectangles.
// For odd-width stroked rectangles, we need to offset x/y by
// 0.5...
void
gfxContext::Rectangle(const gfxRect& rect, bool snapToPixels)
{
    if (snapToPixels) {
        gfxRect snappedRect(rect);

        if (UserToDevicePixelSnapped(snappedRect, true))
        {
            cairo_matrix_t mat;
            cairo_get_matrix(mCairo, &mat);
            cairo_identity_matrix(mCairo);
            Rectangle(snappedRect);
            cairo_set_matrix(mCairo, &mat);

            return;
        }
    }

    cairo_rectangle(mCairo, rect.X(), rect.Y(), rect.Width(), rect.Height());
}

void
gfxContext::Ellipse(const gfxPoint& center, const gfxSize& dimensions)
{
    gfxSize halfDim = dimensions / 2.0;
    gfxRect r(center - gfxPoint(halfDim.width, halfDim.height), dimensions);
    gfxCornerSizes c(halfDim, halfDim, halfDim, halfDim);

    RoundedRectangle (r, c);
}

void
gfxContext::Polygon(const gfxPoint *points, PRUint32 numPoints)
{
    if (numPoints == 0)
        return;

    cairo_move_to(mCairo, points[0].x, points[0].y);
    for (PRUint32 i = 1; i < numPoints; ++i) {
        cairo_line_to(mCairo, points[i].x, points[i].y);
    }
}

void
gfxContext::DrawSurface(gfxASurface *surface, const gfxSize& size)
{
    cairo_save(mCairo);
    cairo_set_source_surface(mCairo, surface->CairoSurface(), 0, 0);
    cairo_new_path(mCairo);

    // pixel-snap this
    Rectangle(gfxRect(gfxPoint(0.0, 0.0), size), true);

    cairo_fill(mCairo);
    cairo_restore(mCairo);
}

// transform stuff
void
gfxContext::Translate(const gfxPoint& pt)
{
    cairo_translate(mCairo, pt.x, pt.y);
}

void
gfxContext::Scale(gfxFloat x, gfxFloat y)
{
    cairo_scale(mCairo, x, y);
}

void
gfxContext::Rotate(gfxFloat angle)
{
    cairo_rotate(mCairo, angle);
}

void
gfxContext::Multiply(const gfxMatrix& matrix)
{
    const cairo_matrix_t& mat = reinterpret_cast<const cairo_matrix_t&>(matrix);
    cairo_transform(mCairo, &mat);
}

void
gfxContext::SetMatrix(const gfxMatrix& matrix)
{
    const cairo_matrix_t& mat = reinterpret_cast<const cairo_matrix_t&>(matrix);
    cairo_set_matrix(mCairo, &mat);
}

void
gfxContext::IdentityMatrix()
{
    cairo_identity_matrix(mCairo);
}

gfxMatrix
gfxContext::CurrentMatrix() const
{
    cairo_matrix_t mat;
    cairo_get_matrix(mCairo, &mat);
    return gfxMatrix(*reinterpret_cast<gfxMatrix*>(&mat));
}

void
gfxContext::NudgeCurrentMatrixToIntegers()
{
    cairo_matrix_t mat;
    cairo_get_matrix(mCairo, &mat);
    gfxMatrix(*reinterpret_cast<gfxMatrix*>(&mat)).NudgeToIntegers();
    cairo_set_matrix(mCairo, &mat);
}

gfxPoint
gfxContext::DeviceToUser(const gfxPoint& point) const
{
    gfxPoint ret = point;
    cairo_device_to_user(mCairo, &ret.x, &ret.y);
    return ret;
}

gfxSize
gfxContext::DeviceToUser(const gfxSize& size) const
{
    gfxSize ret = size;
    cairo_device_to_user_distance(mCairo, &ret.width, &ret.height);
    return ret;
}

gfxRect
gfxContext::DeviceToUser(const gfxRect& rect) const
{
    gfxRect ret = rect;
    cairo_device_to_user(mCairo, &ret.x, &ret.y);
    cairo_device_to_user_distance(mCairo, &ret.width, &ret.height);
    return ret;
}

gfxPoint
gfxContext::UserToDevice(const gfxPoint& point) const
{
    gfxPoint ret = point;
    cairo_user_to_device(mCairo, &ret.x, &ret.y);
    return ret;
}

gfxSize
gfxContext::UserToDevice(const gfxSize& size) const
{
    gfxSize ret = size;
    cairo_user_to_device_distance(mCairo, &ret.width, &ret.height);
    return ret;
}

gfxRect
gfxContext::UserToDevice(const gfxRect& rect) const
{
    double xmin = rect.X(), ymin = rect.Y(), xmax = rect.XMost(), ymax = rect.YMost();

    double x[3], y[3];
    x[0] = xmin;  y[0] = ymax;
    x[1] = xmax;  y[1] = ymax;
    x[2] = xmax;  y[2] = ymin;

    cairo_user_to_device(mCairo, &xmin, &ymin);
    xmax = xmin;
    ymax = ymin;
    for (int i = 0; i < 3; i++) {
        cairo_user_to_device(mCairo, &x[i], &y[i]);
        xmin = NS_MIN(xmin, x[i]);
        xmax = NS_MAX(xmax, x[i]);
        ymin = NS_MIN(ymin, y[i]);
        ymax = NS_MAX(ymax, y[i]);
    }

    return gfxRect(xmin, ymin, xmax - xmin, ymax - ymin);
}

bool
gfxContext::UserToDevicePixelSnapped(gfxRect& rect, bool ignoreScale) const
{
    if (GetFlags() & FLAG_DISABLE_SNAPPING)
        return false;

    // if we're not at 1.0 scale, don't snap, unless we're
    // ignoring the scale.  If we're not -just- a scale,
    // never snap.
    const gfxFloat epsilon = 0.0000001;
#define WITHIN_E(a,b) (fabs((a)-(b)) < epsilon)
    cairo_matrix_t mat;
    cairo_get_matrix(mCairo, &mat);
    if (!ignoreScale &&
        (!WITHIN_E(mat.xx,1.0) || !WITHIN_E(mat.yy,1.0) ||
         !WITHIN_E(mat.xy,0.0) || !WITHIN_E(mat.yx,0.0)))
        return false;
#undef WITHIN_E

    gfxPoint p1 = UserToDevice(rect.TopLeft());
    gfxPoint p2 = UserToDevice(rect.TopRight());
    gfxPoint p3 = UserToDevice(rect.BottomRight());

    // Check that the rectangle is axis-aligned. For an axis-aligned rectangle,
    // two opposite corners define the entire rectangle. So check if
    // the axis-aligned rectangle with opposite corners p1 and p3
    // define an axis-aligned rectangle whose other corners are p2 and p4.
    // We actually only need to check one of p2 and p4, since an affine
    // transform maps parallelograms to parallelograms.
    if (p2 == gfxPoint(p1.x, p3.y) || p2 == gfxPoint(p3.x, p1.y)) {
        p1.Round();
        p3.Round();

        rect.MoveTo(gfxPoint(NS_MIN(p1.x, p3.x), NS_MIN(p1.y, p3.y)));
        rect.SizeTo(gfxSize(NS_MAX(p1.x, p3.x) - rect.X(),
                            NS_MAX(p1.y, p3.y) - rect.Y()));
        return true;
    }

    return false;
}

bool
gfxContext::UserToDevicePixelSnapped(gfxPoint& pt, bool ignoreScale) const
{
    if (GetFlags() & FLAG_DISABLE_SNAPPING)
        return false;

    // if we're not at 1.0 scale, don't snap, unless we're
    // ignoring the scale.  If we're not -just- a scale,
    // never snap.
    cairo_matrix_t mat;
    cairo_get_matrix(mCairo, &mat);
    if ((!ignoreScale && (mat.xx != 1.0 || mat.yy != 1.0)) ||
        (mat.xy != 0.0 || mat.yx != 0.0))
        return false;

    pt = UserToDevice(pt);
    pt.Round();
    return true;
}

void
gfxContext::PixelSnappedRectangleAndSetPattern(const gfxRect& rect,
                                               gfxPattern *pattern)
{
    gfxRect r(rect);

    // Bob attempts to pixel-snap the rectangle, and returns true if
    // the snapping succeeds.  If it does, we need to set up an
    // identity matrix, because the rectangle given back is in device
    // coordinates.
    //
    // We then have to call a translate to dr.pos afterwards, to make
    // sure the image lines up in the right place with our pixel
    // snapped rectangle.
    //
    // If snapping wasn't successful, we just translate to where the
    // pattern would normally start (in app coordinates) and do the
    // same thing.

    gfxMatrix mat = CurrentMatrix();
    if (UserToDevicePixelSnapped(r)) {
        IdentityMatrix();
    }

    Translate(r.TopLeft());
    r.MoveTo(gfxPoint(0, 0));
    Rectangle(r);
    SetPattern(pattern);

    SetMatrix(mat);
}

void
gfxContext::SetAntialiasMode(AntialiasMode mode)
{
    if (mode == MODE_ALIASED) {
        cairo_set_antialias(mCairo, CAIRO_ANTIALIAS_NONE);
    } else if (mode == MODE_COVERAGE) {
        cairo_set_antialias(mCairo, CAIRO_ANTIALIAS_DEFAULT);
    }
}

gfxContext::AntialiasMode
gfxContext::CurrentAntialiasMode() const
{
    cairo_antialias_t aa = cairo_get_antialias(mCairo);
    if (aa == CAIRO_ANTIALIAS_NONE)
        return MODE_ALIASED;
    return MODE_COVERAGE;
}

void
gfxContext::SetDash(gfxLineType ltype)
{
    static double dash[] = {5.0, 5.0};
    static double dot[] = {1.0, 1.0};

    switch (ltype) {
        case gfxLineDashed:
            SetDash(dash, 2, 0.0);
            break;
        case gfxLineDotted:
            SetDash(dot, 2, 0.0);
            break;
        case gfxLineSolid:
        default:
            SetDash(nsnull, 0, 0.0);
            break;
    }
}

void
gfxContext::SetDash(gfxFloat *dashes, int ndash, gfxFloat offset)
{
    cairo_set_dash(mCairo, dashes, ndash, offset);
}

bool
gfxContext::CurrentDash(FallibleTArray<gfxFloat>& dashes, gfxFloat* offset) const
{
    int count = cairo_get_dash_count(mCairo);
    if (count <= 0 || !dashes.SetLength(count)) {
        return false;
    }
    cairo_get_dash(mCairo, dashes.Elements(), offset);
    return true;
}

gfxFloat
gfxContext::CurrentDashOffset() const
{
    if (cairo_get_dash_count(mCairo) <= 0) {
        return 0.0;
    }
    gfxFloat offset;
    cairo_get_dash(mCairo, NULL, &offset);
    return offset;
}

void
gfxContext::SetLineWidth(gfxFloat width)
{
    cairo_set_line_width(mCairo, width);
}

gfxFloat
gfxContext::CurrentLineWidth() const
{
    return cairo_get_line_width(mCairo);
}

void
gfxContext::SetOperator(GraphicsOperator op)
{
    if (mFlags & FLAG_SIMPLIFY_OPERATORS) {
        if (op != OPERATOR_SOURCE &&
            op != OPERATOR_CLEAR &&
            op != OPERATOR_OVER)
            op = OPERATOR_OVER;
    }

    cairo_set_operator(mCairo, (cairo_operator_t)op);
}

gfxContext::GraphicsOperator
gfxContext::CurrentOperator() const
{
    return (GraphicsOperator)cairo_get_operator(mCairo);
}

void
gfxContext::SetLineCap(GraphicsLineCap cap)
{
    cairo_set_line_cap(mCairo, (cairo_line_cap_t)cap);
}

gfxContext::GraphicsLineCap
gfxContext::CurrentLineCap() const
{
    return (GraphicsLineCap)cairo_get_line_cap(mCairo);
}

void
gfxContext::SetLineJoin(GraphicsLineJoin join)
{
    cairo_set_line_join(mCairo, (cairo_line_join_t)join);
}

gfxContext::GraphicsLineJoin
gfxContext::CurrentLineJoin() const
{
    return (GraphicsLineJoin)cairo_get_line_join(mCairo);
}

void
gfxContext::SetMiterLimit(gfxFloat limit)
{
    cairo_set_miter_limit(mCairo, limit);
}

gfxFloat
gfxContext::CurrentMiterLimit() const
{
    return cairo_get_miter_limit(mCairo);
}

void
gfxContext::SetFillRule(FillRule rule)
{
    cairo_set_fill_rule(mCairo, (cairo_fill_rule_t)rule);
}

gfxContext::FillRule
gfxContext::CurrentFillRule() const
{
    return (FillRule)cairo_get_fill_rule(mCairo);
}

// clipping
void
gfxContext::Clip(const gfxRect& rect)
{
    cairo_new_path(mCairo);
    cairo_rectangle(mCairo, rect.X(), rect.Y(), rect.Width(), rect.Height());
    cairo_clip(mCairo);
}

void
gfxContext::Clip()
{
    cairo_clip_preserve(mCairo);
}

void
gfxContext::ResetClip()
{
    cairo_reset_clip(mCairo);
}

void
gfxContext::UpdateSurfaceClip()
{
    NewPath();
    // we paint an empty rectangle to ensure the clip is propagated to
    // the destination surface
    SetDeviceColor(gfxRGBA(0,0,0,0));
    Rectangle(gfxRect(0,1,1,0));
    Fill();
}

gfxRect
gfxContext::GetClipExtents()
{
    double xmin, ymin, xmax, ymax;
    cairo_clip_extents(mCairo, &xmin, &ymin, &xmax, &ymax);
    return gfxRect(xmin, ymin, xmax - xmin, ymax - ymin);
}

bool
gfxContext::ClipContainsRect(const gfxRect& aRect)
{
    cairo_rectangle_list_t *clip =
        cairo_copy_clip_rectangle_list(mCairo);

    bool result = false;

    if (clip->status == CAIRO_STATUS_SUCCESS) {
        for (int i = 0; i < clip->num_rectangles; i++) {
            gfxRect rect(clip->rectangles[i].x, clip->rectangles[i].y,
                         clip->rectangles[i].width, clip->rectangles[i].height);
            if (rect.Contains(aRect)) {
                result = true;
                break;
            }
        }
    }

   cairo_rectangle_list_destroy(clip);
   return result;
}

// rendering sources

void
gfxContext::SetColor(const gfxRGBA& c)
{
    if (gfxPlatform::GetCMSMode() == eCMSMode_All) {

        gfxRGBA cms;
        gfxPlatform::TransformPixel(c, cms, gfxPlatform::GetCMSRGBTransform());

        // Use the original alpha to avoid unnecessary float->byte->float
        // conversion errors
        cairo_set_source_rgba(mCairo, cms.r, cms.g, cms.b, c.a);
    }
    else
        cairo_set_source_rgba(mCairo, c.r, c.g, c.b, c.a);
}

void
gfxContext::SetDeviceColor(const gfxRGBA& c)
{
    cairo_set_source_rgba(mCairo, c.r, c.g, c.b, c.a);
}

bool
gfxContext::GetDeviceColor(gfxRGBA& c)
{
    return cairo_pattern_get_rgba(cairo_get_source(mCairo),
                                  &c.r,
                                  &c.g,
                                  &c.b,
                                  &c.a) == CAIRO_STATUS_SUCCESS;
}

void
gfxContext::SetSource(gfxASurface *surface, const gfxPoint& offset)
{
    NS_ASSERTION(surface->GetAllowUseAsSource(), "Surface not allowed to be used as source!");
    cairo_set_source_surface(mCairo, surface->CairoSurface(), offset.x, offset.y);
}

void
gfxContext::SetPattern(gfxPattern *pattern)
{
    cairo_set_source(mCairo, pattern->CairoPattern());
}

already_AddRefed<gfxPattern>
gfxContext::GetPattern()
{
    cairo_pattern_t *pat = cairo_get_source(mCairo);
    NS_ASSERTION(pat, "I was told this couldn't be null");

    gfxPattern *wrapper = nsnull;
    if (pat)
        wrapper = new gfxPattern(pat);
    else
        wrapper = new gfxPattern(gfxRGBA(0,0,0,0));

    NS_IF_ADDREF(wrapper);
    return wrapper;
}


// masking

void
gfxContext::Mask(gfxPattern *pattern)
{
    cairo_mask(mCairo, pattern->CairoPattern());
}

void
gfxContext::Mask(gfxASurface *surface, const gfxPoint& offset)
{
    cairo_mask_surface(mCairo, surface->CairoSurface(), offset.x, offset.y);
}

void
gfxContext::Paint(gfxFloat alpha)
{
    cairo_paint_with_alpha(mCairo, alpha);
}

// groups

void
gfxContext::PushGroup(gfxASurface::gfxContentType content)
{
    cairo_push_group_with_content(mCairo, (cairo_content_t) content);
}

static gfxRect
GetRoundOutDeviceClipExtents(gfxContext* aCtx)
{
    gfxContextMatrixAutoSaveRestore save(aCtx);
    aCtx->IdentityMatrix();
    gfxRect r = aCtx->GetClipExtents();
    r.RoundOut();
    return r;
}

/**
 * Copy the contents of aSrc to aDest, translated by aTranslation.
 */
static void
CopySurface(gfxASurface* aSrc, gfxASurface* aDest, const gfxPoint& aTranslation)
{
  cairo_t *cr = cairo_create(aDest->CairoSurface());
  cairo_set_source_surface(cr, aSrc->CairoSurface(), aTranslation.x, aTranslation.y);
  cairo_set_operator(cr, CAIRO_OPERATOR_SOURCE);
  cairo_paint(cr);
  cairo_destroy(cr);
}

void
gfxContext::PushGroupAndCopyBackground(gfxASurface::gfxContentType content)
{
    if (content == gfxASurface::CONTENT_COLOR_ALPHA &&
        !(GetFlags() & FLAG_DISABLE_COPY_BACKGROUND)) {
        nsRefPtr<gfxASurface> s = CurrentSurface();
        if ((s->GetAllowUseAsSource() || s->GetType() == gfxASurface::SurfaceTypeTee) &&
            (s->GetContentType() == gfxASurface::CONTENT_COLOR ||
             s->GetOpaqueRect().Contains(GetRoundOutDeviceClipExtents(this)))) {
            cairo_push_group_with_content(mCairo, CAIRO_CONTENT_COLOR);
            nsRefPtr<gfxASurface> d = CurrentSurface();

            if (d->GetType() == gfxASurface::SurfaceTypeTee) {
                NS_ASSERTION(s->GetType() == gfxASurface::SurfaceTypeTee, "Mismatched types");
                nsAutoTArray<nsRefPtr<gfxASurface>,2> ss;
                nsAutoTArray<nsRefPtr<gfxASurface>,2> ds;
                static_cast<gfxTeeSurface*>(s.get())->GetSurfaces(&ss);
                static_cast<gfxTeeSurface*>(d.get())->GetSurfaces(&ds);
                NS_ASSERTION(ss.Length() == ds.Length(), "Mismatched lengths");
                gfxPoint translation = d->GetDeviceOffset() - s->GetDeviceOffset();
                for (PRUint32 i = 0; i < ss.Length(); ++i) {
                    CopySurface(ss[i], ds[i], translation);
                }
            } else {
                CopySurface(s, d, gfxPoint(0, 0));
            }
            d->SetOpaqueRect(s->GetOpaqueRect());
            return;
        }
    }
    cairo_push_group_with_content(mCairo, (cairo_content_t) content);
}

already_AddRefed<gfxPattern>
gfxContext::PopGroup()
{
    cairo_pattern_t *pat = cairo_pop_group(mCairo);
    gfxPattern *wrapper = new gfxPattern(pat);
    cairo_pattern_destroy(pat);
    NS_IF_ADDREF(wrapper);
    return wrapper;
}

void
gfxContext::PopGroupToSource()
{
    cairo_pop_group_to_source(mCairo);
}

bool
gfxContext::PointInFill(const gfxPoint& pt)
{
    return cairo_in_fill(mCairo, pt.x, pt.y);
}

bool
gfxContext::PointInStroke(const gfxPoint& pt)
{
    return cairo_in_stroke(mCairo, pt.x, pt.y);
}

gfxRect
gfxContext::GetUserPathExtent()
{
    double xmin, ymin, xmax, ymax;
    cairo_path_extents(mCairo, &xmin, &ymin, &xmax, &ymax);
    return gfxRect(xmin, ymin, xmax - xmin, ymax - ymin);
}

gfxRect
gfxContext::GetUserFillExtent()
{
    double xmin, ymin, xmax, ymax;
    cairo_fill_extents(mCairo, &xmin, &ymin, &xmax, &ymax);
    return gfxRect(xmin, ymin, xmax - xmin, ymax - ymin);
}

gfxRect
gfxContext::GetUserStrokeExtent()
{
    double xmin, ymin, xmax, ymax;
    cairo_stroke_extents(mCairo, &xmin, &ymin, &xmax, &ymax);
    return gfxRect(xmin, ymin, xmax - xmin, ymax - ymin);
}

already_AddRefed<gfxFlattenedPath>
gfxContext::GetFlattenedPath()
{
    gfxFlattenedPath *path =
        new gfxFlattenedPath(cairo_copy_path_flat(mCairo));
    NS_IF_ADDREF(path);
    return path;
}

bool
gfxContext::HasError()
{
     return cairo_status(mCairo) != CAIRO_STATUS_SUCCESS;
}

void
gfxContext::RoundedRectangle(const gfxRect& rect,
                             const gfxCornerSizes& corners,
                             bool draw_clockwise)
{
    //
    // For CW drawing, this looks like:
    //
    //  ...******0**      1    C
    //              ****
    //                  ***    2
    //                     **
    //                       *
    //                        *
    //                         3
    //                         *
    //                         *
    //
    // Where 0, 1, 2, 3 are the control points of the Bezier curve for
    // the corner, and C is the actual corner point.
    //
    // At the start of the loop, the current point is assumed to be
    // the point adjacent to the top left corner on the top
    // horizontal.  Note that corner indices start at the top left and
    // continue clockwise, whereas in our loop i = 0 refers to the top
    // right corner.
    //
    // When going CCW, the control points are swapped, and the first
    // corner that's drawn is the top left (along with the top segment).
    //
    // There is considerable latitude in how one chooses the four
    // control points for a Bezier curve approximation to an ellipse.
    // For the overall path to be continuous and show no corner at the
    // endpoints of the arc, points 0 and 3 must be at the ends of the
    // straight segments of the rectangle; points 0, 1, and C must be
    // collinear; and points 3, 2, and C must also be collinear.  This
    // leaves only two free parameters: the ratio of the line segments
    // 01 and 0C, and the ratio of the line segments 32 and 3C.  See
    // the following papers for extensive discussion of how to choose
    // these ratios:
    //
    //   Dokken, Tor, et al. "Good approximation of circles by
    //      curvature-continuous Bezier curves."  Computer-Aided
    //      Geometric Design 7(1990) 33--41.
    //   Goldapp, Michael. "Approximation of circular arcs by cubic
    //      polynomials." Computer-Aided Geometric Design 8(1991) 227--238.
    //   Maisonobe, Luc. "Drawing an elliptical arc using polylines,
    //      quadratic, or cubic Bezier curves."
    //      http://www.spaceroots.org/documents/ellipse/elliptical-arc.pdf
    //
    // We follow the approach in section 2 of Goldapp (least-error,
    // Hermite-type approximation) and make both ratios equal to
    //
    //          2   2 + n - sqrt(2n + 28)
    //  alpha = - * ---------------------
    //          3           n - 4
    //
    // where n = 3( cbrt(sqrt(2)+1) - cbrt(sqrt(2)-1) ).
    //
    // This is the result of Goldapp's equation (10b) when the angle
    // swept out by the arc is pi/2, and the parameter "a-bar" is the
    // expression given immediately below equation (21).
    //
    // Using this value, the maximum radial error for a circle, as a
    // fraction of the radius, is on the order of 0.2 x 10^-3.
    // Neither Dokken nor Goldapp discusses error for a general
    // ellipse; Maisonobe does, but his choice of control points
    // follows different constraints, and Goldapp's expression for
    // 'alpha' gives much smaller radial error, even for very flat
    // ellipses, than Maisonobe's equivalent.
    //
    // For the various corners and for each axis, the sign of this
    // constant changes, or it might be 0 -- it's multiplied by the
    // appropriate multiplier from the list before using.
    const gfxFloat alpha = 0.55191497064665766025;

    typedef struct { gfxFloat a, b; } twoFloats;

    twoFloats cwCornerMults[4] = { { -1,  0 },
                                   {  0, -1 },
                                   { +1,  0 },
                                   {  0, +1 } };
    twoFloats ccwCornerMults[4] = { { +1,  0 },
                                    {  0, -1 },
                                    { -1,  0 },
                                    {  0, +1 } };

    twoFloats *cornerMults = draw_clockwise ? cwCornerMults : ccwCornerMults;

    gfxPoint pc, p0, p1, p2, p3;

    if (draw_clockwise)
        cairo_move_to(mCairo, rect.X() + corners[NS_CORNER_TOP_LEFT].width, rect.Y());
    else
        cairo_move_to(mCairo, rect.X() + rect.Width() - corners[NS_CORNER_TOP_RIGHT].width, rect.Y());

    NS_FOR_CSS_CORNERS(i) {
        // the corner index -- either 1 2 3 0 (cw) or 0 3 2 1 (ccw)
        mozilla::css::Corner c = mozilla::css::Corner(draw_clockwise ? ((i+1) % 4) : ((4-i) % 4));

        // i+2 and i+3 respectively.  These are used to index into the corner
        // multiplier table, and were deduced by calculating out the long form
        // of each corner and finding a pattern in the signs and values.
        int i2 = (i+2) % 4;
        int i3 = (i+3) % 4;

        pc = rect.AtCorner(c);

        if (corners[c].width > 0.0 && corners[c].height > 0.0) {
            p0.x = pc.x + cornerMults[i].a * corners[c].width;
            p0.y = pc.y + cornerMults[i].b * corners[c].height;

            p3.x = pc.x + cornerMults[i3].a * corners[c].width;
            p3.y = pc.y + cornerMults[i3].b * corners[c].height;

            p1.x = p0.x + alpha * cornerMults[i2].a * corners[c].width;
            p1.y = p0.y + alpha * cornerMults[i2].b * corners[c].height;

            p2.x = p3.x - alpha * cornerMults[i3].a * corners[c].width;
            p2.y = p3.y - alpha * cornerMults[i3].b * corners[c].height;

            cairo_line_to (mCairo, p0.x, p0.y);
            cairo_curve_to (mCairo,
                            p1.x, p1.y,
                            p2.x, p2.y,
                            p3.x, p3.y);
        } else {
            cairo_line_to (mCairo, pc.x, pc.y);
        }
    }

    cairo_close_path (mCairo);
}

#ifdef DEBUG
void
gfxContext::WriteAsPNG(const char* aFile)
{ 
  nsRefPtr<gfxASurface> surf = CurrentSurface();
  if (surf) {
    surf->WriteAsPNG(aFile);
  } else {
    NS_WARNING("No surface found!");
  }
}

void 
gfxContext::DumpAsDataURL()
{ 
  nsRefPtr<gfxASurface> surf = CurrentSurface();
  if (surf) {
    surf->DumpAsDataURL();
  } else {
    NS_WARNING("No surface found!");
  }
}

void 
gfxContext::CopyAsDataURL()
{ 
  nsRefPtr<gfxASurface> surf = CurrentSurface();
  if (surf) {
    surf->CopyAsDataURL();
  } else {
    NS_WARNING("No surface found!");
  }
}
#endif