DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Header

Mercurial (c68fe15a81fc)

VCS Links

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */

#include "nsCOMArray.h"
#include "ThreadDelay.h"
#include "nsThreadPool.h"
#include "nsThreadManager.h"
#include "nsThread.h"
#include "nsMemory.h"
#include "prinrval.h"
#include "mozilla/Logging.h"
#include "mozilla/SchedulerGroup.h"
#include "nsThreadSyncDispatch.h"

#include <mutex>

using namespace mozilla;

static LazyLogModule sThreadPoolLog("nsThreadPool");
#ifdef LOG
#  undef LOG
#endif
#define LOG(args) MOZ_LOG(sThreadPoolLog, mozilla::LogLevel::Debug, args)

static MOZ_THREAD_LOCAL(nsThreadPool*) gCurrentThreadPool;

// DESIGN:
//  o  Allocate anonymous threads.
//  o  Use nsThreadPool::Run as the main routine for each thread.
//  o  Each thread waits on the event queue's monitor, checking for
//     pending events and rescheduling itself as an idle thread.

#define DEFAULT_THREAD_LIMIT 4
#define DEFAULT_IDLE_THREAD_LIMIT 1
#define DEFAULT_IDLE_THREAD_TIMEOUT PR_SecondsToInterval(60)

NS_IMPL_ISUPPORTS_INHERITED(nsThreadPool, Runnable, nsIThreadPool,
                            nsIEventTarget)

nsThreadPool::nsThreadPool()
    : Runnable("nsThreadPool"),
      mMutex("[nsThreadPool.mMutex]"),
      mEventsAvailable(mMutex, "[nsThreadPool.mEventsAvailable]"),
      mThreadLimit(DEFAULT_THREAD_LIMIT),
      mIdleThreadLimit(DEFAULT_IDLE_THREAD_LIMIT),
      mIdleThreadTimeout(DEFAULT_IDLE_THREAD_TIMEOUT),
      mIdleCount(0),
      mStackSize(nsIThreadManager::DEFAULT_STACK_SIZE),
      mShutdown(false),
      mRegressiveMaxIdleTime(false),
      mIsAPoolThreadFree(true) {
  static std::once_flag flag;
  std::call_once(flag, [] { gCurrentThreadPool.infallibleInit(); });

  LOG(("THRD-P(%p) constructor!!!\n", this));
}

nsThreadPool::~nsThreadPool() {
  // Threads keep a reference to the nsThreadPool until they return from Run()
  // after removing themselves from mThreads.
  MOZ_ASSERT(mThreads.IsEmpty());
}

nsresult nsThreadPool::PutEvent(nsIRunnable* aEvent) {
  nsCOMPtr<nsIRunnable> event(aEvent);
  return PutEvent(event.forget(), 0);
}

nsresult nsThreadPool::PutEvent(already_AddRefed<nsIRunnable> aEvent,
                                uint32_t aFlags) {
  // Avoid spawning a new thread while holding the event queue lock...

  bool spawnThread = false;
  uint32_t stackSize = 0;
  {
    MutexAutoLock lock(mMutex);

    if (NS_WARN_IF(mShutdown)) {
      return NS_ERROR_NOT_AVAILABLE;
    }
    LOG(("THRD-P(%p) put [%d %d %d]\n", this, mIdleCount, mThreads.Count(),
         mThreadLimit));
    MOZ_ASSERT(mIdleCount <= (uint32_t)mThreads.Count(), "oops");

    // Make sure we have a thread to service this event.
    if (mThreads.Count() < (int32_t)mThreadLimit &&
        !(aFlags & NS_DISPATCH_AT_END) &&
        // Spawn a new thread if we don't have enough idle threads to serve
        // pending events immediately.
        mEvents.Count(lock) >= mIdleCount) {
      spawnThread = true;
    }

    nsCOMPtr<nsIRunnable> event(aEvent);
    LogRunnable::LogDispatch(event);
    mEvents.PutEvent(event.forget(), EventQueuePriority::Normal, lock);
    mEventsAvailable.Notify();
    stackSize = mStackSize;
  }

  auto delay = MakeScopeExit([&]() {
    // Delay to encourage the receiving task to run before we do work.
    DelayForChaosMode(ChaosFeature::TaskDispatching, 1000);
  });

  LOG(("THRD-P(%p) put [spawn=%d]\n", this, spawnThread));
  if (!spawnThread) {
    return NS_OK;
  }

  nsCOMPtr<nsIThread> thread;
  nsresult rv = NS_NewNamedThread(mThreadNaming.GetNextThreadName(mName),
                                  getter_AddRefs(thread), nullptr, stackSize);
  if (NS_WARN_IF(NS_FAILED(rv))) {
    return NS_ERROR_UNEXPECTED;
  }

  bool killThread = false;
  {
    MutexAutoLock lock(mMutex);
    if (mShutdown) {
      killThread = true;
    } else if (mThreads.Count() < (int32_t)mThreadLimit) {
      mThreads.AppendObject(thread);
      if (mThreads.Count() >= (int32_t)mThreadLimit) {
        mIsAPoolThreadFree = false;
      }
    } else {
      // Someone else may have also been starting a thread
      killThread = true;  // okay, we don't need this thread anymore
    }
  }
  LOG(("THRD-P(%p) put [%p kill=%d]\n", this, thread.get(), killThread));
  if (killThread) {
    // We never dispatched any events to the thread, so we can shut it down
    // asynchronously without worrying about anything.
    ShutdownThread(thread);
  } else {
    thread->Dispatch(this, NS_DISPATCH_NORMAL);
  }

  return NS_OK;
}

void nsThreadPool::ShutdownThread(nsIThread* aThread) {
  LOG(("THRD-P(%p) shutdown async [%p]\n", this, aThread));

  // This is either called by a threadpool thread that is out of work, or
  // a thread that attempted to create a threadpool thread and raced in
  // such a way that the newly created thread is no longer necessary.
  // In the first case, we must go to another thread to shut aThread down
  // (because it is the current thread).  In the second case, we cannot
  // synchronously shut down the current thread (because then Dispatch() would
  // spin the event loop, and that could blow up the world), and asynchronous
  // shutdown requires this thread have an event loop (and it may not, see bug
  // 10204784).  The simplest way to cover all cases is to asynchronously
  // shutdown aThread from the main thread.
  SchedulerGroup::Dispatch(
      TaskCategory::Other,
      NewRunnableMethod("nsIThread::AsyncShutdown", aThread,
                        &nsIThread::AsyncShutdown));
}

// This event 'runs' for the lifetime of the worker thread.  The actual
// eventqueue is mEvents, and is shared by all the worker threads.  This
// means that the set of threads together define the delay seen by a new
// event sent to the pool.
//
// To model the delay experienced by the pool, we can have each thread in
// the pool report 0 if it's idle OR if the pool is below the threadlimit;
// or otherwise the current event's queuing delay plus current running
// time.
//
// To reconstruct the delays for the pool, the profiler can look at all the
// threads that are part of a pool (pools have defined naming patterns that
// can be user to connect them).  If all threads have delays at time X,
// that means that all threads saturated at that point and any event
// dispatched to the pool would get a delay.
//
// The delay experienced by an event dispatched when all pool threads are
// busy is based on the calculations shown in platform.cpp.  Run that
// algorithm for each thread in the pool, and the delay at time X is the
// longest value for time X of any of the threads, OR the time from X until
// any one of the threads reports 0 (i.e. it's not busy), whichever is
// shorter.

// In order to record this when the profiler samples threads in the pool,
// each thread must (effectively) override GetRunnningEventDelay, by
// resetting the mLastEventDelay/Start values in the nsThread when we start
// to run an event (or when we run out of events to run).  Note that handling
// the shutdown of a thread may be a little tricky.

NS_IMETHODIMP
nsThreadPool::Run() {
  LOG(("THRD-P(%p) enter %s\n", this, mName.BeginReading()));

  nsCOMPtr<nsIThread> current;
  nsThreadManager::get().GetCurrentThread(getter_AddRefs(current));

  bool shutdownThreadOnExit = false;
  bool exitThread = false;
  bool wasIdle = false;
  TimeStamp idleSince;

  // This thread is an nsThread created below with NS_NewNamedThread()
  static_cast<nsThread*>(current.get())
      ->SetPoolThreadFreePtr(&mIsAPoolThreadFree);

  nsCOMPtr<nsIThreadPoolListener> listener;
  {
    MutexAutoLock lock(mMutex);
    listener = mListener;
  }

  if (listener) {
    listener->OnThreadCreated();
  }

  MOZ_ASSERT(!gCurrentThreadPool.get());
  gCurrentThreadPool.set(this);

  do {
    nsCOMPtr<nsIRunnable> event;
    TimeDuration delay;
    {
      MutexAutoLock lock(mMutex);

      event = mEvents.GetEvent(nullptr, lock, &delay);
      if (!event) {
        TimeStamp now = TimeStamp::Now();
        uint32_t idleTimeoutDivider =
            (mIdleCount && mRegressiveMaxIdleTime) ? mIdleCount : 1;
        TimeDuration timeout = TimeDuration::FromMilliseconds(
            static_cast<double>(mIdleThreadTimeout) / idleTimeoutDivider);

        // If we are shutting down, then don't keep any idle threads
        if (mShutdown) {
          exitThread = true;
        } else {
          if (wasIdle) {
            // if too many idle threads or idle for too long, then bail.
            if (mIdleCount > mIdleThreadLimit ||
                (mIdleThreadTimeout != UINT32_MAX &&
                 (now - idleSince) >= timeout)) {
              exitThread = true;
            }
          } else {
            // if would be too many idle threads...
            if (mIdleCount == mIdleThreadLimit) {
              exitThread = true;
            } else {
              ++mIdleCount;
              idleSince = now;
              wasIdle = true;
            }
          }
        }

        if (exitThread) {
          if (wasIdle) {
            --mIdleCount;
          }
          shutdownThreadOnExit = mThreads.RemoveObject(current);

          // keep track if there are threads available to start
          mIsAPoolThreadFree = (mThreads.Count() < (int32_t)mThreadLimit);
        } else {
          current->SetRunningEventDelay(TimeDuration(), TimeStamp());

          AUTO_PROFILER_LABEL("nsThreadPool::Run::Wait", IDLE);

          TimeDuration delta = timeout - (now - idleSince);
          LOG(("THRD-P(%p) %s waiting [%f]\n", this, mName.BeginReading(),
               delta.ToMilliseconds()));
          mEventsAvailable.Wait(delta);
          LOG(("THRD-P(%p) done waiting\n", this));
        }
      } else if (wasIdle) {
        wasIdle = false;
        --mIdleCount;
      }
    }
    if (event) {
      LOG(("THRD-P(%p) %s running [%p]\n", this, mName.BeginReading(),
           event.get()));

      // Delay event processing to encourage whoever dispatched this event
      // to run.
      DelayForChaosMode(ChaosFeature::TaskRunning, 1000);

      // We'll handle the case of unstarted threads available
      // when we sample.
      current->SetRunningEventDelay(delay, TimeStamp::Now());

      LogRunnable::Run log(event);
      event->Run();
      // To cover the event's destructor code in the LogRunnable span
      event = nullptr;
    }
  } while (!exitThread);

  if (listener) {
    listener->OnThreadShuttingDown();
  }

  MOZ_ASSERT(gCurrentThreadPool.get() == this);
  gCurrentThreadPool.set(nullptr);

  if (shutdownThreadOnExit) {
    ShutdownThread(current);
  }

  LOG(("THRD-P(%p) leave\n", this));
  return NS_OK;
}

NS_IMETHODIMP
nsThreadPool::DispatchFromScript(nsIRunnable* aEvent, uint32_t aFlags) {
  nsCOMPtr<nsIRunnable> event(aEvent);
  return Dispatch(event.forget(), aFlags);
}

NS_IMETHODIMP
nsThreadPool::Dispatch(already_AddRefed<nsIRunnable> aEvent, uint32_t aFlags) {
  LOG(("THRD-P(%p) dispatch [%p %x]\n", this, /* XXX aEvent*/ nullptr, aFlags));

  if (NS_WARN_IF(mShutdown)) {
    return NS_ERROR_NOT_AVAILABLE;
  }

  if (aFlags & DISPATCH_SYNC) {
    nsCOMPtr<nsIThread> thread;
    nsThreadManager::get().GetCurrentThread(getter_AddRefs(thread));
    if (NS_WARN_IF(!thread)) {
      return NS_ERROR_NOT_AVAILABLE;
    }

    RefPtr<nsThreadSyncDispatch> wrapper =
        new nsThreadSyncDispatch(thread.forget(), std::move(aEvent));
    PutEvent(wrapper);

    SpinEventLoopUntil(
        [&, wrapper]() -> bool { return !wrapper->IsPending(); });
  } else {
    NS_ASSERTION(aFlags == NS_DISPATCH_NORMAL || aFlags == NS_DISPATCH_AT_END,
                 "unexpected dispatch flags");
    PutEvent(std::move(aEvent), aFlags);
  }
  return NS_OK;
}

NS_IMETHODIMP
nsThreadPool::DelayedDispatch(already_AddRefed<nsIRunnable>, uint32_t) {
  return NS_ERROR_NOT_IMPLEMENTED;
}

NS_IMETHODIMP_(bool)
nsThreadPool::IsOnCurrentThreadInfallible() {
  return gCurrentThreadPool.get() == this;
}

NS_IMETHODIMP
nsThreadPool::IsOnCurrentThread(bool* aResult) {
  MutexAutoLock lock(mMutex);
  if (NS_WARN_IF(mShutdown)) {
    return NS_ERROR_NOT_AVAILABLE;
  }

  *aResult = IsOnCurrentThreadInfallible();
  return NS_OK;
}

NS_IMETHODIMP
nsThreadPool::Shutdown() {
  nsCOMArray<nsIThread> threads;
  nsCOMPtr<nsIThreadPoolListener> listener;
  {
    MutexAutoLock lock(mMutex);
    mShutdown = true;
    mEventsAvailable.NotifyAll();

    threads.AppendObjects(mThreads);
    mThreads.Clear();

    // Swap in a null listener so that we release the listener at the end of
    // this method. The listener will be kept alive as long as the other threads
    // that were created when it was set.
    mListener.swap(listener);
  }

  // It's important that we shutdown the threads while outside the event queue
  // monitor.  Otherwise, we could end up dead-locking.

  for (int32_t i = 0; i < threads.Count(); ++i) {
    threads[i]->Shutdown();
  }

  return NS_OK;
}

template <typename Pred>
static void SpinMTEventLoopUntil(Pred&& aPredicate, nsIThread* aThread,
                                 TimeDuration aTimeout) {
  MOZ_ASSERT(NS_IsMainThread(), "Must be run on the main thread");

  // From a latency perspective, spinning the event loop is like leaving script
  // and returning to the event loop. Tell the watchdog we stopped running
  // script (until we return).
  mozilla::Maybe<xpc::AutoScriptActivity> asa;
  asa.emplace(false);

  TimeStamp deadline = TimeStamp::Now() + aTimeout;
  while (!aPredicate() && TimeStamp::Now() < deadline) {
    if (!NS_ProcessNextEvent(aThread, false)) {
      PR_Sleep(PR_MillisecondsToInterval(1));
    }
  }
}

NS_IMETHODIMP
nsThreadPool::ShutdownWithTimeout(int32_t aTimeoutMs) {
  if (!NS_IsMainThread()) {
    return NS_ERROR_NOT_AVAILABLE;
  }

  nsCOMArray<nsIThread> threads;
  nsCOMPtr<nsIThreadPoolListener> listener;
  {
    MutexAutoLock lock(mMutex);
    mShutdown = true;
    mEventsAvailable.NotifyAll();

    threads.AppendObjects(mThreads);
    mThreads.Clear();

    // Swap in a null listener so that we release the listener at the end of
    // this method. The listener will be kept alive as long as the other threads
    // that were created when it was set.
    mListener.swap(listener);
  }

  // IMPORTANT! Never dereference these pointers, as the objects may go away at
  // any time. We just use the pointers values for comparison, to check if the
  // thread has been shut down or not.
  nsTArray<nsThreadShutdownContext*> contexts;

  // It's important that we shutdown the threads while outside the event queue
  // monitor.  Otherwise, we could end up dead-locking.
  for (int32_t i = 0; i < threads.Count(); ++i) {
    // Shutdown async
    nsThreadShutdownContext* maybeContext =
        static_cast<nsThread*>(threads[i])->ShutdownInternal(false);
    contexts.AppendElement(maybeContext);
  }

  NotNull<nsThread*> currentThread =
      WrapNotNull(nsThreadManager::get().GetCurrentThread());

  // We spin the event loop until all of the threads in the thread pool
  // have shut down, or the timeout expires.
  SpinMTEventLoopUntil(
      [&]() {
        for (nsIThread* thread : threads) {
          if (static_cast<nsThread*>(thread)->mThread) {
            return false;
          }
        }
        return true;
      },
      currentThread, TimeDuration::FromMilliseconds(aTimeoutMs));

  // For any threads that have not shutdown yet, we need to remove them from
  // mRequestedShutdownContexts so the thread manager does not wait for them
  // at shutdown.
  static const nsThread::ShutdownContextsComp comparator{};
  for (int32_t i = 0; i < threads.Count(); ++i) {
    nsThread* thread = static_cast<nsThread*>(threads[i]);
    // If mThread is not null on the thread it means that it hasn't shutdown
    // context[i] corresponds to thread[i]
    if (thread->mThread && contexts[i]) {
      auto index = currentThread->mRequestedShutdownContexts.IndexOf(
          contexts[i], 0, comparator);
      if (index != nsThread::ShutdownContexts::NoIndex) {
        // We must leak the shutdown context just in case the leaked thread
        // does get unstuck and completes before the main thread is done.
        Unused << currentThread->mRequestedShutdownContexts[index].release();
        currentThread->mRequestedShutdownContexts.RemoveElementAt(index);
      }
    }
  }

  return NS_OK;
}

NS_IMETHODIMP
nsThreadPool::GetThreadLimit(uint32_t* aValue) {
  *aValue = mThreadLimit;
  return NS_OK;
}

NS_IMETHODIMP
nsThreadPool::SetThreadLimit(uint32_t aValue) {
  MutexAutoLock lock(mMutex);
  LOG(("THRD-P(%p) thread limit [%u]\n", this, aValue));
  mThreadLimit = aValue;
  if (mIdleThreadLimit > mThreadLimit) {
    mIdleThreadLimit = mThreadLimit;
  }

  if (static_cast<uint32_t>(mThreads.Count()) > mThreadLimit) {
    mEventsAvailable
        .NotifyAll();  // wake up threads so they observe this change
  }
  return NS_OK;
}

NS_IMETHODIMP
nsThreadPool::GetIdleThreadLimit(uint32_t* aValue) {
  *aValue = mIdleThreadLimit;
  return NS_OK;
}

NS_IMETHODIMP
nsThreadPool::SetIdleThreadLimit(uint32_t aValue) {
  MutexAutoLock lock(mMutex);
  LOG(("THRD-P(%p) idle thread limit [%u]\n", this, aValue));
  mIdleThreadLimit = aValue;
  if (mIdleThreadLimit > mThreadLimit) {
    mIdleThreadLimit = mThreadLimit;
  }

  // Do we need to kill some idle threads?
  if (mIdleCount > mIdleThreadLimit) {
    mEventsAvailable
        .NotifyAll();  // wake up threads so they observe this change
  }
  return NS_OK;
}

NS_IMETHODIMP
nsThreadPool::GetIdleThreadTimeout(uint32_t* aValue) {
  *aValue = mIdleThreadTimeout;
  return NS_OK;
}

NS_IMETHODIMP
nsThreadPool::SetIdleThreadTimeout(uint32_t aValue) {
  MutexAutoLock lock(mMutex);
  uint32_t oldTimeout = mIdleThreadTimeout;
  mIdleThreadTimeout = aValue;

  // Do we need to notify any idle threads that their sleep time has shortened?
  if (mIdleThreadTimeout < oldTimeout && mIdleCount > 0) {
    mEventsAvailable
        .NotifyAll();  // wake up threads so they observe this change
  }
  return NS_OK;
}

NS_IMETHODIMP
nsThreadPool::GetIdleThreadTimeoutRegressive(bool* aValue) {
  *aValue = mRegressiveMaxIdleTime;
  return NS_OK;
}

NS_IMETHODIMP
nsThreadPool::SetIdleThreadTimeoutRegressive(bool aValue) {
  MutexAutoLock lock(mMutex);
  bool oldRegressive = mRegressiveMaxIdleTime;
  mRegressiveMaxIdleTime = aValue;

  // Would setting regressive timeout effect idle threads?
  if (mRegressiveMaxIdleTime > oldRegressive && mIdleCount > 1) {
    mEventsAvailable
        .NotifyAll();  // wake up threads so they observe this change
  }
  return NS_OK;
}

NS_IMETHODIMP
nsThreadPool::GetThreadStackSize(uint32_t* aValue) {
  MutexAutoLock lock(mMutex);
  *aValue = mStackSize;
  return NS_OK;
}

NS_IMETHODIMP
nsThreadPool::SetThreadStackSize(uint32_t aValue) {
  MutexAutoLock lock(mMutex);
  mStackSize = aValue;
  return NS_OK;
}

NS_IMETHODIMP
nsThreadPool::GetListener(nsIThreadPoolListener** aListener) {
  MutexAutoLock lock(mMutex);
  NS_IF_ADDREF(*aListener = mListener);
  return NS_OK;
}

NS_IMETHODIMP
nsThreadPool::SetListener(nsIThreadPoolListener* aListener) {
  nsCOMPtr<nsIThreadPoolListener> swappedListener(aListener);
  {
    MutexAutoLock lock(mMutex);
    mListener.swap(swappedListener);
  }
  return NS_OK;
}

NS_IMETHODIMP
nsThreadPool::SetName(const nsACString& aName) {
  {
    MutexAutoLock lock(mMutex);
    if (mThreads.Count()) {
      return NS_ERROR_NOT_AVAILABLE;
    }
  }

  mName = aName;
  return NS_OK;
}