DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Header

Mercurial (9e8d5431c412)

VCS Links

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */

#include "nsTimerImpl.h"
#include "TimerThread.h"

#include "nsThreadUtils.h"
#include "pratom.h"

#include "nsIObserverService.h"
#include "mozilla/Services.h"
#include "mozilla/ChaosMode.h"
#include "mozilla/ArenaAllocator.h"
#include "mozilla/ArrayUtils.h"
#include "mozilla/BinarySearch.h"
#include "mozilla/OperatorNewExtensions.h"

#include <math.h>

using namespace mozilla;
#ifdef MOZ_TASK_TRACER
#  include "GeckoTaskTracerImpl.h"
using namespace mozilla::tasktracer;
#endif

NS_IMPL_ISUPPORTS(TimerThread, nsIRunnable, nsIObserver)

TimerThread::TimerThread()
    : mInitialized(false),
      mMonitor("TimerThread.mMonitor"),
      mShutdown(false),
      mWaiting(false),
      mNotified(false),
      mSleeping(false),
      mAllowedEarlyFiringMicroseconds(0) {}

TimerThread::~TimerThread() {
  mThread = nullptr;

  NS_ASSERTION(mTimers.IsEmpty(), "Timers remain in TimerThread::~TimerThread");
}

nsresult TimerThread::InitLocks() { return NS_OK; }

namespace {

class TimerObserverRunnable : public Runnable {
 public:
  explicit TimerObserverRunnable(nsIObserver* aObserver)
      : mozilla::Runnable("TimerObserverRunnable"), mObserver(aObserver) {}

  NS_DECL_NSIRUNNABLE

 private:
  nsCOMPtr<nsIObserver> mObserver;
};

NS_IMETHODIMP
TimerObserverRunnable::Run() {
  nsCOMPtr<nsIObserverService> observerService =
      mozilla::services::GetObserverService();
  if (observerService) {
    observerService->AddObserver(mObserver, "sleep_notification", false);
    observerService->AddObserver(mObserver, "wake_notification", false);
    observerService->AddObserver(mObserver, "suspend_process_notification",
                                 false);
    observerService->AddObserver(mObserver, "resume_process_notification",
                                 false);
  }
  return NS_OK;
}

}  // namespace

namespace {

// TimerEventAllocator is a thread-safe allocator used only for nsTimerEvents.
// It's needed to avoid contention over the default allocator lock when
// firing timer events (see bug 733277).  The thread-safety is required because
// nsTimerEvent objects are allocated on the timer thread, and freed on another
// thread.  Because TimerEventAllocator has its own lock, contention over that
// lock is limited to the allocation and deallocation of nsTimerEvent objects.
//
// Because this is layered over ArenaAllocator, it never shrinks -- even
// "freed" nsTimerEvents aren't truly freed, they're just put onto a free-list
// for later recycling.  So the amount of memory consumed will always be equal
// to the high-water mark consumption.  But nsTimerEvents are small and it's
// unusual to have more than a few hundred of them, so this shouldn't be a
// problem in practice.

class TimerEventAllocator {
 private:
  struct FreeEntry {
    FreeEntry* mNext;
  };

  ArenaAllocator<4096> mPool;
  FreeEntry* mFirstFree;
  mozilla::Monitor mMonitor;

 public:
  TimerEventAllocator()
      : mPool(),
        mFirstFree(nullptr),
        // Timer thread state may be accessed during GC, so uses of this monitor
        // are not preserved when recording/replaying.
        mMonitor("TimerEventAllocator", recordreplay::Behavior::DontPreserve) {}

  ~TimerEventAllocator() = default;

  void* Alloc(size_t aSize);
  void Free(void* aPtr);
};

}  // namespace

// This is a nsICancelableRunnable because we can dispatch it to Workers and
// those can be shut down at any time, and in these cases, Cancel() is called
// instead of Run().
class nsTimerEvent final : public CancelableRunnable {
 public:
  NS_IMETHOD Run() override;

  nsresult Cancel() override {
    mTimer->Cancel();
    return NS_OK;
  }

#ifdef MOZ_COLLECTING_RUNNABLE_TELEMETRY
  NS_IMETHOD GetName(nsACString& aName) override;
#endif

  explicit nsTimerEvent(already_AddRefed<nsTimerImpl> aTimer)
      : mozilla::CancelableRunnable("nsTimerEvent"),
        mTimer(aTimer),
        mGeneration(mTimer->GetGeneration()) {
    // Note: We override operator new for this class, and the override is
    // fallible!
    sAllocatorUsers++;

    if (MOZ_LOG_TEST(GetTimerLog(), LogLevel::Debug)) {
      mInitTime = TimeStamp::Now();
    }
  }

  static void Init();
  static void Shutdown();
  static void DeleteAllocatorIfNeeded();

  static void* operator new(size_t aSize) noexcept(true) {
    return sAllocator->Alloc(aSize);
  }
  void operator delete(void* aPtr) {
    sAllocator->Free(aPtr);
    DeleteAllocatorIfNeeded();
  }

  already_AddRefed<nsTimerImpl> ForgetTimer() { return mTimer.forget(); }

 private:
  nsTimerEvent(const nsTimerEvent&) = delete;
  nsTimerEvent& operator=(const nsTimerEvent&) = delete;
  nsTimerEvent& operator=(const nsTimerEvent&&) = delete;

  ~nsTimerEvent() {
    MOZ_ASSERT(!sCanDeleteAllocator || sAllocatorUsers > 0,
               "This will result in us attempting to deallocate the "
               "nsTimerEvent allocator twice");
    sAllocatorUsers--;
  }

  TimeStamp mInitTime;
  RefPtr<nsTimerImpl> mTimer;
  const int32_t mGeneration;

  static TimerEventAllocator* sAllocator;

  // Timer thread state may be accessed during GC, so uses of this atomic are
  // not preserved when recording/replaying.
  static Atomic<int32_t, SequentiallyConsistent,
                recordreplay::Behavior::DontPreserve>
      sAllocatorUsers;
  static bool sCanDeleteAllocator;
};

TimerEventAllocator* nsTimerEvent::sAllocator = nullptr;
Atomic<int32_t, SequentiallyConsistent, recordreplay::Behavior::DontPreserve>
    nsTimerEvent::sAllocatorUsers;
bool nsTimerEvent::sCanDeleteAllocator = false;

namespace {

void* TimerEventAllocator::Alloc(size_t aSize) {
  MOZ_ASSERT(aSize == sizeof(nsTimerEvent));

  mozilla::MonitorAutoLock lock(mMonitor);

  void* p;
  if (mFirstFree) {
    p = mFirstFree;
    mFirstFree = mFirstFree->mNext;
  } else {
    p = mPool.Allocate(aSize, fallible);
  }

  return p;
}

void TimerEventAllocator::Free(void* aPtr) {
  mozilla::MonitorAutoLock lock(mMonitor);

  FreeEntry* entry = reinterpret_cast<FreeEntry*>(aPtr);

  entry->mNext = mFirstFree;
  mFirstFree = entry;
}

}  // namespace

void nsTimerEvent::Init() { sAllocator = new TimerEventAllocator(); }

void nsTimerEvent::Shutdown() {
  sCanDeleteAllocator = true;
  DeleteAllocatorIfNeeded();
}

void nsTimerEvent::DeleteAllocatorIfNeeded() {
  if (sCanDeleteAllocator && sAllocatorUsers == 0) {
    delete sAllocator;
    sAllocator = nullptr;
  }
}

#ifdef MOZ_COLLECTING_RUNNABLE_TELEMETRY
NS_IMETHODIMP
nsTimerEvent::GetName(nsACString& aName) {
  bool current;
  MOZ_RELEASE_ASSERT(
      NS_SUCCEEDED(mTimer->mEventTarget->IsOnCurrentThread(&current)) &&
      current);

  mTimer->GetName(aName);
  return NS_OK;
}
#endif

NS_IMETHODIMP
nsTimerEvent::Run() {
  if (MOZ_LOG_TEST(GetTimerLog(), LogLevel::Debug)) {
    TimeStamp now = TimeStamp::Now();
    MOZ_LOG(GetTimerLog(), LogLevel::Debug,
            ("[this=%p] time between PostTimerEvent() and Fire(): %fms\n", this,
             (now - mInitTime).ToMilliseconds()));
  }

  mTimer->Fire(mGeneration);

  return NS_OK;
}

nsresult TimerThread::Init() {
  mMonitor.AssertCurrentThreadOwns();
  MOZ_LOG(GetTimerLog(), LogLevel::Debug,
          ("TimerThread::Init [%d]\n", mInitialized));

  if (!mInitialized) {
    nsTimerEvent::Init();

    // We hold on to mThread to keep the thread alive.
    nsresult rv =
        NS_NewNamedThread("Timer Thread", getter_AddRefs(mThread), this);
    if (NS_FAILED(rv)) {
      mThread = nullptr;
    } else {
      RefPtr<TimerObserverRunnable> r = new TimerObserverRunnable(this);
      if (NS_IsMainThread()) {
        r->Run();
      } else {
        NS_DispatchToMainThread(r);
      }
    }

    mInitialized = true;
  }

  if (!mThread) {
    return NS_ERROR_FAILURE;
  }

  return NS_OK;
}

nsresult TimerThread::Shutdown() {
  MOZ_LOG(GetTimerLog(), LogLevel::Debug, ("TimerThread::Shutdown begin\n"));

  if (!mThread) {
    return NS_ERROR_NOT_INITIALIZED;
  }

  nsTArray<RefPtr<nsTimerImpl>> timers;
  {
    // lock scope
    MonitorAutoLock lock(mMonitor);

    mShutdown = true;

    // notify the cond var so that Run() can return
    if (mWaiting) {
      mNotified = true;
      mMonitor.Notify();
    }

    // Need to copy content of mTimers array to a local array
    // because call to timers' Cancel() (and release its self)
    // must not be done under the lock. Destructor of a callback
    // might potentially call some code reentering the same lock
    // that leads to unexpected behavior or deadlock.
    // See bug 422472.
    for (const UniquePtr<Entry>& entry : mTimers) {
      timers.AppendElement(entry->Take());
    }

    mTimers.Clear();
  }

  for (const RefPtr<nsTimerImpl>& timer : timers) {
    if (timer) {
      timer->Cancel();
    }
  }

  mThread->Shutdown();  // wait for the thread to die

  nsTimerEvent::Shutdown();

  MOZ_LOG(GetTimerLog(), LogLevel::Debug, ("TimerThread::Shutdown end\n"));
  return NS_OK;
}

namespace {

struct MicrosecondsToInterval {
  PRIntervalTime operator[](size_t aMs) const {
    return PR_MicrosecondsToInterval(aMs);
  }
};

struct IntervalComparator {
  int operator()(PRIntervalTime aInterval) const {
    return (0 < aInterval) ? -1 : 1;
  }
};

}  // namespace

NS_IMETHODIMP
TimerThread::Run() {
  NS_SetCurrentThreadName("Timer");

  MonitorAutoLock lock(mMonitor);

  // We need to know how many microseconds give a positive PRIntervalTime. This
  // is platform-dependent and we calculate it at runtime, finding a value |v|
  // such that |PR_MicrosecondsToInterval(v) > 0| and then binary-searching in
  // the range [0, v) to find the ms-to-interval scale.
  uint32_t usForPosInterval = 1;
  while (PR_MicrosecondsToInterval(usForPosInterval) == 0) {
    usForPosInterval <<= 1;
  }

  size_t usIntervalResolution;
  BinarySearchIf(MicrosecondsToInterval(), 0, usForPosInterval,
                 IntervalComparator(), &usIntervalResolution);
  MOZ_ASSERT(PR_MicrosecondsToInterval(usIntervalResolution - 1) == 0);
  MOZ_ASSERT(PR_MicrosecondsToInterval(usIntervalResolution) == 1);

  // Half of the amount of microseconds needed to get positive PRIntervalTime.
  // We use this to decide how to round our wait times later
  mAllowedEarlyFiringMicroseconds = usIntervalResolution / 2;
  bool forceRunNextTimer = false;

  while (!mShutdown) {
    // Have to use PRIntervalTime here, since PR_WaitCondVar takes it
    TimeDuration waitFor;
    bool forceRunThisTimer = forceRunNextTimer;
    forceRunNextTimer = false;

    if (mSleeping) {
      // Sleep for 0.1 seconds while not firing timers.
      uint32_t milliseconds = 100;
      if (ChaosMode::isActive(ChaosFeature::TimerScheduling)) {
        milliseconds = ChaosMode::randomUint32LessThan(200);
      }
      waitFor = TimeDuration::FromMilliseconds(milliseconds);
    } else {
      waitFor = TimeDuration::Forever();
      TimeStamp now = TimeStamp::Now();

      RemoveLeadingCanceledTimersInternal();

      if (!mTimers.IsEmpty()) {
        if (now >= mTimers[0]->Value()->mTimeout || forceRunThisTimer) {
        next:
          // NB: AddRef before the Release under RemoveTimerInternal to avoid
          // mRefCnt passing through zero, in case all other refs than the one
          // from mTimers have gone away (the last non-mTimers[i]-ref's Release
          // must be racing with us, blocked in gThread->RemoveTimer waiting
          // for TimerThread::mMonitor, under nsTimerImpl::Release.

          RefPtr<nsTimerImpl> timerRef(mTimers[0]->Take());
          RemoveFirstTimerInternal();

          MOZ_LOG(GetTimerLog(), LogLevel::Debug,
                  ("Timer thread woke up %fms from when it was supposed to\n",
                   fabs((now - timerRef->mTimeout).ToMilliseconds())));

          // We are going to let the call to PostTimerEvent here handle the
          // release of the timer so that we don't end up releasing the timer
          // on the TimerThread instead of on the thread it targets.
          timerRef = PostTimerEvent(timerRef.forget());

          if (timerRef) {
            // We got our reference back due to an error.
            // Unhook the nsRefPtr, and release manually so we can get the
            // refcount.
            nsrefcnt rc = timerRef.forget().take()->Release();
            (void)rc;

            // The nsITimer interface requires that its users keep a reference
            // to the timers they use while those timers are initialized but
            // have not yet fired.  If this ever happens, it is a bug in the
            // code that created and used the timer.
            //
            // Further, note that this should never happen even with a
            // misbehaving user, because nsTimerImpl::Release checks for a
            // refcount of 1 with an armed timer (a timer whose only reference
            // is from the timer thread) and when it hits this will remove the
            // timer from the timer thread and thus destroy the last reference,
            // preventing this situation from occurring.
            MOZ_ASSERT(rc != 0, "destroyed timer off its target thread!");
          }

          if (mShutdown) {
            break;
          }

          // Update now, as PostTimerEvent plus the locking may have taken a
          // tick or two, and we may goto next below.
          now = TimeStamp::Now();
        }
      }

      RemoveLeadingCanceledTimersInternal();

      if (!mTimers.IsEmpty()) {
        TimeStamp timeout = mTimers[0]->Value()->mTimeout;

        // Don't wait at all (even for PR_INTERVAL_NO_WAIT) if the next timer
        // is due now or overdue.
        //
        // Note that we can only sleep for integer values of a certain
        // resolution. We use mAllowedEarlyFiringMicroseconds, calculated
        // before, to do the optimal rounding (i.e., of how to decide what
        // interval is so small we should not wait at all).
        double microseconds = (timeout - now).ToMilliseconds() * 1000;

        if (ChaosMode::isActive(ChaosFeature::TimerScheduling)) {
          // The mean value of sFractions must be 1 to ensure that
          // the average of a long sequence of timeouts converges to the
          // actual sum of their times.
          static const float sFractions[] = {0.0f, 0.25f, 0.5f, 0.75f,
                                             1.0f, 1.75f, 2.75f};
          microseconds *= sFractions[ChaosMode::randomUint32LessThan(
              ArrayLength(sFractions))];
          forceRunNextTimer = true;
        }

        if (microseconds < mAllowedEarlyFiringMicroseconds) {
          forceRunNextTimer = false;
          goto next;  // round down; execute event now
        }
        waitFor = TimeDuration::FromMicroseconds(microseconds);
        if (waitFor.IsZero()) {
          // round up, wait the minimum time we can wait
          waitFor = TimeDuration::FromMicroseconds(1);
        }
      }

      if (MOZ_LOG_TEST(GetTimerLog(), LogLevel::Debug)) {
        if (waitFor == TimeDuration::Forever())
          MOZ_LOG(GetTimerLog(), LogLevel::Debug, ("waiting forever\n"));
        else
          MOZ_LOG(GetTimerLog(), LogLevel::Debug,
                  ("waiting for %f\n", waitFor.ToMilliseconds()));
      }
    }

    mWaiting = true;
    mNotified = false;
    mMonitor.Wait(waitFor);
    if (mNotified) {
      forceRunNextTimer = false;
    }
    mWaiting = false;
  }

  return NS_OK;
}

nsresult TimerThread::AddTimer(nsTimerImpl* aTimer) {
  MonitorAutoLock lock(mMonitor);

  if (!aTimer->mEventTarget) {
    return NS_ERROR_NOT_INITIALIZED;
  }

  nsresult rv = Init();
  if (NS_FAILED(rv)) {
    return rv;
  }

  // Add the timer to our list.
  if (!AddTimerInternal(aTimer)) {
    return NS_ERROR_OUT_OF_MEMORY;
  }

  // Awaken the timer thread.
  if (mWaiting && mTimers[0]->Value() == aTimer) {
    mNotified = true;
    mMonitor.Notify();
  }

  return NS_OK;
}

nsresult TimerThread::RemoveTimer(nsTimerImpl* aTimer) {
  MonitorAutoLock lock(mMonitor);

  // Remove the timer from our array.  Tell callers that aTimer was not found
  // by returning NS_ERROR_NOT_AVAILABLE.

  if (!RemoveTimerInternal(aTimer)) {
    return NS_ERROR_NOT_AVAILABLE;
  }

  // Awaken the timer thread.
  if (mWaiting) {
    mNotified = true;
    mMonitor.Notify();
  }

  return NS_OK;
}

TimeStamp TimerThread::FindNextFireTimeForCurrentThread(TimeStamp aDefault,
                                                        uint32_t aSearchBound) {
  MonitorAutoLock lock(mMonitor);
  TimeStamp timeStamp = aDefault;
  uint32_t index = 0;

#ifdef DEBUG
  TimeStamp firstTimeStamp;
  Entry* initialFirstEntry = nullptr;
  if (!mTimers.IsEmpty()) {
    initialFirstEntry = mTimers[0].get();
    firstTimeStamp = mTimers[0]->Timeout();
  }
#endif

  auto end = mTimers.end();
  while (end != mTimers.begin()) {
    nsTimerImpl* timer = mTimers[0]->Value();
    if (timer) {
      if (timer->mTimeout > aDefault) {
        timeStamp = aDefault;
        break;
      }

      // Don't yield to timers created with the *_LOW_PRIORITY type.
      if (!timer->IsLowPriority()) {
        bool isOnCurrentThread = false;
        nsresult rv =
            timer->mEventTarget->IsOnCurrentThread(&isOnCurrentThread);
        if (NS_SUCCEEDED(rv) && isOnCurrentThread) {
          timeStamp = timer->mTimeout;
          break;
        }
      }

      if (++index > aSearchBound) {
        // Track the currently highest timeout so that we can bail out when we
        // reach the bound or when we find a timer for the current thread.
        // This won't give accurate information if we stop before finding
        // any timer for the current thread, but at least won't report too
        // long idle period.
        timeStamp = timer->mTimeout;
        break;
      }
    }

    std::pop_heap(mTimers.begin(), end, Entry::UniquePtrLessThan);
    --end;
  }

  while (end != mTimers.end()) {
    ++end;
    std::push_heap(mTimers.begin(), end, Entry::UniquePtrLessThan);
  }

#ifdef DEBUG
  if (!mTimers.IsEmpty()) {
    if (firstTimeStamp != mTimers[0]->Timeout()) {
      TimeStamp now = TimeStamp::Now();
      printf_stderr(
          "firstTimeStamp %f, mTimers[0]->Timeout() %f, "
          "initialFirstTimer %p, current first %p\n",
          (firstTimeStamp - now).ToMilliseconds(),
          (mTimers[0]->Timeout() - now).ToMilliseconds(), initialFirstEntry,
          mTimers[0].get());
    }
  }
  MOZ_ASSERT_IF(!mTimers.IsEmpty(), firstTimeStamp == mTimers[0]->Timeout());
#endif

  return timeStamp;
}

// This function must be called from within a lock
bool TimerThread::AddTimerInternal(nsTimerImpl* aTimer) {
  mMonitor.AssertCurrentThreadOwns();
  if (mShutdown) {
    return false;
  }

  TimeStamp now = TimeStamp::Now();

  UniquePtr<Entry>* entry = mTimers.AppendElement(
      MakeUnique<Entry>(now, aTimer->mTimeout, aTimer), mozilla::fallible);
  if (!entry) {
    return false;
  }

  std::push_heap(mTimers.begin(), mTimers.end(), Entry::UniquePtrLessThan);

#ifdef MOZ_TASK_TRACER
  // Caller of AddTimer is the parent task of its timer event, so we store the
  // TraceInfo here for later used.
  aTimer->GetTLSTraceInfo();
#endif

  return true;
}

bool TimerThread::RemoveTimerInternal(nsTimerImpl* aTimer) {
  mMonitor.AssertCurrentThreadOwns();
  if (!aTimer || !aTimer->mHolder) {
    return false;
  }
  aTimer->mHolder->Forget(aTimer);
  return true;
}

void TimerThread::RemoveLeadingCanceledTimersInternal() {
  mMonitor.AssertCurrentThreadOwns();

  // Move all canceled timers from the front of the list to
  // the back of the list using std::pop_heap().  We do this
  // without actually removing them from the list so we can
  // modify the nsTArray in a single bulk operation.
  auto sortedEnd = mTimers.end();
  while (sortedEnd != mTimers.begin() && !mTimers[0]->Value()) {
    std::pop_heap(mTimers.begin(), sortedEnd, Entry::UniquePtrLessThan);
    --sortedEnd;
  }

  // If there were no canceled timers then we are done.
  if (sortedEnd == mTimers.end()) {
    return;
  }

  // Finally, remove the canceled timers from the back of the
  // nsTArray.  Note, since std::pop_heap() uses iterators
  // we must convert to nsTArray indices and number of
  // elements here.
  mTimers.RemoveElementsAt(sortedEnd - mTimers.begin(),
                           mTimers.end() - sortedEnd);
}

void TimerThread::RemoveFirstTimerInternal() {
  mMonitor.AssertCurrentThreadOwns();
  MOZ_ASSERT(!mTimers.IsEmpty());
  std::pop_heap(mTimers.begin(), mTimers.end(), Entry::UniquePtrLessThan);
  mTimers.RemoveLastElement();
}

already_AddRefed<nsTimerImpl> TimerThread::PostTimerEvent(
    already_AddRefed<nsTimerImpl> aTimerRef) {
  mMonitor.AssertCurrentThreadOwns();

  RefPtr<nsTimerImpl> timer(aTimerRef);
  if (!timer->mEventTarget) {
    NS_ERROR("Attempt to post timer event to NULL event target");
    return timer.forget();
  }

  // XXX we may want to reuse this nsTimerEvent in the case of repeating timers.

  // Since we already addref'd 'timer', we don't need to addref here.
  // We will release either in ~nsTimerEvent(), or pass the reference back to
  // the caller. We need to copy the generation number from this timer into the
  // event, so we can avoid firing a timer that was re-initialized after being
  // canceled.

#ifdef MOZ_TASK_TRACER
  // During the dispatch of TimerEvent, we overwrite the current TraceInfo
  // partially with the info saved in timer earlier, and restore it back by
  // AutoSaveCurTraceInfo.
  AutoSaveCurTraceInfo saveCurTraceInfo;
  (timer->GetTracedTask()).SetTLSTraceInfo();
#endif

  nsCOMPtr<nsIEventTarget> target = timer->mEventTarget;

  void* p = nsTimerEvent::operator new(sizeof(nsTimerEvent));
  if (!p) {
    return timer.forget();
  }
  RefPtr<nsTimerEvent> event =
      ::new (KnownNotNull, p) nsTimerEvent(timer.forget());

  nsresult rv;
  {
    // We release mMonitor around the Dispatch because if this timer is targeted
    // at the TimerThread we'll deadlock.
    MonitorAutoUnlock unlock(mMonitor);
    rv = target->Dispatch(event, NS_DISPATCH_NORMAL);
  }

  if (NS_FAILED(rv)) {
    timer = event->ForgetTimer();
    RemoveTimerInternal(timer);
    return timer.forget();
  }

  return nullptr;
}

void TimerThread::DoBeforeSleep() {
  // Mainthread
  MonitorAutoLock lock(mMonitor);
  mSleeping = true;
}

// Note: wake may be notified without preceding sleep notification
void TimerThread::DoAfterSleep() {
  // Mainthread
  MonitorAutoLock lock(mMonitor);
  mSleeping = false;

  // Wake up the timer thread to re-process the array to ensure the sleep delay
  // is correct, and fire any expired timers (perhaps quite a few)
  mNotified = true;
  mMonitor.Notify();
}

NS_IMETHODIMP
TimerThread::Observe(nsISupports* /* aSubject */, const char* aTopic,
                     const char16_t* /* aData */) {
  if (strcmp(aTopic, "sleep_notification") == 0 ||
      strcmp(aTopic, "suspend_process_notification") == 0) {
    DoBeforeSleep();
  } else if (strcmp(aTopic, "wake_notification") == 0 ||
             strcmp(aTopic, "resume_process_notification") == 0) {
    DoAfterSleep();
  }

  return NS_OK;
}

uint32_t TimerThread::AllowedEarlyFiringMicroseconds() const {
  return mAllowedEarlyFiringMicroseconds;
}