DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Mercurial (d09edbe2abfe)

VCS Links

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */

#if !defined(MozPromise_h_)
#  define MozPromise_h_

#  include "mozilla/Logging.h"
#  include "mozilla/Maybe.h"
#  include "mozilla/Mutex.h"
#  include "mozilla/Monitor.h"
#  include "mozilla/RefPtr.h"
#  include "mozilla/Tuple.h"
#  include "mozilla/TypeTraits.h"
#  include "mozilla/Variant.h"

#  include "nsISerialEventTarget.h"
#  include "nsTArray.h"
#  include "nsThreadUtils.h"

#  ifdef MOZ_WIDGET_ANDROID
#    include "mozilla/jni/GeckoResultUtils.h"
#  endif

#  if MOZ_DIAGNOSTIC_ASSERT_ENABLED
#    define PROMISE_DEBUG
#  endif

#  ifdef PROMISE_DEBUG
#    define PROMISE_ASSERT MOZ_RELEASE_ASSERT
#  else
#    define PROMISE_ASSERT(...) \
      do {                      \
      } while (0)
#  endif

namespace mozilla {

extern LazyLogModule gMozPromiseLog;

#  define PROMISE_LOG(x, ...) \
    MOZ_LOG(gMozPromiseLog, mozilla::LogLevel::Debug, (x, ##__VA_ARGS__))

namespace detail {
template <typename F>
struct MethodTraitsHelper : MethodTraitsHelper<decltype(&F::operator())> {};
template <typename ThisType, typename Ret, typename... ArgTypes>
struct MethodTraitsHelper<Ret (ThisType::*)(ArgTypes...)> {
  using ReturnType = Ret;
  static const size_t ArgSize = sizeof...(ArgTypes);
};
template <typename ThisType, typename Ret, typename... ArgTypes>
struct MethodTraitsHelper<Ret (ThisType::*)(ArgTypes...) const> {
  using ReturnType = Ret;
  static const size_t ArgSize = sizeof...(ArgTypes);
};
template <typename ThisType, typename Ret, typename... ArgTypes>
struct MethodTraitsHelper<Ret (ThisType::*)(ArgTypes...) volatile> {
  using ReturnType = Ret;
  static const size_t ArgSize = sizeof...(ArgTypes);
};
template <typename ThisType, typename Ret, typename... ArgTypes>
struct MethodTraitsHelper<Ret (ThisType::*)(ArgTypes...) const volatile> {
  using ReturnType = Ret;
  static const size_t ArgSize = sizeof...(ArgTypes);
};
template <typename T>
struct MethodTrait : MethodTraitsHelper<typename RemoveReference<T>::Type> {};

}  // namespace detail

template <typename MethodType>
using TakesArgument =
    IntegralConstant<bool, detail::MethodTrait<MethodType>::ArgSize != 0>;

template <typename MethodType, typename TargetType>
using ReturnTypeIs =
    IsConvertible<typename detail::MethodTrait<MethodType>::ReturnType,
                  TargetType>;

template <typename ResolveValueT, typename RejectValueT, bool IsExclusive>
class MozPromise;

template <typename Return>
struct IsMozPromise : FalseType {};

template <typename ResolveValueT, typename RejectValueT, bool IsExclusive>
struct IsMozPromise<MozPromise<ResolveValueT, RejectValueT, IsExclusive>>
    : TrueType {};

/*
 * A promise manages an asynchronous request that may or may not be able to be
 * fulfilled immediately. When an API returns a promise, the consumer may attach
 * callbacks to be invoked (asynchronously, on a specified thread) when the
 * request is either completed (resolved) or cannot be completed (rejected).
 * Whereas JS promise callbacks are dispatched from Microtask checkpoints,
 * MozPromises resolution/rejection make a normal round-trip through the event
 * loop, which simplifies their ordering semantics relative to other native
 * code.
 *
 * MozPromises attempt to mirror the spirit of JS Promises to the extent that
 * is possible (and desirable) in C++. While the intent is that MozPromises
 * feel familiar to programmers who are accustomed to their JS-implemented
 * cousin, we don't shy away from imposing restrictions and adding features that
 * make sense for the use cases we encounter.
 *
 * A MozPromise is ThreadSafe, and may be ->Then()ed on any thread. The Then()
 * call accepts resolve and reject callbacks, and returns a magic object which
 * will be implicitly converted to a MozPromise::Request or a MozPromise object
 * depending on how the return value is used. The magic object serves several
 * purposes for the consumer.
 *
 *   (1) When converting to a MozPromise::Request, it allows the caller to
 *       cancel the delivery of the resolve/reject value if it has not already
 *       occurred, via Disconnect() (this must be done on the target thread to
 *       avoid racing).
 *
 *   (2) When converting to a MozPromise (which is called a completion promise),
 *       it allows promise chaining so ->Then() can be called again to attach
 *       more resolve and reject callbacks. If the resolve/reject callback
 *       returns a new MozPromise, that promise is chained to the completion
 *       promise, such that its resolve/reject value will be forwarded along
 *       when it arrives. If the resolve/reject callback returns void, the
 *       completion promise is resolved/rejected with the same value that was
 *       passed to the callback.
 *
 * The MozPromise APIs skirt traditional XPCOM convention by returning nsRefPtrs
 * (rather than already_AddRefed) from various methods. This is done to allow
 * elegant chaining of calls without cluttering up the code with intermediate
 * variables, and without introducing separate API variants for callers that
 * want a return value (from, say, ->Then()) from those that don't.
 *
 * When IsExclusive is true, the MozPromise does a release-mode assertion that
 * there is at most one call to either Then(...) or ChainTo(...).
 */

class MozPromiseRefcountable {
 public:
  NS_INLINE_DECL_THREADSAFE_REFCOUNTING(MozPromiseRefcountable)
 protected:
  virtual ~MozPromiseRefcountable() {}
};

class MozPromiseBase : public MozPromiseRefcountable {
 public:
  virtual void AssertIsDead() = 0;
};

template <typename T>
class MozPromiseHolder;
template <typename T>
class MozPromiseRequestHolder;
template <typename ResolveValueT, typename RejectValueT, bool IsExclusive>
class MozPromise : public MozPromiseBase {
  static const uint32_t sMagic = 0xcecace11;

  // Return a |T&&| to enable move when IsExclusive is true or
  // a |const T&| to enforce copy otherwise.
  template <typename T,
            typename R = typename Conditional<IsExclusive, T&&, const T&>::Type>
  static R MaybeMove(T& aX) {
    return static_cast<R>(aX);
  }

 public:
  typedef ResolveValueT ResolveValueType;
  typedef RejectValueT RejectValueType;
  class ResolveOrRejectValue {
   public:
    template <typename ResolveValueType_>
    void SetResolve(ResolveValueType_&& aResolveValue) {
      MOZ_ASSERT(IsNothing());
      mValue = Storage(VariantIndex<ResolveIndex>{},
                       std::forward<ResolveValueType_>(aResolveValue));
    }

    template <typename RejectValueType_>
    void SetReject(RejectValueType_&& aRejectValue) {
      MOZ_ASSERT(IsNothing());
      mValue = Storage(VariantIndex<RejectIndex>{},
                       std::forward<RejectValueType_>(aRejectValue));
    }

    template <typename ResolveValueType_>
    static ResolveOrRejectValue MakeResolve(ResolveValueType_&& aResolveValue) {
      ResolveOrRejectValue val;
      val.SetResolve(std::forward<ResolveValueType_>(aResolveValue));
      return val;
    }

    template <typename RejectValueType_>
    static ResolveOrRejectValue MakeReject(RejectValueType_&& aRejectValue) {
      ResolveOrRejectValue val;
      val.SetReject(std::forward<RejectValueType_>(aRejectValue));
      return val;
    }

    bool IsResolve() const { return mValue.template is<ResolveIndex>(); }
    bool IsReject() const { return mValue.template is<RejectIndex>(); }
    bool IsNothing() const { return mValue.template is<NothingIndex>(); }

    const ResolveValueType& ResolveValue() const {
      return mValue.template as<ResolveIndex>();
    }
    ResolveValueType& ResolveValue() {
      return mValue.template as<ResolveIndex>();
    }
    const RejectValueType& RejectValue() const {
      return mValue.template as<RejectIndex>();
    }
    RejectValueType& RejectValue() { return mValue.template as<RejectIndex>(); }

   private:
    enum { NothingIndex, ResolveIndex, RejectIndex };
    using Storage = Variant<Nothing, ResolveValueType, RejectValueType>;
    Storage mValue = Storage(VariantIndex<NothingIndex>{});
  };

 protected:
  // MozPromise is the public type, and never constructed directly. Construct
  // a MozPromise::Private, defined below.
  MozPromise(const char* aCreationSite, bool aIsCompletionPromise)
      : mCreationSite(aCreationSite),
        mMutex("MozPromise Mutex"),
        mHaveRequest(false),
        mIsCompletionPromise(aIsCompletionPromise)
#  ifdef PROMISE_DEBUG
        ,
        mMagic4(&mMutex)
#  endif
  {
    PROMISE_LOG("%s creating MozPromise (%p)", mCreationSite, this);
  }

 public:
  // MozPromise::Private allows us to separate the public interface (upon which
  // consumers of the promise may invoke methods like Then()) from the private
  // interface (upon which the creator of the promise may invoke Resolve() or
  // Reject()). APIs should create and store a MozPromise::Private (usually
  // via a MozPromiseHolder), and return a MozPromise to consumers.
  //
  // NB: We can include the definition of this class inline once B2G ICS is
  // gone.
  class Private;

  template <typename ResolveValueType_>
  static MOZ_MUST_USE RefPtr<MozPromise> CreateAndResolve(
      ResolveValueType_&& aResolveValue, const char* aResolveSite) {
    static_assert(IsConvertible<ResolveValueType_, ResolveValueT>::value,
                  "Resolve() argument must be implicitly convertible to "
                  "MozPromise's ResolveValueT");
    RefPtr<typename MozPromise::Private> p =
        new MozPromise::Private(aResolveSite);
    p->Resolve(std::forward<ResolveValueType_>(aResolveValue), aResolveSite);
    return p.forget();
  }

  template <typename RejectValueType_>
  static MOZ_MUST_USE RefPtr<MozPromise> CreateAndReject(
      RejectValueType_&& aRejectValue, const char* aRejectSite) {
    static_assert(IsConvertible<RejectValueType_, RejectValueT>::value,
                  "Reject() argument must be implicitly convertible to "
                  "MozPromise's RejectValueT");
    RefPtr<typename MozPromise::Private> p =
        new MozPromise::Private(aRejectSite);
    p->Reject(std::forward<RejectValueType_>(aRejectValue), aRejectSite);
    return p.forget();
  }

  template <typename ResolveOrRejectValueType_>
  static MOZ_MUST_USE RefPtr<MozPromise> CreateAndResolveOrReject(
      ResolveOrRejectValueType_&& aValue, const char* aSite) {
    RefPtr<typename MozPromise::Private> p = new MozPromise::Private(aSite);
    p->ResolveOrReject(std::forward<ResolveOrRejectValueType_>(aValue), aSite);
    return p.forget();
  }

  typedef MozPromise<nsTArray<ResolveValueType>, RejectValueType, IsExclusive>
      AllPromiseType;

 private:
  class AllPromiseHolder : public MozPromiseRefcountable {
   public:
    explicit AllPromiseHolder(size_t aDependentPromises)
        : mPromise(new typename AllPromiseType::Private(__func__)),
          mOutstandingPromises(aDependentPromises) {
      MOZ_ASSERT(aDependentPromises > 0);
      mResolveValues.SetLength(aDependentPromises);
    }

    void Resolve(size_t aIndex, ResolveValueType&& aResolveValue) {
      if (!mPromise) {
        // Already rejected.
        return;
      }

      mResolveValues[aIndex].emplace(std::move(aResolveValue));
      if (--mOutstandingPromises == 0) {
        nsTArray<ResolveValueType> resolveValues;
        resolveValues.SetCapacity(mResolveValues.Length());
        for (auto&& resolveValue : mResolveValues) {
          resolveValues.AppendElement(std::move(resolveValue.ref()));
        }

        mPromise->Resolve(std::move(resolveValues), __func__);
        mPromise = nullptr;
        mResolveValues.Clear();
      }
    }

    void Reject(RejectValueType&& aRejectValue) {
      if (!mPromise) {
        // Already rejected.
        return;
      }

      mPromise->Reject(std::move(aRejectValue), __func__);
      mPromise = nullptr;
      mResolveValues.Clear();
    }

    AllPromiseType* Promise() { return mPromise; }

   private:
    nsTArray<Maybe<ResolveValueType>> mResolveValues;
    RefPtr<typename AllPromiseType::Private> mPromise;
    size_t mOutstandingPromises;
  };

 public:
  static MOZ_MUST_USE RefPtr<AllPromiseType> All(
      nsISerialEventTarget* aProcessingTarget,
      nsTArray<RefPtr<MozPromise>>& aPromises) {
    if (aPromises.Length() == 0) {
      return AllPromiseType::CreateAndResolve(nsTArray<ResolveValueType>(),
                                              __func__);
    }

    RefPtr<AllPromiseHolder> holder = new AllPromiseHolder(aPromises.Length());
    RefPtr<AllPromiseType> promise = holder->Promise();
    for (size_t i = 0; i < aPromises.Length(); ++i) {
      aPromises[i]->Then(
          aProcessingTarget, __func__,
          [holder, i](ResolveValueType aResolveValue) -> void {
            holder->Resolve(i, std::move(aResolveValue));
          },
          [holder](RejectValueType aRejectValue) -> void {
            holder->Reject(std::move(aRejectValue));
          });
    }
    return promise;
  }

  class Request : public MozPromiseRefcountable {
   public:
    virtual void Disconnect() = 0;

   protected:
    Request() : mComplete(false), mDisconnected(false) {}
    virtual ~Request() {}

    bool mComplete;
    bool mDisconnected;
  };

 protected:
  /*
   * A ThenValue tracks a single consumer waiting on the promise. When a
   * consumer invokes promise->Then(...), a ThenValue is created. Once the
   * Promise is resolved or rejected, a {Resolve,Reject}Runnable is dispatched,
   * which invokes the resolve/reject method and then deletes the ThenValue.
   */
  class ThenValueBase : public Request {
    friend class MozPromise;
    static const uint32_t sMagic = 0xfadece11;

   public:
    class ResolveOrRejectRunnable : public CancelableRunnable {
     public:
      ResolveOrRejectRunnable(ThenValueBase* aThenValue, MozPromise* aPromise)
          : CancelableRunnable(
                "MozPromise::ThenValueBase::ResolveOrRejectRunnable"),
            mThenValue(aThenValue),
            mPromise(aPromise) {
        MOZ_DIAGNOSTIC_ASSERT(!mPromise->IsPending());
      }

      ~ResolveOrRejectRunnable() {
        if (mThenValue) {
          mThenValue->AssertIsDead();
        }
      }

      NS_IMETHOD Run() override {
        PROMISE_LOG("ResolveOrRejectRunnable::Run() [this=%p]", this);
        mThenValue->DoResolveOrReject(mPromise->Value());
        mThenValue = nullptr;
        mPromise = nullptr;
        return NS_OK;
      }

      nsresult Cancel() override { return Run(); }

     private:
      RefPtr<ThenValueBase> mThenValue;
      RefPtr<MozPromise> mPromise;
    };

    ThenValueBase(nsISerialEventTarget* aResponseTarget, const char* aCallSite)
        : mResponseTarget(aResponseTarget), mCallSite(aCallSite) {
      MOZ_ASSERT(aResponseTarget);
    }

#  ifdef PROMISE_DEBUG
    ~ThenValueBase() {
      mMagic1 = 0;
      mMagic2 = 0;
    }
#  endif

    void AssertIsDead() {
      PROMISE_ASSERT(mMagic1 == sMagic && mMagic2 == sMagic);
      // We want to assert that this ThenValues is dead - that is to say, that
      // there are no consumers waiting for the result. In the case of a normal
      // ThenValue, we check that it has been disconnected, which is the way
      // that the consumer signals that it no longer wishes to hear about the
      // result. If this ThenValue has a completion promise (which is mutually
      // exclusive with being disconnectable), we recursively assert that every
      // ThenValue associated with the completion promise is dead.
      if (MozPromiseBase* p = CompletionPromise()) {
        p->AssertIsDead();
      } else {
        MOZ_DIAGNOSTIC_ASSERT(Request::mDisconnected);
      }
    }

    void Dispatch(MozPromise* aPromise) {
      PROMISE_ASSERT(mMagic1 == sMagic && mMagic2 == sMagic);
      aPromise->mMutex.AssertCurrentThreadOwns();
      MOZ_ASSERT(!aPromise->IsPending());

      nsCOMPtr<nsIRunnable> r = new ResolveOrRejectRunnable(this, aPromise);
      PROMISE_LOG(
          "%s Then() call made from %s [Runnable=%p, Promise=%p, ThenValue=%p]",
          aPromise->mValue.IsResolve() ? "Resolving" : "Rejecting", mCallSite,
          r.get(), aPromise, this);

      // Promise consumers are allowed to disconnect the Request object and
      // then shut down the thread or task queue that the promise result would
      // be dispatched on. So we unfortunately can't assert that promise
      // dispatch succeeds. :-(
      mResponseTarget->Dispatch(r.forget());
    }

    void Disconnect() override {
      MOZ_DIAGNOSTIC_ASSERT(mResponseTarget->IsOnCurrentThread());
      MOZ_DIAGNOSTIC_ASSERT(!Request::mComplete);
      Request::mDisconnected = true;

      // We could support rejecting the completion promise on disconnection, but
      // then we'd need to have some sort of default reject value. The use cases
      // of disconnection and completion promise chaining seem pretty
      // orthogonal, so let's use assert against it.
      MOZ_DIAGNOSTIC_ASSERT(!CompletionPromise());
    }

   protected:
    virtual MozPromiseBase* CompletionPromise() const = 0;
    virtual void DoResolveOrRejectInternal(ResolveOrRejectValue& aValue) = 0;

    void DoResolveOrReject(ResolveOrRejectValue& aValue) {
      PROMISE_ASSERT(mMagic1 == sMagic && mMagic2 == sMagic);
      MOZ_DIAGNOSTIC_ASSERT(mResponseTarget->IsOnCurrentThread());
      Request::mComplete = true;
      if (Request::mDisconnected) {
        PROMISE_LOG(
            "ThenValue::DoResolveOrReject disconnected - bailing out [this=%p]",
            this);
        return;
      }

      // Invoke the resolve or reject method.
      DoResolveOrRejectInternal(aValue);
    }

    nsCOMPtr<nsISerialEventTarget>
        mResponseTarget;  // May be released on any thread.
#  ifdef PROMISE_DEBUG
    uint32_t mMagic1 = sMagic;
#  endif
    const char* mCallSite;
#  ifdef PROMISE_DEBUG
    uint32_t mMagic2 = sMagic;
#  endif
  };

  /*
   * We create two overloads for invoking Resolve/Reject Methods so as to
   * make the resolve/reject value argument "optional".
   */
  template <typename ThisType, typename MethodType, typename ValueType>
  static typename EnableIf<
      TakesArgument<MethodType>::value,
      typename detail::MethodTrait<MethodType>::ReturnType>::Type
  InvokeMethod(ThisType* aThisVal, MethodType aMethod, ValueType&& aValue) {
    return (aThisVal->*aMethod)(std::forward<ValueType>(aValue));
  }

  template <typename ThisType, typename MethodType, typename ValueType>
  static typename EnableIf<
      !TakesArgument<MethodType>::value,
      typename detail::MethodTrait<MethodType>::ReturnType>::Type
  InvokeMethod(ThisType* aThisVal, MethodType aMethod, ValueType&& aValue) {
    return (aThisVal->*aMethod)();
  }

  // Called when promise chaining is supported.
  template <bool SupportChaining, typename ThisType, typename MethodType,
            typename ValueType, typename CompletionPromiseType>
  static typename EnableIf<SupportChaining, void>::Type InvokeCallbackMethod(
      ThisType* aThisVal, MethodType aMethod, ValueType&& aValue,
      CompletionPromiseType&& aCompletionPromise) {
    auto p = InvokeMethod(aThisVal, aMethod, std::forward<ValueType>(aValue));
    if (aCompletionPromise) {
      p->ChainTo(aCompletionPromise.forget(), "<chained completion promise>");
    }
  }

  // Called when promise chaining is not supported.
  template <bool SupportChaining, typename ThisType, typename MethodType,
            typename ValueType, typename CompletionPromiseType>
  static typename EnableIf<!SupportChaining, void>::Type InvokeCallbackMethod(
      ThisType* aThisVal, MethodType aMethod, ValueType&& aValue,
      CompletionPromiseType&& aCompletionPromise) {
    MOZ_DIAGNOSTIC_ASSERT(
        !aCompletionPromise,
        "Can't do promise chaining for a non-promise-returning method.");
    InvokeMethod(aThisVal, aMethod, std::forward<ValueType>(aValue));
  }

  template <typename>
  class ThenCommand;

  template <typename...>
  class ThenValue;

  template <typename ThisType, typename ResolveMethodType,
            typename RejectMethodType>
  class ThenValue<ThisType*, ResolveMethodType, RejectMethodType>
      : public ThenValueBase {
    friend class ThenCommand<ThenValue>;

    using R1 = typename RemoveSmartPointer<
        typename detail::MethodTrait<ResolveMethodType>::ReturnType>::Type;
    using R2 = typename RemoveSmartPointer<
        typename detail::MethodTrait<RejectMethodType>::ReturnType>::Type;
    using SupportChaining = IntegralConstant<bool, IsMozPromise<R1>::value &&
                                                       IsSame<R1, R2>::value>;

    // Fall back to MozPromise when promise chaining is not supported to make
    // code compile.
    using PromiseType =
        typename Conditional<SupportChaining::value, R1, MozPromise>::Type;

   public:
    ThenValue(nsISerialEventTarget* aResponseTarget, ThisType* aThisVal,
              ResolveMethodType aResolveMethod, RejectMethodType aRejectMethod,
              const char* aCallSite)
        : ThenValueBase(aResponseTarget, aCallSite),
          mThisVal(aThisVal),
          mResolveMethod(aResolveMethod),
          mRejectMethod(aRejectMethod) {}

    void Disconnect() override {
      ThenValueBase::Disconnect();

      // If a Request has been disconnected, we don't guarantee that the
      // resolve/reject runnable will be dispatched. Null out our refcounted
      // this-value now so that it's released predictably on the dispatch
      // thread.
      mThisVal = nullptr;
    }

   protected:
    MozPromiseBase* CompletionPromise() const override {
      return mCompletionPromise;
    }

    void DoResolveOrRejectInternal(ResolveOrRejectValue& aValue) override {
      if (aValue.IsResolve()) {
        InvokeCallbackMethod<SupportChaining::value>(
            mThisVal.get(), mResolveMethod, MaybeMove(aValue.ResolveValue()),
            std::move(mCompletionPromise));
      } else {
        InvokeCallbackMethod<SupportChaining::value>(
            mThisVal.get(), mRejectMethod, MaybeMove(aValue.RejectValue()),
            std::move(mCompletionPromise));
      }

      // Null out mThisVal after invoking the callback so that any references
      // are released predictably on the dispatch thread. Otherwise, it would be
      // released on whatever thread last drops its reference to the ThenValue,
      // which may or may not be ok.
      mThisVal = nullptr;
    }

   private:
    RefPtr<ThisType>
        mThisVal;  // Only accessed and refcounted on dispatch thread.
    ResolveMethodType mResolveMethod;
    RejectMethodType mRejectMethod;
    RefPtr<typename PromiseType::Private> mCompletionPromise;
  };

  template <typename ThisType, typename ResolveRejectMethodType>
  class ThenValue<ThisType*, ResolveRejectMethodType> : public ThenValueBase {
    friend class ThenCommand<ThenValue>;

    using R1 = typename RemoveSmartPointer<typename detail::MethodTrait<
        ResolveRejectMethodType>::ReturnType>::Type;
    using SupportChaining = IntegralConstant<bool, IsMozPromise<R1>::value>;

    // Fall back to MozPromise when promise chaining is not supported to make
    // code compile.
    using PromiseType =
        typename Conditional<SupportChaining::value, R1, MozPromise>::Type;

   public:
    ThenValue(nsISerialEventTarget* aResponseTarget, ThisType* aThisVal,
              ResolveRejectMethodType aResolveRejectMethod,
              const char* aCallSite)
        : ThenValueBase(aResponseTarget, aCallSite),
          mThisVal(aThisVal),
          mResolveRejectMethod(aResolveRejectMethod) {}

    void Disconnect() override {
      ThenValueBase::Disconnect();

      // If a Request has been disconnected, we don't guarantee that the
      // resolve/reject runnable will be dispatched. Null out our refcounted
      // this-value now so that it's released predictably on the dispatch
      // thread.
      mThisVal = nullptr;
    }

   protected:
    MozPromiseBase* CompletionPromise() const override {
      return mCompletionPromise;
    }

    void DoResolveOrRejectInternal(ResolveOrRejectValue& aValue) override {
      InvokeCallbackMethod<SupportChaining::value>(
          mThisVal.get(), mResolveRejectMethod, MaybeMove(aValue),
          std::move(mCompletionPromise));

      // Null out mThisVal after invoking the callback so that any references
      // are released predictably on the dispatch thread. Otherwise, it would be
      // released on whatever thread last drops its reference to the ThenValue,
      // which may or may not be ok.
      mThisVal = nullptr;
    }

   private:
    RefPtr<ThisType>
        mThisVal;  // Only accessed and refcounted on dispatch thread.
    ResolveRejectMethodType mResolveRejectMethod;
    RefPtr<typename PromiseType::Private> mCompletionPromise;
  };

  // NB: We could use std::function here instead of a template if it were
  // supported. :-(
  template <typename ResolveFunction, typename RejectFunction>
  class ThenValue<ResolveFunction, RejectFunction> : public ThenValueBase {
    friend class ThenCommand<ThenValue>;

    using R1 = typename RemoveSmartPointer<
        typename detail::MethodTrait<ResolveFunction>::ReturnType>::Type;
    using R2 = typename RemoveSmartPointer<
        typename detail::MethodTrait<RejectFunction>::ReturnType>::Type;
    using SupportChaining = IntegralConstant<bool, IsMozPromise<R1>::value &&
                                                       IsSame<R1, R2>::value>;

    // Fall back to MozPromise when promise chaining is not supported to make
    // code compile.
    using PromiseType =
        typename Conditional<SupportChaining::value, R1, MozPromise>::Type;

   public:
    ThenValue(nsISerialEventTarget* aResponseTarget,
              ResolveFunction&& aResolveFunction,
              RejectFunction&& aRejectFunction, const char* aCallSite)
        : ThenValueBase(aResponseTarget, aCallSite) {
      mResolveFunction.emplace(std::move(aResolveFunction));
      mRejectFunction.emplace(std::move(aRejectFunction));
    }

    void Disconnect() override {
      ThenValueBase::Disconnect();

      // If a Request has been disconnected, we don't guarantee that the
      // resolve/reject runnable will be dispatched. Destroy our callbacks
      // now so that any references in closures are released predictable on
      // the dispatch thread.
      mResolveFunction.reset();
      mRejectFunction.reset();
    }

   protected:
    MozPromiseBase* CompletionPromise() const override {
      return mCompletionPromise;
    }

    void DoResolveOrRejectInternal(ResolveOrRejectValue& aValue) override {
      // Note: The usage of InvokeCallbackMethod here requires that
      // ResolveFunction/RejectFunction are capture-lambdas (i.e. anonymous
      // classes with ::operator()), since it allows us to share code more
      // easily. We could fix this if need be, though it's quite easy to work
      // around by just capturing something.
      if (aValue.IsResolve()) {
        InvokeCallbackMethod<SupportChaining::value>(
            mResolveFunction.ptr(), &ResolveFunction::operator(),
            MaybeMove(aValue.ResolveValue()), std::move(mCompletionPromise));
      } else {
        InvokeCallbackMethod<SupportChaining::value>(
            mRejectFunction.ptr(), &RejectFunction::operator(),
            MaybeMove(aValue.RejectValue()), std::move(mCompletionPromise));
      }

      // Destroy callbacks after invocation so that any references in closures
      // are released predictably on the dispatch thread. Otherwise, they would
      // be released on whatever thread last drops its reference to the
      // ThenValue, which may or may not be ok.
      mResolveFunction.reset();
      mRejectFunction.reset();
    }

   private:
    Maybe<ResolveFunction>
        mResolveFunction;  // Only accessed and deleted on dispatch thread.
    Maybe<RejectFunction>
        mRejectFunction;  // Only accessed and deleted on dispatch thread.
    RefPtr<typename PromiseType::Private> mCompletionPromise;
  };

  template <typename ResolveRejectFunction>
  class ThenValue<ResolveRejectFunction> : public ThenValueBase {
    friend class ThenCommand<ThenValue>;

    using R1 = typename RemoveSmartPointer<
        typename detail::MethodTrait<ResolveRejectFunction>::ReturnType>::Type;
    using SupportChaining = IntegralConstant<bool, IsMozPromise<R1>::value>;

    // Fall back to MozPromise when promise chaining is not supported to make
    // code compile.
    using PromiseType =
        typename Conditional<SupportChaining::value, R1, MozPromise>::Type;

   public:
    ThenValue(nsISerialEventTarget* aResponseTarget,
              ResolveRejectFunction&& aResolveRejectFunction,
              const char* aCallSite)
        : ThenValueBase(aResponseTarget, aCallSite) {
      mResolveRejectFunction.emplace(std::move(aResolveRejectFunction));
    }

    void Disconnect() override {
      ThenValueBase::Disconnect();

      // If a Request has been disconnected, we don't guarantee that the
      // resolve/reject runnable will be dispatched. Destroy our callbacks
      // now so that any references in closures are released predictable on
      // the dispatch thread.
      mResolveRejectFunction.reset();
    }

   protected:
    MozPromiseBase* CompletionPromise() const override {
      return mCompletionPromise;
    }

    void DoResolveOrRejectInternal(ResolveOrRejectValue& aValue) override {
      // Note: The usage of InvokeCallbackMethod here requires that
      // ResolveRejectFunction is capture-lambdas (i.e. anonymous
      // classes with ::operator()), since it allows us to share code more
      // easily. We could fix this if need be, though it's quite easy to work
      // around by just capturing something.
      InvokeCallbackMethod<SupportChaining::value>(
          mResolveRejectFunction.ptr(), &ResolveRejectFunction::operator(),
          MaybeMove(aValue), std::move(mCompletionPromise));

      // Destroy callbacks after invocation so that any references in closures
      // are released predictably on the dispatch thread. Otherwise, they would
      // be released on whatever thread last drops its reference to the
      // ThenValue, which may or may not be ok.
      mResolveRejectFunction.reset();
    }

   private:
    Maybe<ResolveRejectFunction>
        mResolveRejectFunction;  // Only accessed and deleted on dispatch
                                 // thread.
    RefPtr<typename PromiseType::Private> mCompletionPromise;
  };

 public:
  void ThenInternal(already_AddRefed<ThenValueBase> aThenValue,
                    const char* aCallSite) {
    PROMISE_ASSERT(mMagic1 == sMagic && mMagic2 == sMagic &&
                   mMagic3 == sMagic && mMagic4 == &mMutex);
    RefPtr<ThenValueBase> thenValue = aThenValue;
    MutexAutoLock lock(mMutex);
    MOZ_DIAGNOSTIC_ASSERT(
        !IsExclusive || !mHaveRequest,
        "Using an exclusive promise in a non-exclusive fashion");
    mHaveRequest = true;
    PROMISE_LOG("%s invoking Then() [this=%p, aThenValue=%p, isPending=%d]",
                aCallSite, this, thenValue.get(), (int)IsPending());
    if (!IsPending()) {
      thenValue->Dispatch(this);
    } else {
      mThenValues.AppendElement(thenValue.forget());
    }
  }

 protected:
  /*
   * A command object to store all information needed to make a request to
   * the promise. This allows us to delay the request until further use is
   * known (whether it is ->Then() again for more promise chaining or ->Track()
   * to terminate chaining and issue the request).
   *
   * This allows a unified syntax for promise chaining and disconnection
   * and feels more like its JS counterpart.
   */
  template <typename ThenValueType>
  class ThenCommand {
    // Allow Promise1::ThenCommand to access the private constructor,
    // Promise2::ThenCommand(ThenCommand&&).
    template <typename, typename, bool>
    friend class MozPromise;

    using PromiseType = typename ThenValueType::PromiseType;
    using Private = typename PromiseType::Private;

    ThenCommand(const char* aCallSite,
                already_AddRefed<ThenValueType> aThenValue,
                MozPromise* aReceiver)
        : mCallSite(aCallSite), mThenValue(aThenValue), mReceiver(aReceiver) {}

    ThenCommand(ThenCommand&& aOther) = default;

   public:
    ~ThenCommand() {
      // Issue the request now if the return value of Then() is not used.
      if (mThenValue) {
        mReceiver->ThenInternal(mThenValue.forget(), mCallSite);
      }
    }

    // Allow RefPtr<MozPromise> p = somePromise->Then();
    //       p->Then(thread1, ...);
    //       p->Then(thread2, ...);
    operator RefPtr<PromiseType>() {
      static_assert(
          ThenValueType::SupportChaining::value,
          "The resolve/reject callback needs to return a RefPtr<MozPromise> "
          "in order to do promise chaining.");

      // mCompletionPromise must be created before ThenInternal() to avoid race.
      RefPtr<Private> p =
          new Private("<completion promise>", true /* aIsCompletionPromise */);
      mThenValue->mCompletionPromise = p;
      // Note ThenInternal() might nullify mCompletionPromise before return.
      // So we need to return p instead of mCompletionPromise.
      mReceiver->ThenInternal(mThenValue.forget(), mCallSite);
      return p;
    }

    template <typename... Ts>
    auto Then(Ts&&... aArgs)
        -> decltype(DeclVal<PromiseType>().Then(std::forward<Ts>(aArgs)...)) {
      return static_cast<RefPtr<PromiseType>>(*this)->Then(
          std::forward<Ts>(aArgs)...);
    }

    void Track(MozPromiseRequestHolder<MozPromise>& aRequestHolder) {
      aRequestHolder.Track(do_AddRef(mThenValue));
      mReceiver->ThenInternal(mThenValue.forget(), mCallSite);
    }

    // Allow calling ->Then() again for more promise chaining or ->Track() to
    // end chaining and track the request for future disconnection.
    ThenCommand* operator->() { return this; }

   private:
    const char* mCallSite;
    RefPtr<ThenValueType> mThenValue;
    RefPtr<MozPromise> mReceiver;
  };

 public:
  template <typename ThisType, typename... Methods,
            typename ThenValueType = ThenValue<ThisType*, Methods...>,
            typename ReturnType = ThenCommand<ThenValueType>>
  ReturnType Then(nsISerialEventTarget* aResponseTarget, const char* aCallSite,
                  ThisType* aThisVal, Methods... aMethods) {
    RefPtr<ThenValueType> thenValue =
        new ThenValueType(aResponseTarget, aThisVal, aMethods..., aCallSite);
    return ReturnType(aCallSite, thenValue.forget(), this);
  }

  template <typename... Functions,
            typename ThenValueType = ThenValue<Functions...>,
            typename ReturnType = ThenCommand<ThenValueType>>
  ReturnType Then(nsISerialEventTarget* aResponseTarget, const char* aCallSite,
                  Functions&&... aFunctions) {
    RefPtr<ThenValueType> thenValue =
        new ThenValueType(aResponseTarget, std::move(aFunctions)..., aCallSite);
    return ReturnType(aCallSite, thenValue.forget(), this);
  }

  void ChainTo(already_AddRefed<Private> aChainedPromise,
               const char* aCallSite) {
    MutexAutoLock lock(mMutex);
    MOZ_DIAGNOSTIC_ASSERT(
        !IsExclusive || !mHaveRequest,
        "Using an exclusive promise in a non-exclusive fashion");
    mHaveRequest = true;
    RefPtr<Private> chainedPromise = aChainedPromise;
    PROMISE_LOG(
        "%s invoking Chain() [this=%p, chainedPromise=%p, isPending=%d]",
        aCallSite, this, chainedPromise.get(), (int)IsPending());
    if (!IsPending()) {
      ForwardTo(chainedPromise);
    } else {
      mChainedPromises.AppendElement(chainedPromise);
    }
  }

#  ifdef MOZ_WIDGET_ANDROID
  // Creates a C++ MozPromise from its Java counterpart, GeckoResult.
  static MOZ_MUST_USE RefPtr<MozPromise> FromGeckoResult(
      java::GeckoResult::Param aGeckoResult) {
    using jni::GeckoResultCallback;
    RefPtr<Private> p = new Private("GeckoResult Glue", false);
    auto resolve = GeckoResultCallback::CreateAndAttach<ResolveValueType>(
        [p](ResolveValueType aArg) { p->Resolve(aArg, __func__); });
    auto reject = GeckoResultCallback::CreateAndAttach<RejectValueType>(
        [p](RejectValueType aArg) { p->Reject(aArg, __func__); });
    aGeckoResult->NativeThen(resolve, reject);
    return p;
  }
#  endif

  // Note we expose the function AssertIsDead() instead of IsDead() since
  // checking IsDead() is a data race in the situation where the request is not
  // dead. Therefore we enforce the form |Assert(IsDead())| by exposing
  // AssertIsDead() only.
  void AssertIsDead() override {
    PROMISE_ASSERT(mMagic1 == sMagic && mMagic2 == sMagic &&
                   mMagic3 == sMagic && mMagic4 == &mMutex);
    MutexAutoLock lock(mMutex);
    for (auto&& then : mThenValues) {
      then->AssertIsDead();
    }
    for (auto&& chained : mChainedPromises) {
      chained->AssertIsDead();
    }
  }

 protected:
  bool IsPending() const { return mValue.IsNothing(); }

  ResolveOrRejectValue& Value() {
    // This method should only be called once the value has stabilized. As
    // such, we don't need to acquire the lock here.
    MOZ_DIAGNOSTIC_ASSERT(!IsPending());
    return mValue;
  }

  void DispatchAll() {
    mMutex.AssertCurrentThreadOwns();
    for (auto&& thenValue : mThenValues) {
      thenValue->Dispatch(this);
    }
    mThenValues.Clear();

    for (auto&& chainedPromise : mChainedPromises) {
      ForwardTo(chainedPromise);
    }
    mChainedPromises.Clear();
  }

  void ForwardTo(Private* aOther) {
    MOZ_ASSERT(!IsPending());
    if (mValue.IsResolve()) {
      aOther->Resolve(MaybeMove(mValue.ResolveValue()), "<chained promise>");
    } else {
      aOther->Reject(MaybeMove(mValue.RejectValue()), "<chained promise>");
    }
  }

  virtual ~MozPromise() {
    PROMISE_LOG("MozPromise::~MozPromise [this=%p]", this);
    AssertIsDead();
    // We can't guarantee a completion promise will always be revolved or
    // rejected since ResolveOrRejectRunnable might not run when dispatch fails.
    if (!mIsCompletionPromise) {
      MOZ_ASSERT(!IsPending());
      MOZ_ASSERT(mThenValues.IsEmpty());
      MOZ_ASSERT(mChainedPromises.IsEmpty());
    }
#  ifdef PROMISE_DEBUG
    mMagic1 = 0;
    mMagic2 = 0;
    mMagic3 = 0;
    mMagic4 = nullptr;
#  endif
  };

  const char* mCreationSite;  // For logging
  Mutex mMutex;
  ResolveOrRejectValue mValue;
#  ifdef PROMISE_DEBUG
  uint32_t mMagic1 = sMagic;
#  endif
  // Try shows we never have more than 3 elements when IsExclusive is false.
  // So '3' is a good value to avoid heap allocation in most cases.
  AutoTArray<RefPtr<ThenValueBase>, IsExclusive ? 1 : 3> mThenValues;
#  ifdef PROMISE_DEBUG
  uint32_t mMagic2 = sMagic;
#  endif
  nsTArray<RefPtr<Private>> mChainedPromises;
#  ifdef PROMISE_DEBUG
  uint32_t mMagic3 = sMagic;
#  endif
  bool mHaveRequest;
  const bool mIsCompletionPromise;
#  ifdef PROMISE_DEBUG
  void* mMagic4;
#  endif
};

template <typename ResolveValueT, typename RejectValueT, bool IsExclusive>
class MozPromise<ResolveValueT, RejectValueT, IsExclusive>::Private
    : public MozPromise<ResolveValueT, RejectValueT, IsExclusive> {
 public:
  explicit Private(const char* aCreationSite, bool aIsCompletionPromise = false)
      : MozPromise(aCreationSite, aIsCompletionPromise) {}

  template <typename ResolveValueT_>
  void Resolve(ResolveValueT_&& aResolveValue, const char* aResolveSite) {
    PROMISE_ASSERT(mMagic1 == sMagic && mMagic2 == sMagic &&
                   mMagic3 == sMagic && mMagic4 == &mMutex);
    MutexAutoLock lock(mMutex);
    PROMISE_LOG("%s resolving MozPromise (%p created at %s)", aResolveSite,
                this, mCreationSite);
    if (!IsPending()) {
      PROMISE_LOG(
          "%s ignored already resolved or rejected MozPromise (%p created at "
          "%s)",
          aResolveSite, this, mCreationSite);
      return;
    }
    mValue.SetResolve(std::forward<ResolveValueT_>(aResolveValue));
    DispatchAll();
  }

  template <typename RejectValueT_>
  void Reject(RejectValueT_&& aRejectValue, const char* aRejectSite) {
    PROMISE_ASSERT(mMagic1 == sMagic && mMagic2 == sMagic &&
                   mMagic3 == sMagic && mMagic4 == &mMutex);
    MutexAutoLock lock(mMutex);
    PROMISE_LOG("%s rejecting MozPromise (%p created at %s)", aRejectSite, this,
                mCreationSite);
    if (!IsPending()) {
      PROMISE_LOG(
          "%s ignored already resolved or rejected MozPromise (%p created at "
          "%s)",
          aRejectSite, this, mCreationSite);
      return;
    }
    mValue.SetReject(std::forward<RejectValueT_>(aRejectValue));
    DispatchAll();
  }

  template <typename ResolveOrRejectValue_>
  void ResolveOrReject(ResolveOrRejectValue_&& aValue, const char* aSite) {
    PROMISE_ASSERT(mMagic1 == sMagic && mMagic2 == sMagic &&
                   mMagic3 == sMagic && mMagic4 == &mMutex);
    MutexAutoLock lock(mMutex);
    PROMISE_LOG("%s resolveOrRejecting MozPromise (%p created at %s)", aSite,
                this, mCreationSite);
    if (!IsPending()) {
      PROMISE_LOG(
          "%s ignored already resolved or rejected MozPromise (%p created at "
          "%s)",
          aSite, this, mCreationSite);
      return;
    }
    mValue = std::forward<ResolveOrRejectValue_>(aValue);
    DispatchAll();
  }
};

// A generic promise type that does the trick for simple use cases.
typedef MozPromise<bool, nsresult, /* IsExclusive = */ true> GenericPromise;

// A generic, non-exclusive promise type that does the trick for simple use
// cases.
typedef MozPromise<bool, nsresult, /* IsExclusive = */ false>
    GenericNonExclusivePromise;

/*
 * Class to encapsulate a promise for a particular role. Use this as the member
 * variable for a class whose method returns a promise.
 */
template <typename PromiseType>
class MozPromiseHolder {
 public:
  MozPromiseHolder() : mMonitor(nullptr) {}

  MozPromiseHolder(MozPromiseHolder&& aOther)
      : mMonitor(nullptr), mPromise(aOther.mPromise.forget()) {}

  // Move semantics.
  MozPromiseHolder& operator=(MozPromiseHolder&& aOther) {
    MOZ_ASSERT(!mMonitor && !aOther.mMonitor);
    MOZ_DIAGNOSTIC_ASSERT(!mPromise);
    mPromise = aOther.mPromise;
    aOther.mPromise = nullptr;
    return *this;
  }

  ~MozPromiseHolder() { MOZ_ASSERT(!mPromise); }

  already_AddRefed<PromiseType> Ensure(const char* aMethodName) {
    if (mMonitor) {
      mMonitor->AssertCurrentThreadOwns();
    }
    if (!mPromise) {
      mPromise = new (typename PromiseType::Private)(aMethodName);
    }
    RefPtr<PromiseType> p = mPromise.get();
    return p.forget();
  }

  // Provide a Monitor that should always be held when accessing this instance.
  void SetMonitor(Monitor* aMonitor) { mMonitor = aMonitor; }

  bool IsEmpty() const {
    if (mMonitor) {
      mMonitor->AssertCurrentThreadOwns();
    }
    return !mPromise;
  }

  already_AddRefed<typename PromiseType::Private> Steal() {
    if (mMonitor) {
      mMonitor->AssertCurrentThreadOwns();
    }
    return mPromise.forget();
  }

  template <typename ResolveValueType_>
  void Resolve(ResolveValueType_&& aResolveValue, const char* aMethodName) {
    static_assert(IsConvertible<ResolveValueType_,
                                typename PromiseType::ResolveValueType>::value,
                  "Resolve() argument must be implicitly convertible to "
                  "MozPromise's ResolveValueT");

    if (mMonitor) {
      mMonitor->AssertCurrentThreadOwns();
    }
    MOZ_ASSERT(mPromise);
    mPromise->Resolve(std::forward<ResolveValueType_>(aResolveValue),
                      aMethodName);
    mPromise = nullptr;
  }

  template <typename ResolveValueType_>
  void ResolveIfExists(ResolveValueType_&& aResolveValue,
                       const char* aMethodName) {
    if (!IsEmpty()) {
      Resolve(std::forward<ResolveValueType_>(aResolveValue), aMethodName);
    }
  }

  template <typename RejectValueType_>
  void Reject(RejectValueType_&& aRejectValue, const char* aMethodName) {
    static_assert(IsConvertible<RejectValueType_,
                                typename PromiseType::RejectValueType>::value,
                  "Reject() argument must be implicitly convertible to "
                  "MozPromise's RejectValueT");

    if (mMonitor) {
      mMonitor->AssertCurrentThreadOwns();
    }
    MOZ_ASSERT(mPromise);
    mPromise->Reject(std::forward<RejectValueType_>(aRejectValue), aMethodName);
    mPromise = nullptr;
  }

  template <typename RejectValueType_>
  void RejectIfExists(RejectValueType_&& aRejectValue,
                      const char* aMethodName) {
    if (!IsEmpty()) {
      Reject(std::forward<RejectValueType_>(aRejectValue), aMethodName);
    }
  }

  template <typename ResolveOrRejectValueType_>
  void ResolveOrReject(ResolveOrRejectValueType_&& aValue,
                       const char* aMethodName) {
    if (mMonitor) {
      mMonitor->AssertCurrentThreadOwns();
    }
    MOZ_ASSERT(mPromise);
    mPromise->ResolveOrReject(std::forward<ResolveOrRejectValueType_>(aValue),
                              aMethodName);
    mPromise = nullptr;
  }

  template <typename ResolveOrRejectValueType_>
  void ResolveOrRejectIfExists(ResolveOrRejectValueType_&& aValue,
                               const char* aMethodName) {
    if (!IsEmpty()) {
      ResolveOrReject(std::forward<ResolveOrRejectValueType_>(aValue),
                      aMethodName);
    }
  }

 private:
  Monitor* mMonitor;
  RefPtr<typename PromiseType::Private> mPromise;
};

/*
 * Class to encapsulate a MozPromise::Request reference. Use this as the member
 * variable for a class waiting on a MozPromise.
 */
template <typename PromiseType>
class MozPromiseRequestHolder {
 public:
  MozPromiseRequestHolder() {}
  ~MozPromiseRequestHolder() { MOZ_ASSERT(!mRequest); }

  void Track(already_AddRefed<typename PromiseType::Request> aRequest) {
    MOZ_DIAGNOSTIC_ASSERT(!Exists());
    mRequest = aRequest;
  }

  void Complete() {
    MOZ_DIAGNOSTIC_ASSERT(Exists());
    mRequest = nullptr;
  }

  // Disconnects and forgets an outstanding promise. The resolve/reject methods
  // will never be called.
  void Disconnect() {
    MOZ_ASSERT(Exists());
    mRequest->Disconnect();
    mRequest = nullptr;
  }

  void DisconnectIfExists() {
    if (Exists()) {
      Disconnect();
    }
  }

  bool Exists() const { return !!mRequest; }

 private:
  RefPtr<typename PromiseType::Request> mRequest;
};

// Asynchronous Potentially-Cross-Thread Method Calls.
//
// This machinery allows callers to schedule a promise-returning function
// (a method and object, or a function object like a lambda) to be invoked
// asynchronously on a given thread, while at the same time receiving a
// promise upon which to invoke Then() immediately. InvokeAsync dispatches a
// task to invoke the function on the proper thread and also chain the
// resulting promise to the one that the caller received, so that resolve/
// reject values are forwarded through.

namespace detail {

// Non-templated base class to allow us to use MOZ_COUNT_{C,D}TOR, which cause
// assertions when used on templated types.
class MethodCallBase {
 public:
  MethodCallBase() { MOZ_COUNT_CTOR(MethodCallBase); }
  virtual ~MethodCallBase() { MOZ_COUNT_DTOR(MethodCallBase); }
};

template <typename PromiseType, typename MethodType, typename ThisType,
          typename... Storages>
class MethodCall : public MethodCallBase {
 public:
  template <typename... Args>
  MethodCall(MethodType aMethod, ThisType* aThisVal, Args&&... aArgs)
      : mMethod(aMethod),
        mThisVal(aThisVal),
        mArgs(std::forward<Args>(aArgs)...) {
    static_assert(sizeof...(Storages) == sizeof...(Args),
                  "Storages and Args should have equal sizes");
  }

  RefPtr<PromiseType> Invoke() { return mArgs.apply(mThisVal.get(), mMethod); }

 private:
  MethodType mMethod;
  RefPtr<ThisType> mThisVal;
  RunnableMethodArguments<Storages...> mArgs;
};

template <typename PromiseType, typename MethodType, typename ThisType,
          typename... Storages>
class ProxyRunnable : public CancelableRunnable {
 public:
  ProxyRunnable(
      typename PromiseType::Private* aProxyPromise,
      MethodCall<PromiseType, MethodType, ThisType, Storages...>* aMethodCall)
      : CancelableRunnable("detail::ProxyRunnable"),
        mProxyPromise(aProxyPromise),
        mMethodCall(aMethodCall) {}

  NS_IMETHOD Run() override {
    RefPtr<PromiseType> p = mMethodCall->Invoke();
    mMethodCall = nullptr;
    p->ChainTo(mProxyPromise.forget(), "<Proxy Promise>");
    return NS_OK;
  }

  nsresult Cancel() override { return Run(); }

 private:
  RefPtr<typename PromiseType::Private> mProxyPromise;
  nsAutoPtr<MethodCall<PromiseType, MethodType, ThisType, Storages...>>
      mMethodCall;
};

template <typename... Storages, typename PromiseType, typename ThisType,
          typename... ArgTypes, typename... ActualArgTypes>
static RefPtr<PromiseType> InvokeAsyncImpl(
    nsISerialEventTarget* aTarget, ThisType* aThisVal, const char* aCallerName,
    RefPtr<PromiseType> (ThisType::*aMethod)(ArgTypes...),
    ActualArgTypes&&... aArgs) {
  MOZ_ASSERT(aTarget);

  typedef RefPtr<PromiseType> (ThisType::*MethodType)(ArgTypes...);
  typedef detail::MethodCall<PromiseType, MethodType, ThisType, Storages...>
      MethodCallType;
  typedef detail::ProxyRunnable<PromiseType, MethodType, ThisType, Storages...>
      ProxyRunnableType;

  MethodCallType* methodCall = new MethodCallType(
      aMethod, aThisVal, std::forward<ActualArgTypes>(aArgs)...);
  RefPtr<typename PromiseType::Private> p =
      new (typename PromiseType::Private)(aCallerName);
  RefPtr<ProxyRunnableType> r = new ProxyRunnableType(p, methodCall);
  aTarget->Dispatch(r.forget());
  return p.forget();
}

constexpr bool Any() { return false; }

template <typename T1>
constexpr bool Any(T1 a) {
  return static_cast<bool>(a);
}

template <typename T1, typename... Ts>
constexpr bool Any(T1 a, Ts... aOthers) {
  return a || Any(aOthers...);
}

}  // namespace detail

// InvokeAsync with explicitly-specified storages.
// See ParameterStorage in nsThreadUtils.h for help.
template <typename... Storages, typename PromiseType, typename ThisType,
          typename... ArgTypes, typename... ActualArgTypes,
          typename EnableIf<sizeof...(Storages) != 0, int>::Type = 0>
static RefPtr<PromiseType> InvokeAsync(
    nsISerialEventTarget* aTarget, ThisType* aThisVal, const char* aCallerName,
    RefPtr<PromiseType> (ThisType::*aMethod)(ArgTypes...),
    ActualArgTypes&&... aArgs) {
  static_assert(
      sizeof...(Storages) == sizeof...(ArgTypes),
      "Provided Storages and method's ArgTypes should have equal sizes");
  static_assert(sizeof...(Storages) == sizeof...(ActualArgTypes),
                "Provided Storages and ActualArgTypes should have equal sizes");
  return detail::InvokeAsyncImpl<Storages...>(
      aTarget, aThisVal, aCallerName, aMethod,
      std::forward<ActualArgTypes>(aArgs)...);
}

// InvokeAsync with no explicitly-specified storages, will copy arguments and
// then move them out of the runnable into the target method parameters.
template <typename... Storages, typename PromiseType, typename ThisType,
          typename... ArgTypes, typename... ActualArgTypes,
          typename EnableIf<sizeof...(Storages) == 0, int>::Type = 0>
static RefPtr<PromiseType> InvokeAsync(
    nsISerialEventTarget* aTarget, ThisType* aThisVal, const char* aCallerName,
    RefPtr<PromiseType> (ThisType::*aMethod)(ArgTypes...),
    ActualArgTypes&&... aArgs) {
  static_assert(
      !detail::Any(
          IsPointer<typename RemoveReference<ActualArgTypes>::Type>::value...),
      "Cannot pass pointer types through InvokeAsync, Storages must be "
      "provided");
  static_assert(sizeof...(ArgTypes) == sizeof...(ActualArgTypes),
                "Method's ArgTypes and ActualArgTypes should have equal sizes");
  return detail::InvokeAsyncImpl<
      StoreCopyPassByRRef<typename Decay<ActualArgTypes>::Type>...>(
      aTarget, aThisVal, aCallerName, aMethod,
      std::forward<ActualArgTypes>(aArgs)...);
}

namespace detail {

template <typename Function, typename PromiseType>
class ProxyFunctionRunnable : public CancelableRunnable {
  typedef typename Decay<Function>::Type FunctionStorage;

 public:
  template <typename F>
  ProxyFunctionRunnable(typename PromiseType::Private* aProxyPromise,
                        F&& aFunction)
      : CancelableRunnable("detail::ProxyFunctionRunnable"),
        mProxyPromise(aProxyPromise),
        mFunction(new FunctionStorage(std::forward<F>(aFunction))) {}

  NS_IMETHOD Run() override {
    RefPtr<PromiseType> p = (*mFunction)();
    mFunction = nullptr;
    p->ChainTo(mProxyPromise.forget(), "<Proxy Promise>");
    return NS_OK;
  }

  nsresult Cancel() override { return Run(); }

 private:
  RefPtr<typename PromiseType::Private> mProxyPromise;
  UniquePtr<FunctionStorage> mFunction;
};

// Note: The following struct and function are not for public consumption (yet?)
// as we would prefer all calls to pass on-the-spot lambdas (or at least moved
// function objects). They could be moved outside of detail if really needed.

// We prefer getting function objects by non-lvalue-ref (to avoid copying them
// and their captures). This struct is a tag that allows the use of objects
// through lvalue-refs where necessary.
struct AllowInvokeAsyncFunctionLVRef {};

// Invoke a function object (e.g., lambda or std/mozilla::function)
// asynchronously; note that the object will be copied if provided by
// lvalue-ref. Return a promise that the function should eventually resolve or
// reject.
template <typename Function>
static auto InvokeAsync(nsISerialEventTarget* aTarget, const char* aCallerName,
                        AllowInvokeAsyncFunctionLVRef, Function&& aFunction)
    -> decltype(aFunction()) {
  static_assert(
      IsRefcountedSmartPointer<decltype(aFunction())>::value &&
          IsMozPromise<
              typename RemoveSmartPointer<decltype(aFunction())>::Type>::value,
      "Function object must return RefPtr<MozPromise>");
  MOZ_ASSERT(aTarget);
  typedef typename RemoveSmartPointer<decltype(aFunction())>::Type PromiseType;
  typedef detail::ProxyFunctionRunnable<Function, PromiseType>
      ProxyRunnableType;

  auto p = MakeRefPtr<typename PromiseType::Private>(aCallerName);
  auto r = MakeRefPtr<ProxyRunnableType>(p, std::forward<Function>(aFunction));
  aTarget->Dispatch(r.forget());
  return p.forget();
}

}  // namespace detail

// Invoke a function object (e.g., lambda) asynchronously.
// Return a promise that the function should eventually resolve or reject.
template <typename Function>
static auto InvokeAsync(nsISerialEventTarget* aTarget, const char* aCallerName,
                        Function&& aFunction) -> decltype(aFunction()) {
  static_assert(!IsLvalueReference<Function>::value,
                "Function object must not be passed by lvalue-ref (to avoid "
                "unplanned copies); Consider move()ing the object.");
  return detail::InvokeAsync(aTarget, aCallerName,
                             detail::AllowInvokeAsyncFunctionLVRef(),
                             std::forward<Function>(aFunction));
}

#  undef PROMISE_LOG
#  undef PROMISE_ASSERT
#  undef PROMISE_DEBUG

}  // namespace mozilla

#endif