DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Header

Mercurial (8c5f9b08938e)

VCS Links

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */

#include "mozilla/IdlePeriodState.h"
#include "mozilla/StaticPrefs_idle_period.h"
#include "mozilla/ipc/IdleSchedulerChild.h"
#include "nsIIdlePeriod.h"
#include "nsThreadManager.h"
#include "nsThreadUtils.h"
#include "nsXPCOM.h"
#include "nsXULAppAPI.h"

static uint64_t sIdleRequestCounter = 0;

namespace mozilla {

IdlePeriodState::IdlePeriodState(already_AddRefed<nsIIdlePeriod>&& aIdlePeriod)
    : mIdlePeriod(aIdlePeriod) {
  MOZ_ASSERT(NS_IsMainThread(),
             "Why are we touching idle state off the main thread?");
}

IdlePeriodState::~IdlePeriodState() {
  MOZ_ASSERT(NS_IsMainThread(),
             "Why are we touching idle state off the main thread?");
  if (mIdleScheduler) {
    mIdleScheduler->Disconnect();
  }
}

size_t IdlePeriodState::SizeOfExcludingThis(MallocSizeOf aMallocSizeOf) const {
  size_t n = 0;
  if (mIdlePeriod) {
    n += aMallocSizeOf(mIdlePeriod);
  }

  return n;
}

void IdlePeriodState::FlagNotIdle() {
  MOZ_ASSERT(NS_IsMainThread(),
             "Why are we touching idle state off the main thread?");

  EnsureIsActive();
  if (mIdleToken && mIdleToken < TimeStamp::Now()) {
    ClearIdleToken();
  }
}

void IdlePeriodState::RanOutOfTasks(const MutexAutoUnlock& aProofOfUnlock) {
  MOZ_ASSERT(NS_IsMainThread(),
             "Why are we touching idle state off the main thread?");
  MOZ_ASSERT(!mHasPendingEventsPromisedIdleEvent);
  EnsureIsPaused(aProofOfUnlock);
  ClearIdleToken();
}

TimeStamp IdlePeriodState::GetIdleDeadlineInternal(
    bool aIsPeek, const MutexAutoUnlock& aProofOfUnlock) {
  MOZ_ASSERT(NS_IsMainThread(),
             "Why are we touching idle state off the main thread?");

  bool shuttingDown;
  TimeStamp localIdleDeadline =
      GetLocalIdleDeadline(shuttingDown, aProofOfUnlock);
  if (!localIdleDeadline) {
    if (!aIsPeek) {
      EnsureIsPaused(aProofOfUnlock);
      ClearIdleToken();
    }
    return TimeStamp();
  }

  TimeStamp idleDeadline =
      mHasPendingEventsPromisedIdleEvent || shuttingDown
          ? localIdleDeadline
          : GetIdleToken(localIdleDeadline, aProofOfUnlock);
  if (!idleDeadline) {
    if (!aIsPeek) {
      EnsureIsPaused(aProofOfUnlock);

      // Don't call ClearIdleToken() here, since we may have a pending
      // request already.
      //
      // RequestIdleToken can do all sorts of IPC stuff that might
      // take mutexes.  This is one reason why we need the
      // MutexAutoUnlock reference!
      RequestIdleToken(localIdleDeadline);
    }
    return TimeStamp();
  }

  if (!aIsPeek) {
    EnsureIsActive();
  }
  return idleDeadline;
}

TimeStamp IdlePeriodState::GetLocalIdleDeadline(
    bool& aShuttingDown, const MutexAutoUnlock& aProofOfUnlock) {
  MOZ_ASSERT(NS_IsMainThread(),
             "Why are we touching idle state off the main thread?");
  // If we are shutting down, we won't honor the idle period, and we will
  // always process idle runnables.  This will ensure that the idle queue
  // gets exhausted at shutdown time to prevent intermittently leaking
  // some runnables inside that queue and even worse potentially leaving
  // some important cleanup work unfinished.
  if (gXPCOMThreadsShutDown ||
      nsThreadManager::get().GetCurrentThread()->ShuttingDown()) {
    aShuttingDown = true;
    return TimeStamp::Now();
  }

  aShuttingDown = false;
  TimeStamp idleDeadline;
  // This GetIdlePeriodHint() call is the reason we need a MutexAutoUnlock here.
  mIdlePeriod->GetIdlePeriodHint(&idleDeadline);

  // If HasPendingEvents() has been called and it has returned true because of
  // pending idle events, there is a risk that we may decide here that we aren't
  // idle and return null, in which case HasPendingEvents() has effectively
  // lied.  Since we can't go back and fix the past, we have to adjust what we
  // do here and forcefully pick the idle queue task here.  Note that this means
  // that we are choosing to run a task from the idle queue when we would
  // normally decide that we aren't in an idle period, but this can only happen
  // if we fall out of the idle period in between the call to HasPendingEvents()
  // and here, which should hopefully be quite rare.  We are effectively
  // choosing to prioritize the sanity of our API semantics over the optimal
  // scheduling.
  if (!mHasPendingEventsPromisedIdleEvent &&
      (!idleDeadline || idleDeadline < TimeStamp::Now())) {
    return TimeStamp();
  }
  if (mHasPendingEventsPromisedIdleEvent && !idleDeadline) {
    // If HasPendingEvents() has been called and it has returned true, but we're
    // no longer in the idle period, we must return a valid timestamp to pretend
    // that we are still in the idle period.
    return TimeStamp::Now();
  }
  return idleDeadline;
}

TimeStamp IdlePeriodState::GetIdleToken(TimeStamp aLocalIdlePeriodHint,
                                        const MutexAutoUnlock& aProofOfUnlock) {
  MOZ_ASSERT(NS_IsMainThread(),
             "Why are we touching idle state off the main thread?");

  if (XRE_IsParentProcess()) {
    return aLocalIdlePeriodHint;
  }
  if (mIdleToken) {
    TimeStamp now = TimeStamp::Now();
    if (mIdleToken < now) {
      ClearIdleToken();
      return mIdleToken;
    }
    return mIdleToken < aLocalIdlePeriodHint ? mIdleToken
                                             : aLocalIdlePeriodHint;
  }
  return TimeStamp();
}

void IdlePeriodState::RequestIdleToken(TimeStamp aLocalIdlePeriodHint) {
  MOZ_ASSERT(NS_IsMainThread(),
             "Why are we touching idle state off the main thread?");
  MOZ_ASSERT(!mActive);

  if (!mIdleSchedulerInitialized) {
    mIdleSchedulerInitialized = true;
    if (StaticPrefs::idle_period_cross_process_scheduling() &&
        XRE_IsContentProcess() &&
        // Disable when recording/replaying, as IdleSchedulerChild uses mutable
        // shared memory which needs special handling.
        !recordreplay::IsRecordingOrReplaying()) {
      // For now cross-process idle scheduler is supported only on the main
      // threads of the child processes.
      mIdleScheduler = ipc::IdleSchedulerChild::GetMainThreadIdleScheduler();
      if (mIdleScheduler) {
        mIdleScheduler->Init(this);
      }
    }
  }

  if (mIdleScheduler && !mIdleRequestId) {
    TimeStamp now = TimeStamp::Now();
    if (aLocalIdlePeriodHint <= now) {
      return;
    }

    mIdleRequestId = ++sIdleRequestCounter;
    mIdleScheduler->SendRequestIdleTime(mIdleRequestId,
                                        aLocalIdlePeriodHint - now);
  }
}

void IdlePeriodState::SetIdleToken(uint64_t aId, TimeDuration aDuration) {
  MOZ_ASSERT(NS_IsMainThread(),
             "Why are we touching idle state off the main thread?");
  if (mIdleRequestId == aId) {
    mIdleToken = TimeStamp::Now() + aDuration;
  }
}

void IdlePeriodState::SetActive() {
  MOZ_ASSERT(NS_IsMainThread(),
             "Why are we touching idle state off the main thread?");
  MOZ_ASSERT(!mActive);
  if (mIdleScheduler) {
    mIdleScheduler->SetActive();
  }
  mActive = true;
}

void IdlePeriodState::SetPaused(const MutexAutoUnlock& aProofOfUnlock) {
  MOZ_ASSERT(NS_IsMainThread(),
             "Why are we touching idle state off the main thread?");
  MOZ_ASSERT(mActive);
  if (mIdleScheduler && mIdleScheduler->SetPaused()) {
    // We may have gotten a free cpu core for running idle tasks.
    // We don't try to catch the case when there are prioritized processes
    // running.

    // This SendSchedule call is why we need the MutexAutoUnlock here, because
    // IPC can do weird things with mutexes.
    mIdleScheduler->SendSchedule();
  }
  mActive = false;
}

void IdlePeriodState::ClearIdleToken() {
  MOZ_ASSERT(NS_IsMainThread(),
             "Why are we touching idle state off the main thread?");

  if (mIdleRequestId) {
    if (mIdleScheduler) {
      // This SendIdleTimeUsed call is why we need to not be holding
      // any locks here, because IPC can do weird things with mutexes.
      // Ideally we'd have a MutexAutoUnlock& reference here, but some
      // callers end up here while just not holding any locks at all.
      mIdleScheduler->SendIdleTimeUsed(mIdleRequestId);
    }
    mIdleRequestId = 0;
    mIdleToken = TimeStamp();
  }
}

}  // namespace mozilla