DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Header

Mercurial (c68fe15a81fc)

VCS Links

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at https://mozilla.org/MPL/2.0/. */

#include "UntrustedModulesData.h"

#include <windows.h>

#include "mozilla/CmdLineAndEnvUtils.h"
#include "mozilla/DynamicallyLinkedFunctionPtr.h"
#include "mozilla/FileUtilsWin.h"
#include "mozilla/Likely.h"
#include "mozilla/MathAlgorithms.h"
#include "mozilla/UniquePtr.h"
#include "mozilla/Unused.h"
#include "mozilla/WinDllServices.h"
#include "ModuleEvaluator.h"
#include "nsCOMPtr.h"
#include "nsDebug.h"
#include "nsXULAppAPI.h"
#include "WinUtils.h"

// Some utility functions

static LONGLONG GetQPCFreq() {
  static const LONGLONG sFreq = []() -> LONGLONG {
    LARGE_INTEGER freq;
    ::QueryPerformanceFrequency(&freq);
    return freq.QuadPart;
  }();

  return sFreq;
}

template <typename ReturnT>
static ReturnT QPCToTimeUnits(const LONGLONG aTimeStamp,
                              const LONGLONG aUnitsPerSec) {
  return ReturnT(aTimeStamp * aUnitsPerSec) / ReturnT(GetQPCFreq());
}

template <typename ReturnT>
static ReturnT QPCToMilliseconds(const LONGLONG aTimeStamp) {
  const LONGLONG kMillisecondsPerSec = 1000;
  return QPCToTimeUnits<ReturnT>(aTimeStamp, kMillisecondsPerSec);
}

template <typename ReturnT>
static ReturnT QPCToMicroseconds(const LONGLONG aTimeStamp) {
  const LONGLONG kMicrosecondsPerSec = 1000000;
  return QPCToTimeUnits<ReturnT>(aTimeStamp, kMicrosecondsPerSec);
}

static LONGLONG TimeUnitsToQPC(const LONGLONG aTimeStamp,
                               const LONGLONG aUnitsPerSec) {
  MOZ_ASSERT(aUnitsPerSec != 0);

  LONGLONG result = aTimeStamp;
  result *= GetQPCFreq();
  result /= aUnitsPerSec;
  return result;
}

static Maybe<double> QPCLoadDurationToMilliseconds(
    const ModuleLoadInfo& aNtInfo) {
  if (aNtInfo.IsBare()) {
    return Nothing();
  }

  return Some(QPCToMilliseconds<double>(aNtInfo.mLoadTimeInfo.QuadPart));
}

namespace mozilla {

ModuleRecord::ModuleRecord() : mTrustFlags(ModuleTrustFlags::None) {}

ModuleRecord::ModuleRecord(const nsAString& aResolvedNtPath)
    : mResolvedNtName(aResolvedNtPath), mTrustFlags(ModuleTrustFlags::None) {
  if (aResolvedNtPath.IsEmpty()) {
    return;
  }

  MOZ_ASSERT(XRE_IsParentProcess());

  nsAutoString resolvedDosPath;
  if (!NtPathToDosPath(aResolvedNtPath, resolvedDosPath)) {
#if defined(DEBUG)
    nsAutoCString msg;
    msg.AppendLiteral("NtPathToDosPath failed for path \"");
    msg.Append(NS_ConvertUTF16toUTF8(aResolvedNtPath));
    msg.AppendLiteral("\"");
    NS_WARNING(msg.get());
#endif  // defined(DEBUG)
    return;
  }

  nsresult rv =
      NS_NewLocalFile(resolvedDosPath, false, getter_AddRefs(mResolvedDosName));
  if (NS_FAILED(rv) || !mResolvedDosName) {
    return;
  }

  GetVersionAndVendorInfo(resolvedDosPath);

  // Now sanitize the resolved DLL name. If we cannot sanitize this then this
  // record must not be considered valid.
  nsAutoString strSanitizedPath(resolvedDosPath);
  if (!widget::WinUtils::PreparePathForTelemetry(strSanitizedPath)) {
    return;
  }

  mSanitizedDllName = strSanitizedPath;
}

void ModuleRecord::GetVersionAndVendorInfo(const nsAString& aPath) {
  RefPtr<DllServices> dllSvc(DllServices::Get());

  // WinVerifyTrust is too slow and of limited utility for our purposes, so
  // we pass SkipTrustVerification here to avoid it.
  UniquePtr<wchar_t[]> signedBy(
      dllSvc->GetBinaryOrgName(PromiseFlatString(aPath).get(),
                               AuthenticodeFlags::SkipTrustVerification));
  if (signedBy) {
    mVendorInfo = Some(VendorInfo(VendorInfo::Source::Signature,
                                  nsDependentString(signedBy.get())));
  }

  ModuleVersionInfo verInfo;
  if (!verInfo.GetFromImage(aPath)) {
    return;
  }

  if (verInfo.mFileVersion.Version64()) {
    mVersion = Some(ModuleVersion(verInfo.mFileVersion.Version64()));
  }

  if (!mVendorInfo && !verInfo.mCompanyName.IsEmpty()) {
    mVendorInfo =
        Some(VendorInfo(VendorInfo::Source::VersionInfo, verInfo.mCompanyName));
  }
}

bool ModuleRecord::IsXUL() const {
  if (!mResolvedDosName) {
    return false;
  }

  nsAutoString leafName;
  nsresult rv = mResolvedDosName->GetLeafName(leafName);
  if (NS_FAILED(rv)) {
    return false;
  }

  return leafName.EqualsIgnoreCase("xul.dll");
}

int32_t ModuleRecord::GetScoreThreshold() const {
#ifdef ENABLE_TESTS
  // Check whether we are running as an xpcshell test.
  if (MOZ_UNLIKELY(mozilla::EnvHasValue("XPCSHELL_TEST_PROFILE_DIR"))) {
    nsAutoString dllLeaf;
    if (NS_SUCCEEDED(mResolvedDosName->GetLeafName(dllLeaf))) {
      // During xpcshell tests, this DLL is hard-coded to pass through all
      // criteria checks and still result in "untrusted" status, so it shows up
      // in the untrusted modules ping for the test to examine.
      // Setting the threshold very high ensures the test will cover all
      // criteria.
      if (dllLeaf.EqualsIgnoreCase("modules-test.dll")) {
        return 99999;
      }
    }
  }
#endif

  return 100;
}

bool ModuleRecord::IsTrusted() const {
  if (mTrustFlags == ModuleTrustFlags::None) {
    return false;
  }

  // These flags are immediate passes
  if (mTrustFlags &
      (ModuleTrustFlags::MicrosoftWindowsSignature |
       ModuleTrustFlags::MozillaSignature | ModuleTrustFlags::JitPI)) {
    return true;
  }

  // The remaining flags, when set, each count for 50 points toward a
  // trustworthiness score.
  int32_t score = static_cast<int32_t>(
                      CountPopulation32(static_cast<uint32_t>(mTrustFlags))) *
                  50;
  return score >= GetScoreThreshold();
}

ProcessedModuleLoadEvent::ProcessedModuleLoadEvent()
    : mProcessUptimeMS(0ULL),
      mThreadId(0UL),
      mBaseAddress(0U),
      mIsDependent(false) {}

ProcessedModuleLoadEvent::ProcessedModuleLoadEvent(
    glue::EnhancedModuleLoadInfo&& aModLoadInfo,
    RefPtr<ModuleRecord>&& aModuleRecord, bool aIsDependent)
    : mProcessUptimeMS(QPCTimeStampToProcessUptimeMilliseconds(
          aModLoadInfo.mNtLoadInfo.mBeginTimestamp)),
      mLoadDurationMS(QPCLoadDurationToMilliseconds(aModLoadInfo.mNtLoadInfo)),
      mThreadId(aModLoadInfo.mNtLoadInfo.mThreadId),
      mThreadName(std::move(aModLoadInfo.mThreadName)),
      mBaseAddress(
          reinterpret_cast<uintptr_t>(aModLoadInfo.mNtLoadInfo.mBaseAddr)),
      mModule(std::move(aModuleRecord)),
      mIsDependent(aIsDependent) {
  if (!mModule || !(*mModule)) {
    return;
  }

  // Sanitize the requested DLL name. It is not a critical failure if we
  // cannot do so; we simply do not provide that field to Telemetry.
  nsAutoString strRequested(
      aModLoadInfo.mNtLoadInfo.mRequestedDllName.AsString());
  if (!strRequested.IsEmpty() &&
      widget::WinUtils::PreparePathForTelemetry(strRequested)) {
    mRequestedDllName = strRequested;
  }
}

/* static */
Maybe<LONGLONG>
ProcessedModuleLoadEvent::ComputeQPCTimeStampForProcessCreation() {
  // This is similar to the algorithm used by TimeStamp::ProcessCreation:

  // 1. Get the process creation timestamp as FILETIME;
  FILETIME creationTime, exitTime, kernelTime, userTime;
  if (!::GetProcessTimes(::GetCurrentProcess(), &creationTime, &exitTime,
                         &kernelTime, &userTime)) {
    return Nothing();
  }

  // 2. Get current timestamps as both QPC and FILETIME;
  LARGE_INTEGER nowQPC;
  ::QueryPerformanceCounter(&nowQPC);

  static const StaticDynamicallyLinkedFunctionPtr<void(WINAPI*)(LPFILETIME)>
      pGetSystemTimePreciseAsFileTime(L"kernel32.dll",
                                      "GetSystemTimePreciseAsFileTime");

  FILETIME nowFile;
  if (pGetSystemTimePreciseAsFileTime) {
    pGetSystemTimePreciseAsFileTime(&nowFile);
  } else {
    ::GetSystemTimeAsFileTime(&nowFile);
  }

  // 3. Take the difference between the FILETIMEs from (1) and (2),
  //    respectively, yielding the elapsed process uptime in microseconds.
  ULARGE_INTEGER ulCreation = {
      {creationTime.dwLowDateTime, creationTime.dwHighDateTime}};
  ULARGE_INTEGER ulNow = {{nowFile.dwLowDateTime, nowFile.dwHighDateTime}};

  ULONGLONG timeSinceCreationMicroSec =
      (ulNow.QuadPart - ulCreation.QuadPart) / 10ULL;

  // 4. Convert the QPC timestamp from (1) to microseconds.
  LONGLONG nowQPCMicroSec = QPCToMicroseconds<LONGLONG>(nowQPC.QuadPart);

  // 5. Convert the elapsed uptime to an absolute timestamp by subtracting
  //    from (4), which yields the absolute timestamp for process creation.
  //    We convert back to QPC units before returning.
  const LONGLONG kMicrosecondsPerSec = 1000000;
  return Some(TimeUnitsToQPC(nowQPCMicroSec - timeSinceCreationMicroSec,
                             kMicrosecondsPerSec));
}

/* static */
uint64_t ProcessedModuleLoadEvent::QPCTimeStampToProcessUptimeMilliseconds(
    const LARGE_INTEGER& aTimeStamp) {
  static const Maybe<LONGLONG> sProcessCreationTimeStamp =
      ComputeQPCTimeStampForProcessCreation();

  if (!sProcessCreationTimeStamp) {
    return 0ULL;
  }

  LONGLONG diff = aTimeStamp.QuadPart - sProcessCreationTimeStamp.value();
  return QPCToMilliseconds<uint64_t>(diff);
}

bool ProcessedModuleLoadEvent::IsXULLoad() const {
  if (!mModule) {
    return false;
  }

  return mModule->IsXUL();
}

bool ProcessedModuleLoadEvent::IsTrusted() const {
  if (!mModule) {
    return false;
  }

  return mModule->IsTrusted();
}

void UntrustedModulesData::AddNewLoads(
    const ModulesMap& aModules, Vector<ProcessedModuleLoadEvent>&& aEvents,
    Vector<Telemetry::ProcessedStack>&& aStacks) {
  MOZ_ASSERT(aEvents.length() == aStacks.length());

  for (auto iter = aModules.ConstIter(); !iter.Done(); iter.Next()) {
    if (iter.Data()->IsTrusted()) {
      // Filter out trusted module records
      continue;
    }

    auto addPtr = mModules.LookupForAdd(iter.Key());
    if (addPtr) {
      // |mModules| already contains this record
      continue;
    }

    RefPtr<ModuleRecord> rec(iter.Data());
    addPtr.OrInsert([rec = std::move(rec)]() { return rec; });
  }

  // This constant matches the maximum in Telemetry::CombinedStacks
  const size_t kMaxEvents = 50;
  MOZ_ASSERT(mEvents.length() <= kMaxEvents);

  if (mEvents.length() + aEvents.length() > kMaxEvents) {
    // Ensure that we will never retain more tha kMaxEvents events
    size_t newLength = kMaxEvents - mEvents.length();
    if (!newLength) {
      return;
    }

    aEvents.shrinkTo(newLength);
    aStacks.shrinkTo(newLength);
  }

  if (mEvents.empty()) {
    mEvents = std::move(aEvents);
  } else {
    Unused << mEvents.reserve(mEvents.length() + aEvents.length());
    for (auto&& event : aEvents) {
      Unused << mEvents.emplaceBack(std::move(event));
    }
  }

  for (auto&& stack : aStacks) {
    mStacks.AddStack(stack);
  }
}

void UntrustedModulesData::Swap(UntrustedModulesData& aOther) {
  GeckoProcessType tmpProcessType = mProcessType;
  mProcessType = aOther.mProcessType;
  aOther.mProcessType = tmpProcessType;

  DWORD tmpPid = mPid;
  mPid = aOther.mPid;
  aOther.mPid = tmpPid;

  TimeDuration tmpElapsed = mElapsed;
  mElapsed = aOther.mElapsed;
  aOther.mElapsed = tmpElapsed;

  mModules.SwapElements(aOther.mModules);
  mEvents.swap(aOther.mEvents);
  mStacks.Swap(aOther.mStacks);

  Maybe<double> tmpXULLoadDurationMS = mXULLoadDurationMS;
  mXULLoadDurationMS = aOther.mXULLoadDurationMS;
  aOther.mXULLoadDurationMS = tmpXULLoadDurationMS;

  uint32_t tmpSanitizationFailures = mSanitizationFailures;
  mSanitizationFailures = aOther.mSanitizationFailures;
  aOther.mSanitizationFailures = tmpSanitizationFailures;

  uint32_t tmpTrustTestFailures = mTrustTestFailures;
  mTrustTestFailures = aOther.mTrustTestFailures;
  aOther.mTrustTestFailures = tmpTrustTestFailures;
}

}  // namespace mozilla