Source code

Revision control

Copy as Markdown

Other Tools

// Protocol Buffers - Google's data interchange format
// Copyright 2008 Google Inc. All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// Author: kenton@google.com (Kenton Varda)
// Based on original Protocol Buffers design by
// Sanjay Ghemawat, Jeff Dean, and others.
#include <google/protobuf/descriptor.h>
#include <algorithm>
#include <array>
#include <functional>
#include <limits>
#include <map>
#include <memory>
#include <set>
#include <sstream>
#include <string>
#include <type_traits>
#include <unordered_map>
#include <unordered_set>
#include <vector>
#include <google/protobuf/stubs/common.h>
#include <google/protobuf/stubs/logging.h>
#include <google/protobuf/stubs/strutil.h>
#include <google/protobuf/stubs/once.h>
#include <google/protobuf/any.h>
#include <google/protobuf/descriptor.pb.h>
#include <google/protobuf/io/coded_stream.h>
#include <google/protobuf/io/tokenizer.h>
#include <google/protobuf/io/zero_copy_stream_impl.h>
#include <google/protobuf/stubs/casts.h>
#include <google/protobuf/stubs/stringprintf.h>
#include <google/protobuf/stubs/substitute.h>
#include <google/protobuf/descriptor_database.h>
#include <google/protobuf/dynamic_message.h>
#include <google/protobuf/generated_message_util.h>
#include <google/protobuf/io/strtod.h>
#include <google/protobuf/port.h>
#include <google/protobuf/text_format.h>
#include <google/protobuf/unknown_field_set.h>
#include <google/protobuf/stubs/map_util.h>
#include <google/protobuf/stubs/stl_util.h>
#include <google/protobuf/stubs/hash.h>
#undef PACKAGE // autoheader #defines this. :(
// Must be included last.
#include <google/protobuf/port_def.inc>
namespace google {
namespace protobuf {
namespace {
const int kPackageLimit = 100;
// Note: I distrust ctype.h due to locales.
char ToUpper(char ch) {
return (ch >= 'a' && ch <= 'z') ? (ch - 'a' + 'A') : ch;
}
char ToLower(char ch) {
return (ch >= 'A' && ch <= 'Z') ? (ch - 'A' + 'a') : ch;
}
std::string ToCamelCase(const std::string& input, bool lower_first) {
bool capitalize_next = !lower_first;
std::string result;
result.reserve(input.size());
for (char character : input) {
if (character == '_') {
capitalize_next = true;
} else if (capitalize_next) {
result.push_back(ToUpper(character));
capitalize_next = false;
} else {
result.push_back(character);
}
}
// Lower-case the first letter.
if (lower_first && !result.empty()) {
result[0] = ToLower(result[0]);
}
return result;
}
std::string ToJsonName(const std::string& input) {
bool capitalize_next = false;
std::string result;
result.reserve(input.size());
for (char character : input) {
if (character == '_') {
capitalize_next = true;
} else if (capitalize_next) {
result.push_back(ToUpper(character));
capitalize_next = false;
} else {
result.push_back(character);
}
}
return result;
}
// Backport of fold expressions for the comma operator to C++11.
// Usage: Fold({expr...});
// Guaranteed to evaluate left-to-right
struct ExpressionEater {
template <typename T>
ExpressionEater(T&&) {} // NOLINT
};
void Fold(std::initializer_list<ExpressionEater>) {}
template <int R>
constexpr size_t RoundUpTo(size_t n) {
static_assert((R & (R - 1)) == 0, "Must be power of two");
return (n + (R - 1)) & ~(R - 1);
}
constexpr size_t Max(size_t a, size_t b) { return a > b ? a : b; }
template <typename T, typename... Ts>
constexpr size_t Max(T a, Ts... b) {
return Max(a, Max(b...));
}
template <typename T>
constexpr size_t EffectiveAlignof() {
// `char` is special in that it gets aligned to 8. It is where we drop the
// trivial structs.
return std::is_same<T, char>::value ? 8 : alignof(T);
}
template <int align, typename U, typename... T>
using AppendIfAlign =
typename std::conditional<EffectiveAlignof<U>() == align, void (*)(T..., U),
void (*)(T...)>::type;
// Metafunction to sort types in descending order of alignment.
// Useful for the flat allocator to ensure proper alignment of all elements
// without having to add padding.
// Instead of implementing a proper sort metafunction we just do a
// filter+merge, which is much simpler to write as a metafunction.
// We have a fixed set of alignments we can filter on.
// For simplicity we use a function pointer as a type list.
template <typename In, typename T16, typename T8, typename T4, typename T2,
typename T1>
struct TypeListSortImpl;
template <typename... T16, typename... T8, typename... T4, typename... T2,
typename... T1>
struct TypeListSortImpl<void (*)(), void (*)(T16...), void (*)(T8...),
void (*)(T4...), void (*)(T2...), void (*)(T1...)> {
using type = void (*)(T16..., T8..., T4..., T2..., T1...);
};
template <typename First, typename... Rest, typename... T16, typename... T8,
typename... T4, typename... T2, typename... T1>
struct TypeListSortImpl<void (*)(First, Rest...), void (*)(T16...),
void (*)(T8...), void (*)(T4...), void (*)(T2...),
void (*)(T1...)> {
using type = typename TypeListSortImpl<
void (*)(Rest...), AppendIfAlign<16, First, T16...>,
AppendIfAlign<8, First, T8...>, AppendIfAlign<4, First, T4...>,
AppendIfAlign<2, First, T2...>, AppendIfAlign<1, First, T1...>>::type;
};
template <typename... T>
using SortByAlignment =
typename TypeListSortImpl<void (*)(T...), void (*)(), void (*)(),
void (*)(), void (*)(), void (*)()>::type;
template <template <typename...> class C, typename... T>
auto ApplyTypeList(void (*)(T...)) -> C<T...>;
template <typename T>
constexpr int FindTypeIndex() {
return -1;
}
template <typename T, typename T1, typename... Ts>
constexpr int FindTypeIndex() {
return std::is_same<T, T1>::value ? 0 : FindTypeIndex<T, Ts...>() + 1;
}
// A type to value map, where the possible keys as specified in `Keys...`.
// The values for key `K` is `ValueT<K>`
template <template <typename> class ValueT, typename... Keys>
class TypeMap {
public:
template <typename K>
ValueT<K>& Get() {
return static_cast<Base<K>&>(payload_).value;
}
template <typename K>
const ValueT<K>& Get() const {
return static_cast<const Base<K>&>(payload_).value;
}
private:
template <typename K>
struct Base {
ValueT<K> value{};
};
struct Payload : Base<Keys>... {};
Payload payload_;
};
template <typename T>
using IntT = int;
template <typename T>
using PointerT = T*;
// Manages an allocation of sequential arrays of type `T...`.
// It is more space efficient than storing N (ptr, size) pairs, by storing only
// the pointer to the head and the boundaries between the arrays.
template <typename... T>
class FlatAllocation {
public:
static constexpr size_t kMaxAlign = Max(alignof(T)...);
FlatAllocation(const TypeMap<IntT, T...>& ends) : ends_(ends) {
// The arrays start just after FlatAllocation, so adjust the ends.
Fold({(ends_.template Get<T>() +=
RoundUpTo<kMaxAlign>(sizeof(FlatAllocation)))...});
Fold({Init<T>()...});
}
void Destroy() {
Fold({Destroy<T>()...});
internal::SizedDelete(this, total_bytes());
}
template <int I>
using type = typename std::tuple_element<I, std::tuple<T...>>::type;
// Gets a tuple of the head pointers for the arrays
TypeMap<PointerT, T...> Pointers() const {
TypeMap<PointerT, T...> out;
Fold({(out.template Get<T>() = Begin<T>())...});
return out;
}
private:
// Total number of bytes used by all arrays.
int total_bytes() const {
// Get the last end.
return ends_.template Get<typename std::tuple_element<
sizeof...(T) - 1, std::tuple<T...>>::type>();
}
template <typename U>
int BeginOffset() const {
constexpr int type_index = FindTypeIndex<U, T...>();
// Avoid a negative value here to keep it compiling when type_index == 0
constexpr int prev_type_index = type_index == 0 ? 0 : type_index - 1;
using PrevType =
typename std::tuple_element<prev_type_index, std::tuple<T...>>::type;
// Ensure the types are properly aligned.
static_assert(EffectiveAlignof<PrevType>() >= EffectiveAlignof<U>(), "");
return type_index == 0 ? RoundUpTo<kMaxAlign>(sizeof(FlatAllocation))
: ends_.template Get<PrevType>();
}
template <typename U>
int EndOffset() const {
return ends_.template Get<U>();
}
// Avoid the reinterpret_cast if the array is empty.
// Clang's Control Flow Integrity does not like the cast pointing to memory
// that is not yet initialized to be of that type.
// (from -fsanitize=cfi-unrelated-cast)
template <typename U>
U* Begin() const {
int begin = BeginOffset<U>(), end = EndOffset<U>();
if (begin == end) return nullptr;
return reinterpret_cast<U*>(data() + begin);
}
template <typename U>
U* End() const {
int begin = BeginOffset<U>(), end = EndOffset<U>();
if (begin == end) return nullptr;
return reinterpret_cast<U*>(data() + end);
}
template <typename U>
bool Init() {
// Skip for the `char` block. No need to zero initialize it.
if (std::is_same<U, char>::value) return true;
for (char *p = data() + BeginOffset<U>(), *end = data() + EndOffset<U>();
p != end; p += sizeof(U)) {
::new (p) U{};
}
return true;
}
template <typename U>
bool Destroy() {
if (std::is_trivially_destructible<U>::value) return true;
for (U* it = Begin<U>(), *end = End<U>(); it != end; ++it) {
it->~U();
}
return true;
}
char* data() const {
return const_cast<char*>(reinterpret_cast<const char*>(this));
}
TypeMap<IntT, T...> ends_;
};
template <typename... T>
TypeMap<IntT, T...> CalculateEnds(const TypeMap<IntT, T...>& sizes) {
int total = 0;
TypeMap<IntT, T...> out;
Fold({(out.template Get<T>() = total +=
sizeof(T) * sizes.template Get<T>())...});
return out;
}
// The implementation for FlatAllocator below.
// This separate class template makes it easier to have methods that fold on
// `T...`.
template <typename... T>
class FlatAllocatorImpl {
public:
using Allocation = FlatAllocation<T...>;
template <typename U>
void PlanArray(int array_size) {
// We can't call PlanArray after FinalizePlanning has been called.
GOOGLE_CHECK(!has_allocated());
if (std::is_trivially_destructible<U>::value) {
// Trivial types are aligned to 8 bytes.
static_assert(alignof(U) <= 8, "");
total_.template Get<char>() += RoundUpTo<8>(array_size * sizeof(U));
} else {
// Since we can't use `if constexpr`, just make the expression compile
// when this path is not taken.
using TypeToUse =
typename std::conditional<std::is_trivially_destructible<U>::value,
char, U>::type;
total_.template Get<TypeToUse>() += array_size;
}
}
template <typename U>
U* AllocateArray(int array_size) {
constexpr bool trivial = std::is_trivially_destructible<U>::value;
using TypeToUse = typename std::conditional<trivial, char, U>::type;
// We can only allocate after FinalizePlanning has been called.
GOOGLE_CHECK(has_allocated());
TypeToUse*& data = pointers_.template Get<TypeToUse>();
int& used = used_.template Get<TypeToUse>();
U* res = reinterpret_cast<U*>(data + used);
used += trivial ? RoundUpTo<8>(array_size * sizeof(U)) : array_size;
GOOGLE_CHECK_LE(used, total_.template Get<TypeToUse>());
return res;
}
template <typename... In>
const std::string* AllocateStrings(In&&... in) {
std::string* strings = AllocateArray<std::string>(sizeof...(in));
std::string* res = strings;
Fold({(*strings++ = std::string(std::forward<In>(in)))...});
return res;
}
// Allocate all 5 names of the field:
// name, full name, lowercase, camelcase and json.
// It will dedup the strings when possible.
// The resulting array contains `name` at index 0, `full_name` at index 1
// and the other 3 indices are specified in the result.
void PlanFieldNames(const std::string& name,
const std::string* opt_json_name) {
GOOGLE_CHECK(!has_allocated());
// Fast path for snake_case names, which follow the style guide.
if (opt_json_name == nullptr) {
switch (GetFieldNameCase(name)) {
case FieldNameCase::kAllLower:
// Case 1: they are all the same.
return PlanArray<std::string>(2);
case FieldNameCase::kSnakeCase:
// Case 2: name==lower, camel==json
return PlanArray<std::string>(3);
default:
break;
}
}
std::string lowercase_name = name;
LowerString(&lowercase_name);
std::string camelcase_name = ToCamelCase(name, /* lower_first = */ true);
std::string json_name =
opt_json_name != nullptr ? *opt_json_name : ToJsonName(name);
StringPiece all_names[] = {name, lowercase_name, camelcase_name,
json_name};
std::sort(all_names, all_names + 4);
int unique =
static_cast<int>(std::unique(all_names, all_names + 4) - all_names);
PlanArray<std::string>(unique + 1);
}
struct FieldNamesResult {
const std::string* array;
int lowercase_index;
int camelcase_index;
int json_index;
};
FieldNamesResult AllocateFieldNames(const std::string& name,
const std::string& scope,
const std::string* opt_json_name) {
GOOGLE_CHECK(has_allocated());
std::string full_name =
scope.empty() ? name : StrCat(scope, ".", name);
// Fast path for snake_case names, which follow the style guide.
if (opt_json_name == nullptr) {
switch (GetFieldNameCase(name)) {
case FieldNameCase::kAllLower:
// Case 1: they are all the same.
return {AllocateStrings(name, std::move(full_name)), 0, 0, 0};
case FieldNameCase::kSnakeCase:
// Case 2: name==lower, camel==json
return {AllocateStrings(name, std::move(full_name),
ToCamelCase(name, /* lower_first = */ true)),
0, 2, 2};
default:
break;
}
}
std::vector<std::string> names;
names.push_back(name);
names.push_back(std::move(full_name));
const auto push_name = [&](std::string new_name) {
for (size_t i = 0; i < names.size(); ++i) {
// Do not compare the full_name. It is unlikely to match, except in
// custom json_name. We are not taking this into account in
// PlanFieldNames so better to not try it.
if (i == 1) continue;
if (names[i] == new_name) return i;
}
names.push_back(std::move(new_name));
return names.size() - 1;
};
FieldNamesResult result{nullptr, 0, 0, 0};
std::string lowercase_name = name;
LowerString(&lowercase_name);
result.lowercase_index = push_name(std::move(lowercase_name));
result.camelcase_index =
push_name(ToCamelCase(name, /* lower_first = */ true));
result.json_index =
push_name(opt_json_name != nullptr ? *opt_json_name : ToJsonName(name));
std::string* all_names = AllocateArray<std::string>(names.size());
result.array = all_names;
std::move(names.begin(), names.end(), all_names);
return result;
}
template <typename Alloc>
void FinalizePlanning(Alloc& alloc) {
GOOGLE_CHECK(!has_allocated());
pointers_ = alloc->CreateFlatAlloc(total_)->Pointers();
GOOGLE_CHECK(has_allocated());
}
void ExpectConsumed() const {
// We verify that we consumed all the memory requested if there was no
// error in processing.
Fold({ExpectConsumed<T>()...});
}
private:
bool has_allocated() const {
return pointers_.template Get<char>() != nullptr;
}
static bool IsLower(char c) { return 'a' <= c && c <= 'z'; }
static bool IsDigit(char c) { return '0' <= c && c <= '9'; }
static bool IsLowerOrDigit(char c) { return IsLower(c) || IsDigit(c); }
enum class FieldNameCase { kAllLower, kSnakeCase, kOther };
FieldNameCase GetFieldNameCase(const std::string& name) {
if (!IsLower(name[0])) return FieldNameCase::kOther;
FieldNameCase best = FieldNameCase::kAllLower;
for (char c : name) {
if (IsLowerOrDigit(c)) {
// nothing to do
} else if (c == '_') {
best = FieldNameCase::kSnakeCase;
} else {
return FieldNameCase::kOther;
}
}
return best;
}
template <typename U>
bool ExpectConsumed() const {
GOOGLE_CHECK_EQ(total_.template Get<U>(), used_.template Get<U>());
return true;
}
TypeMap<PointerT, T...> pointers_;
TypeMap<IntT, T...> total_;
TypeMap<IntT, T...> used_;
};
} // namespace
class Symbol {
public:
enum Type {
NULL_SYMBOL,
MESSAGE,
FIELD,
ONEOF,
ENUM,
ENUM_VALUE,
ENUM_VALUE_OTHER_PARENT,
SERVICE,
METHOD,
FULL_PACKAGE,
SUB_PACKAGE,
QUERY_KEY
};
Symbol() {
static constexpr internal::SymbolBase null_symbol{};
static_assert(null_symbol.symbol_type_ == NULL_SYMBOL, "");
// Initialize with a sentinel to make sure `ptr_` is never null.
ptr_ = &null_symbol;
}
// Every object we store derives from internal::SymbolBase, where we store the
// symbol type enum.
// Storing in the object can be done without using more space in most cases,
// while storing it in the Symbol type would require 8 bytes.
#define DEFINE_MEMBERS(TYPE, TYPE_CONSTANT, FIELD) \
explicit Symbol(TYPE* value) : ptr_(value) { \
value->symbol_type_ = TYPE_CONSTANT; \
} \
const TYPE* FIELD() const { \
return type() == TYPE_CONSTANT ? static_cast<const TYPE*>(ptr_) : nullptr; \
}
DEFINE_MEMBERS(Descriptor, MESSAGE, descriptor)
DEFINE_MEMBERS(FieldDescriptor, FIELD, field_descriptor)
DEFINE_MEMBERS(OneofDescriptor, ONEOF, oneof_descriptor)
DEFINE_MEMBERS(EnumDescriptor, ENUM, enum_descriptor)
DEFINE_MEMBERS(ServiceDescriptor, SERVICE, service_descriptor)
DEFINE_MEMBERS(MethodDescriptor, METHOD, method_descriptor)
DEFINE_MEMBERS(FileDescriptor, FULL_PACKAGE, file_descriptor)
// We use a special node for subpackage FileDescriptor.
// It is potentially added to the table with multiple different names, so we
// need a separate place to put the name.
struct Subpackage : internal::SymbolBase {
int name_size;
const FileDescriptor* file;
};
DEFINE_MEMBERS(Subpackage, SUB_PACKAGE, sub_package_file_descriptor)
// Enum values have two different parents.
// We use two different identitied for the same object to determine the two
// different insertions in the map.
static Symbol EnumValue(EnumValueDescriptor* value, int n) {
Symbol s;
internal::SymbolBase* ptr;
if (n == 0) {
ptr = static_cast<internal::SymbolBaseN<0>*>(value);
ptr->symbol_type_ = ENUM_VALUE;
} else {
ptr = static_cast<internal::SymbolBaseN<1>*>(value);
ptr->symbol_type_ = ENUM_VALUE_OTHER_PARENT;
}
s.ptr_ = ptr;
return s;
}
const EnumValueDescriptor* enum_value_descriptor() const {
return type() == ENUM_VALUE
? static_cast<const EnumValueDescriptor*>(
static_cast<const internal::SymbolBaseN<0>*>(ptr_))
: type() == ENUM_VALUE_OTHER_PARENT
? static_cast<const EnumValueDescriptor*>(
static_cast<const internal::SymbolBaseN<1>*>(ptr_))
: nullptr;
}
// Not a real symbol.
// Only used for heterogeneous lookups and never actually inserted in the
// tables.
// TODO(b/215557658): If we templetize QueryKey on the expected object type we
// can skip the switches for the eq function altogether.
struct QueryKey : internal::SymbolBase {
StringPiece name;
const void* parent;
int field_number;
// Adaptor functions to look like a Symbol to the comparators.
StringPiece full_name() const { return name; }
std::pair<const void*, int> parent_number_key() const {
return {parent, field_number};
}
std::pair<const void*, StringPiece> parent_name_key() const {
return {parent, name};
}
};
// This constructor is implicit to allow for non-transparent lookups when
// necessary.
// For transparent lookup cases we query directly with the object without the
// type erasure layer.
Symbol(QueryKey& value) : ptr_(&value) { // NOLINT
value.symbol_type_ = QUERY_KEY;
}
const QueryKey* query_key() const {
return type() == QUERY_KEY ? static_cast<const QueryKey*>(ptr_) : nullptr;
}
#undef DEFINE_MEMBERS
Type type() const { return static_cast<Type>(ptr_->symbol_type_); }
bool IsNull() const { return type() == NULL_SYMBOL; }
bool IsType() const { return type() == MESSAGE || type() == ENUM; }
bool IsAggregate() const {
return IsType() || IsPackage() || type() == SERVICE;
}
bool IsPackage() const {
return type() == FULL_PACKAGE || type() == SUB_PACKAGE;
}
const FileDescriptor* GetFile() const {
switch (type()) {
case MESSAGE:
return descriptor()->file();
case FIELD:
return field_descriptor()->file();
case ONEOF:
return oneof_descriptor()->containing_type()->file();
case ENUM:
return enum_descriptor()->file();
case ENUM_VALUE:
return enum_value_descriptor()->type()->file();
case SERVICE:
return service_descriptor()->file();
case METHOD:
return method_descriptor()->service()->file();
case FULL_PACKAGE:
return file_descriptor();
case SUB_PACKAGE:
return sub_package_file_descriptor()->file;
default:
return nullptr;
}
}
StringPiece full_name() const {
switch (type()) {
case MESSAGE:
return descriptor()->full_name();
case FIELD:
return field_descriptor()->full_name();
case ONEOF:
return oneof_descriptor()->full_name();
case ENUM:
return enum_descriptor()->full_name();
case ENUM_VALUE:
return enum_value_descriptor()->full_name();
case SERVICE:
return service_descriptor()->full_name();
case METHOD:
return method_descriptor()->full_name();
case FULL_PACKAGE:
return file_descriptor()->package();
case SUB_PACKAGE:
return StringPiece(sub_package_file_descriptor()->file->package())
.substr(0, sub_package_file_descriptor()->name_size);
case QUERY_KEY:
return query_key()->full_name();
default:
GOOGLE_CHECK(false);
}
return "";
}
std::pair<const void*, StringPiece> parent_name_key() const {
const auto or_file = [&](const void* p) { return p ? p : GetFile(); };
switch (type()) {
case MESSAGE:
return {or_file(descriptor()->containing_type()), descriptor()->name()};
case FIELD: {
auto* field = field_descriptor();
return {or_file(field->is_extension() ? field->extension_scope()
: field->containing_type()),
field->name()};
}
case ONEOF:
return {oneof_descriptor()->containing_type(),
oneof_descriptor()->name()};
case ENUM:
return {or_file(enum_descriptor()->containing_type()),
enum_descriptor()->name()};
case ENUM_VALUE:
return {or_file(enum_value_descriptor()->type()->containing_type()),
enum_value_descriptor()->name()};
case ENUM_VALUE_OTHER_PARENT:
return {enum_value_descriptor()->type(),
enum_value_descriptor()->name()};
case SERVICE:
return {GetFile(), service_descriptor()->name()};
case METHOD:
return {method_descriptor()->service(), method_descriptor()->name()};
case QUERY_KEY:
return query_key()->parent_name_key();
default:
GOOGLE_CHECK(false);
}
return {};
}
std::pair<const void*, int> parent_number_key() const {
switch (type()) {
case FIELD:
return {field_descriptor()->containing_type(),
field_descriptor()->number()};
case ENUM_VALUE:
return {enum_value_descriptor()->type(),
enum_value_descriptor()->number()};
case QUERY_KEY:
return query_key()->parent_number_key();
default:
GOOGLE_CHECK(false);
}
return {};
}
private:
const internal::SymbolBase* ptr_;
};
const FieldDescriptor::CppType
FieldDescriptor::kTypeToCppTypeMap[MAX_TYPE + 1] = {
static_cast<CppType>(0), // 0 is reserved for errors
CPPTYPE_DOUBLE, // TYPE_DOUBLE
CPPTYPE_FLOAT, // TYPE_FLOAT
CPPTYPE_INT64, // TYPE_INT64
CPPTYPE_UINT64, // TYPE_UINT64
CPPTYPE_INT32, // TYPE_INT32
CPPTYPE_UINT64, // TYPE_FIXED64
CPPTYPE_UINT32, // TYPE_FIXED32
CPPTYPE_BOOL, // TYPE_BOOL
CPPTYPE_STRING, // TYPE_STRING
CPPTYPE_MESSAGE, // TYPE_GROUP
CPPTYPE_MESSAGE, // TYPE_MESSAGE
CPPTYPE_STRING, // TYPE_BYTES
CPPTYPE_UINT32, // TYPE_UINT32
CPPTYPE_ENUM, // TYPE_ENUM
CPPTYPE_INT32, // TYPE_SFIXED32
CPPTYPE_INT64, // TYPE_SFIXED64
CPPTYPE_INT32, // TYPE_SINT32
CPPTYPE_INT64, // TYPE_SINT64
};
const char* const FieldDescriptor::kTypeToName[MAX_TYPE + 1] = {
"ERROR", // 0 is reserved for errors
"double", // TYPE_DOUBLE
"float", // TYPE_FLOAT
"int64", // TYPE_INT64
"uint64", // TYPE_UINT64
"int32", // TYPE_INT32
"fixed64", // TYPE_FIXED64
"fixed32", // TYPE_FIXED32
"bool", // TYPE_BOOL
"string", // TYPE_STRING
"group", // TYPE_GROUP
"message", // TYPE_MESSAGE
"bytes", // TYPE_BYTES
"uint32", // TYPE_UINT32
"enum", // TYPE_ENUM
"sfixed32", // TYPE_SFIXED32
"sfixed64", // TYPE_SFIXED64
"sint32", // TYPE_SINT32
"sint64", // TYPE_SINT64
};
const char* const FieldDescriptor::kCppTypeToName[MAX_CPPTYPE + 1] = {
"ERROR", // 0 is reserved for errors
"int32", // CPPTYPE_INT32
"int64", // CPPTYPE_INT64
"uint32", // CPPTYPE_UINT32
"uint64", // CPPTYPE_UINT64
"double", // CPPTYPE_DOUBLE
"float", // CPPTYPE_FLOAT
"bool", // CPPTYPE_BOOL
"enum", // CPPTYPE_ENUM
"string", // CPPTYPE_STRING
"message", // CPPTYPE_MESSAGE
};
const char* const FieldDescriptor::kLabelToName[MAX_LABEL + 1] = {
"ERROR", // 0 is reserved for errors
"optional", // LABEL_OPTIONAL
"required", // LABEL_REQUIRED
"repeated", // LABEL_REPEATED
};
const char* FileDescriptor::SyntaxName(FileDescriptor::Syntax syntax) {
switch (syntax) {
case SYNTAX_PROTO2:
return "proto2";
case SYNTAX_PROTO3:
return "proto3";
case SYNTAX_UNKNOWN:
return "unknown";
}
GOOGLE_LOG(FATAL) << "can't reach here.";
return nullptr;
}
static const char* const kNonLinkedWeakMessageReplacementName = "google.protobuf.Empty";
#if !defined(_MSC_VER) || (_MSC_VER >= 1900 && _MSC_VER < 1912)
const int FieldDescriptor::kMaxNumber;
const int FieldDescriptor::kFirstReservedNumber;
const int FieldDescriptor::kLastReservedNumber;
#endif
namespace {
std::string EnumValueToPascalCase(const std::string& input) {
bool next_upper = true;
std::string result;
result.reserve(input.size());
for (char character : input) {
if (character == '_') {
next_upper = true;
} else {
if (next_upper) {
result.push_back(ToUpper(character));
} else {
result.push_back(ToLower(character));
}
next_upper = false;
}
}
return result;
}
// Class to remove an enum prefix from enum values.
class PrefixRemover {
public:
PrefixRemover(StringPiece prefix) {
// Strip underscores and lower-case the prefix.
for (char character : prefix) {
if (character != '_') {
prefix_ += ascii_tolower(character);
}
}
}
// Tries to remove the enum prefix from this enum value.
// If this is not possible, returns the input verbatim.
std::string MaybeRemove(StringPiece str) {
// We can't just lowercase and strip str and look for a prefix.
// We need to properly recognize the difference between:
//
// enum Foo {
// FOO_BAR_BAZ = 0;
// FOO_BARBAZ = 1;
// }
//
// This is acceptable (though perhaps not advisable) because even when
// we PascalCase, these two will still be distinct (BarBaz vs. Barbaz).
size_t i, j;
// Skip past prefix_ in str if we can.
for (i = 0, j = 0; i < str.size() && j < prefix_.size(); i++) {
if (str[i] == '_') {
continue;
}
if (ascii_tolower(str[i]) != prefix_[j++]) {
return std::string(str);
}
}
// If we didn't make it through the prefix, we've failed to strip the
// prefix.
if (j < prefix_.size()) {
return std::string(str);
}
// Skip underscores between prefix and further characters.
while (i < str.size() && str[i] == '_') {
i++;
}
// Enum label can't be the empty string.
if (i == str.size()) {
return std::string(str);
}
// We successfully stripped the prefix.
str.remove_prefix(i);
return std::string(str);
}
private:
std::string prefix_;
};
// A DescriptorPool contains a bunch of hash-maps to implement the
// various Find*By*() methods. Since hashtable lookups are O(1), it's
// most efficient to construct a fixed set of large hash-maps used by
// all objects in the pool rather than construct one or more small
// hash-maps for each object.
//
// The keys to these hash-maps are (parent, name) or (parent, number) pairs.
typedef std::pair<const void*, StringPiece> PointerStringPair;
typedef std::pair<const Descriptor*, int> DescriptorIntPair;
#define HASH_MAP std::unordered_map
#define HASH_SET std::unordered_set
#define HASH_FXN hash
template <typename PairType>
struct PointerIntegerPairHash {
size_t operator()(const PairType& p) const {
static const size_t prime1 = 16777499;
static const size_t prime2 = 16777619;
return reinterpret_cast<size_t>(p.first) * prime1 ^
static_cast<size_t>(p.second) * prime2;
}
#ifdef _MSC_VER
// Used only by MSVC and platforms where hash_map is not available.
static const size_t bucket_size = 4;
static const size_t min_buckets = 8;
#endif
inline bool operator()(const PairType& a, const PairType& b) const {
return a < b;
}
};
struct PointerStringPairHash {
size_t operator()(const PointerStringPair& p) const {
static const size_t prime = 16777619;
hash<StringPiece> string_hash;
return reinterpret_cast<size_t>(p.first) * prime ^
static_cast<size_t>(string_hash(p.second));
}
#ifdef _MSC_VER
// Used only by MSVC and platforms where hash_map is not available.
static const size_t bucket_size = 4;
static const size_t min_buckets = 8;
#endif
inline bool operator()(const PointerStringPair& a,
const PointerStringPair& b) const {
return a < b;
}
};
struct SymbolByFullNameHash {
using is_transparent = void;
template <typename T>
size_t operator()(const T& s) const {
return HASH_FXN<StringPiece>{}(s.full_name());
}
};
struct SymbolByFullNameEq {
using is_transparent = void;
template <typename T, typename U>
bool operator()(const T& a, const U& b) const {
return a.full_name() == b.full_name();
}
};
using SymbolsByNameSet =
HASH_SET<Symbol, SymbolByFullNameHash, SymbolByFullNameEq>;
struct SymbolByParentHash {
using is_transparent = void;
template <typename T>
size_t operator()(const T& s) const {
return PointerStringPairHash{}(s.parent_name_key());
}
};
struct SymbolByParentEq {
using is_transparent = void;
template <typename T, typename U>
bool operator()(const T& a, const U& b) const {
return a.parent_name_key() == b.parent_name_key();
}
};
using SymbolsByParentSet =
HASH_SET<Symbol, SymbolByParentHash, SymbolByParentEq>;
typedef HASH_MAP<StringPiece, const FileDescriptor*,
HASH_FXN<StringPiece>>
FilesByNameMap;
typedef HASH_MAP<PointerStringPair, const FieldDescriptor*,
PointerStringPairHash>
FieldsByNameMap;
struct FieldsByNumberHash {
using is_transparent = void;
template <typename T>
size_t operator()(const T& s) const {
return PointerIntegerPairHash<std::pair<const void*, int>>{}(
s.parent_number_key());
}
};
struct FieldsByNumberEq {
using is_transparent = void;
template <typename T, typename U>
bool operator()(const T& a, const U& b) const {
return a.parent_number_key() == b.parent_number_key();
}
};
using FieldsByNumberSet =
HASH_SET<Symbol, FieldsByNumberHash, FieldsByNumberEq>;
using EnumValuesByNumberSet = FieldsByNumberSet;
// This is a map rather than a hash-map, since we use it to iterate
// through all the extensions that extend a given Descriptor, and an
// ordered data structure that implements lower_bound is convenient
// for that.
typedef std::map<DescriptorIntPair, const FieldDescriptor*>
ExtensionsGroupedByDescriptorMap;
typedef HASH_MAP<std::string, const SourceCodeInfo_Location*>
LocationsByPathMap;
std::set<std::string>* NewAllowedProto3Extendee() {
auto allowed_proto3_extendees = new std::set<std::string>;
const char* kOptionNames[] = {
"FileOptions", "MessageOptions", "FieldOptions",
"EnumOptions", "EnumValueOptions", "ServiceOptions",
"MethodOptions", "OneofOptions", "ExtensionRangeOptions"};
for (const char* option_name : kOptionNames) {
// descriptor.proto has a different package name in opensource. We allow
// both so the opensource protocol compiler can also compile internal
// proto3 files with custom options. See: b/27567912
allowed_proto3_extendees->insert(std::string("google.protobuf.") +
option_name);
// Split the word to trick the opensource processing scripts so they
// will keep the original package name.
allowed_proto3_extendees->insert(std::string("proto") + "2." + option_name);
}
return allowed_proto3_extendees;
}
// Checks whether the extendee type is allowed in proto3.
// Only extensions to descriptor options are allowed. We use name comparison
// instead of comparing the descriptor directly because the extensions may be
// defined in a different pool.
bool AllowedExtendeeInProto3(const std::string& name) {
static auto allowed_proto3_extendees =
internal::OnShutdownDelete(NewAllowedProto3Extendee());
return allowed_proto3_extendees->find(name) !=
allowed_proto3_extendees->end();
}
} // anonymous namespace
// Contains tables specific to a particular file. These tables are not
// modified once the file has been constructed, so they need not be
// protected by a mutex. This makes operations that depend only on the
// contents of a single file -- e.g. Descriptor::FindFieldByName() --
// lock-free.
//
// For historical reasons, the definitions of the methods of
// FileDescriptorTables and DescriptorPool::Tables are interleaved below.
// These used to be a single class.
class FileDescriptorTables {
public:
FileDescriptorTables();
~FileDescriptorTables();
// Empty table, used with placeholder files.
inline static const FileDescriptorTables& GetEmptyInstance();
// -----------------------------------------------------------------
// Finding items.
// Returns a null Symbol (symbol.IsNull() is true) if not found.
inline Symbol FindNestedSymbol(const void* parent,
StringPiece name) const;
// These return nullptr if not found.
inline const FieldDescriptor* FindFieldByNumber(const Descriptor* parent,
int number) const;
inline const FieldDescriptor* FindFieldByLowercaseName(
const void* parent, StringPiece lowercase_name) const;
inline const FieldDescriptor* FindFieldByCamelcaseName(
const void* parent, StringPiece camelcase_name) const;
inline const EnumValueDescriptor* FindEnumValueByNumber(
const EnumDescriptor* parent, int number) const;
// This creates a new EnumValueDescriptor if not found, in a thread-safe way.
inline const EnumValueDescriptor* FindEnumValueByNumberCreatingIfUnknown(
const EnumDescriptor* parent, int number) const;
// -----------------------------------------------------------------
// Adding items.
// These add items to the corresponding tables. They return false if
// the key already exists in the table.
bool AddAliasUnderParent(const void* parent, const std::string& name,
Symbol symbol);
bool AddFieldByNumber(FieldDescriptor* field);
bool AddEnumValueByNumber(EnumValueDescriptor* value);
// Populates p->first->locations_by_path_ from p->second.
// Unusual signature dictated by internal::call_once.
static void BuildLocationsByPath(
std::pair<const FileDescriptorTables*, const SourceCodeInfo*>* p);
// Returns the location denoted by the specified path through info,
// or nullptr if not found.
// The value of info must be that of the corresponding FileDescriptor.
// (Conceptually a pure function, but stateful as an optimisation.)
const SourceCodeInfo_Location* GetSourceLocation(
const std::vector<int>& path, const SourceCodeInfo* info) const;
// Must be called after BuildFileImpl(), even if the build failed and
// we are going to roll back to the last checkpoint.
void FinalizeTables();
private:
const void* FindParentForFieldsByMap(const FieldDescriptor* field) const;
static void FieldsByLowercaseNamesLazyInitStatic(
const FileDescriptorTables* tables);
void FieldsByLowercaseNamesLazyInitInternal() const;
static void FieldsByCamelcaseNamesLazyInitStatic(
const FileDescriptorTables* tables);
void FieldsByCamelcaseNamesLazyInitInternal() const;
SymbolsByParentSet symbols_by_parent_;
mutable internal::once_flag fields_by_lowercase_name_once_;
mutable internal::once_flag fields_by_camelcase_name_once_;
// Make these fields atomic to avoid race conditions with
// GetEstimatedOwnedMemoryBytesSize. Once the pointer is set the map won't
// change anymore.
mutable std::atomic<const FieldsByNameMap*> fields_by_lowercase_name_{};
mutable std::atomic<const FieldsByNameMap*> fields_by_camelcase_name_{};
FieldsByNumberSet fields_by_number_; // Not including extensions.
EnumValuesByNumberSet enum_values_by_number_;
mutable EnumValuesByNumberSet unknown_enum_values_by_number_
PROTOBUF_GUARDED_BY(unknown_enum_values_mu_);
// Populated on first request to save space, hence constness games.
mutable internal::once_flag locations_by_path_once_;
mutable LocationsByPathMap locations_by_path_;
// Mutex to protect the unknown-enum-value map due to dynamic
// EnumValueDescriptor creation on unknown values.
mutable internal::WrappedMutex unknown_enum_values_mu_;
};
namespace internal {
// Small sequential allocator to be used within a single file.
// Most of the memory for a single FileDescriptor and everything under it is
// allocated in a single block of memory, with the FlatAllocator giving it out
// in parts later.
// The code first plans the total number of bytes needed by calling PlanArray
// with all the allocations that will happen afterwards, then calls
// FinalizePlanning passing the underlying allocator (the DescriptorPool::Tables
// instance), and then proceeds to get the memory via
// `AllocateArray`/`AllocateString` calls. The calls to PlanArray and
// The calls have to match between planning and allocating, though not
// necessarily in the same order.
class FlatAllocator
: public decltype(ApplyTypeList<FlatAllocatorImpl>(
SortByAlignment<char, std::string, SourceCodeInfo,
FileDescriptorTables,
// Option types
MessageOptions, FieldOptions, EnumOptions,
EnumValueOptions, ExtensionRangeOptions, OneofOptions,
ServiceOptions, MethodOptions, FileOptions>())) {};
} // namespace internal
// ===================================================================
// DescriptorPool::Tables
class DescriptorPool::Tables {
public:
Tables();
~Tables();
// Record the current state of the tables to the stack of checkpoints.
// Each call to AddCheckpoint() must be paired with exactly one call to either
// ClearLastCheckpoint() or RollbackToLastCheckpoint().
//
// This is used when building files, since some kinds of validation errors
// cannot be detected until the file's descriptors have already been added to
// the tables.
//
// This supports recursive checkpoints, since building a file may trigger
// recursive building of other files. Note that recursive checkpoints are not
// normally necessary; explicit dependencies are built prior to checkpointing.
// So although we recursively build transitive imports, there is at most one
// checkpoint in the stack during dependency building.
//
// Recursive checkpoints only arise during cross-linking of the descriptors.
// Symbol references must be resolved, via DescriptorBuilder::FindSymbol and
// friends. If the pending file references an unknown symbol
// (e.g., it is not defined in the pending file's explicit dependencies), and
// the pool is using a fallback database, and that database contains a file
// defining that symbol, and that file has not yet been built by the pool,
// the pool builds the file during cross-linking, leading to another
// checkpoint.
void AddCheckpoint();
// Mark the last checkpoint as having cleared successfully, removing it from
// the stack. If the stack is empty, all pending symbols will be committed.
//
// Note that this does not guarantee that the symbols added since the last
// checkpoint won't be rolled back: if a checkpoint gets rolled back,
// everything past that point gets rolled back, including symbols added after
// checkpoints that were pushed onto the stack after it and marked as cleared.
void ClearLastCheckpoint();
// Roll back the Tables to the state of the checkpoint at the top of the
// stack, removing everything that was added after that point.
void RollbackToLastCheckpoint();
// The stack of files which are currently being built. Used to detect
// cyclic dependencies when loading files from a DescriptorDatabase. Not
// used when fallback_database_ == nullptr.
std::vector<std::string> pending_files_;
// A set of files which we have tried to load from the fallback database
// and encountered errors. We will not attempt to load them again during
// execution of the current public API call, but for compatibility with
// legacy clients, this is cleared at the beginning of each public API call.
// Not used when fallback_database_ == nullptr.
HASH_SET<std::string> known_bad_files_;
// A set of symbols which we have tried to load from the fallback database
// and encountered errors. We will not attempt to load them again during
// execution of the current public API call, but for compatibility with
// legacy clients, this is cleared at the beginning of each public API call.
HASH_SET<std::string> known_bad_symbols_;
// The set of descriptors for which we've already loaded the full
// set of extensions numbers from fallback_database_.
HASH_SET<const Descriptor*> extensions_loaded_from_db_;
// Maps type name to Descriptor::WellKnownType. This is logically global
// and const, but we make it a member here to simplify its construction and
// destruction. This only has 20-ish entries and is one per DescriptorPool,
// so the overhead is small.
HASH_MAP<std::string, Descriptor::WellKnownType> well_known_types_;
// -----------------------------------------------------------------
// Finding items.
// Find symbols. This returns a null Symbol (symbol.IsNull() is true)
// if not found.
inline Symbol FindSymbol(StringPiece key) const;
// This implements the body of DescriptorPool::Find*ByName(). It should
// really be a private method of DescriptorPool, but that would require
// declaring Symbol in descriptor.h, which would drag all kinds of other
// stuff into the header. Yay C++.
Symbol FindByNameHelper(const DescriptorPool* pool, StringPiece name);
// These return nullptr if not found.
inline const FileDescriptor* FindFile(StringPiece key) const;
inline const FieldDescriptor* FindExtension(const Descriptor* extendee,
int number) const;
inline void FindAllExtensions(const Descriptor* extendee,
std::vector<const FieldDescriptor*>* out) const;
// -----------------------------------------------------------------
// Adding items.
// These add items to the corresponding tables. They return false if
// the key already exists in the table. For AddSymbol(), the string passed
// in must be one that was constructed using AllocateString(), as it will
// be used as a key in the symbols_by_name_ map without copying.
bool AddSymbol(const std::string& full_name, Symbol symbol);
bool AddFile(const FileDescriptor* file);
bool AddExtension(const FieldDescriptor* field);
// -----------------------------------------------------------------
// Allocating memory.
// Allocate an object which will be reclaimed when the pool is
// destroyed. Note that the object's destructor will never be called,
// so its fields must be plain old data (primitive data types and
// pointers). All of the descriptor types are such objects.
template <typename Type>
Type* Allocate();
// Allocate some bytes which will be reclaimed when the pool is
// destroyed. Memory is aligned to 8 bytes.
void* AllocateBytes(int size);
// Create a FlatAllocation for the corresponding sizes.
// All objects within it will be default constructed.
// The whole allocation, including the non-trivial objects within, will be
// destroyed with the pool.
template <typename... T>
internal::FlatAllocator::Allocation* CreateFlatAlloc(
const TypeMap<IntT, T...>& sizes);
private:
// All memory allocated in the pool. Must be first as other objects can
// point into these.
struct MiscDeleter {
void operator()(int* p) const { internal::SizedDelete(p, *p + 8); }
};
// Miscellaneous allocations are length prefixed. The paylaod is 8 bytes after
// the `int` that contains the size. This keeps the payload aligned.
std::vector<std::unique_ptr<int, MiscDeleter>> misc_allocs_;
struct FlatAllocDeleter {
void operator()(internal::FlatAllocator::Allocation* p) const {
p->Destroy();
}
};
std::vector<
std::unique_ptr<internal::FlatAllocator::Allocation, FlatAllocDeleter>>
flat_allocs_;
SymbolsByNameSet symbols_by_name_;
FilesByNameMap files_by_name_;
ExtensionsGroupedByDescriptorMap extensions_;
struct CheckPoint {
explicit CheckPoint(const Tables* tables)
: flat_allocations_before_checkpoint(
static_cast<int>(tables->flat_allocs_.size())),
misc_allocations_before_checkpoint(
static_cast<int>(tables->misc_allocs_.size())),
pending_symbols_before_checkpoint(
tables->symbols_after_checkpoint_.size()),
pending_files_before_checkpoint(
tables->files_after_checkpoint_.size()),
pending_extensions_before_checkpoint(
tables->extensions_after_checkpoint_.size()) {}
int flat_allocations_before_checkpoint;
int misc_allocations_before_checkpoint;
int pending_symbols_before_checkpoint;
int pending_files_before_checkpoint;
int pending_extensions_before_checkpoint;
};
std::vector<CheckPoint> checkpoints_;
std::vector<Symbol> symbols_after_checkpoint_;
std::vector<const FileDescriptor*> files_after_checkpoint_;
std::vector<DescriptorIntPair> extensions_after_checkpoint_;
};
DescriptorPool::Tables::Tables() {
well_known_types_.insert({
{"google.protobuf.DoubleValue", Descriptor::WELLKNOWNTYPE_DOUBLEVALUE},
{"google.protobuf.FloatValue", Descriptor::WELLKNOWNTYPE_FLOATVALUE},
{"google.protobuf.Int64Value", Descriptor::WELLKNOWNTYPE_INT64VALUE},
{"google.protobuf.UInt64Value", Descriptor::WELLKNOWNTYPE_UINT64VALUE},
{"google.protobuf.Int32Value", Descriptor::WELLKNOWNTYPE_INT32VALUE},
{"google.protobuf.UInt32Value", Descriptor::WELLKNOWNTYPE_UINT32VALUE},
{"google.protobuf.StringValue", Descriptor::WELLKNOWNTYPE_STRINGVALUE},
{"google.protobuf.BytesValue", Descriptor::WELLKNOWNTYPE_BYTESVALUE},
{"google.protobuf.BoolValue", Descriptor::WELLKNOWNTYPE_BOOLVALUE},
{"google.protobuf.Any", Descriptor::WELLKNOWNTYPE_ANY},
{"google.protobuf.FieldMask", Descriptor::WELLKNOWNTYPE_FIELDMASK},
{"google.protobuf.Duration", Descriptor::WELLKNOWNTYPE_DURATION},
{"google.protobuf.Timestamp", Descriptor::WELLKNOWNTYPE_TIMESTAMP},
{"google.protobuf.Value", Descriptor::WELLKNOWNTYPE_VALUE},
{"google.protobuf.ListValue", Descriptor::WELLKNOWNTYPE_LISTVALUE},
{"google.protobuf.Struct", Descriptor::WELLKNOWNTYPE_STRUCT},
});
}
DescriptorPool::Tables::~Tables() { GOOGLE_DCHECK(checkpoints_.empty()); }
FileDescriptorTables::FileDescriptorTables() {}
FileDescriptorTables::~FileDescriptorTables() {
delete fields_by_lowercase_name_.load(std::memory_order_acquire);
delete fields_by_camelcase_name_.load(std::memory_order_acquire);
}
inline const FileDescriptorTables& FileDescriptorTables::GetEmptyInstance() {
static auto file_descriptor_tables =
internal::OnShutdownDelete(new FileDescriptorTables());
return *file_descriptor_tables;
}
void DescriptorPool::Tables::AddCheckpoint() {
checkpoints_.push_back(CheckPoint(this));
}
void DescriptorPool::Tables::ClearLastCheckpoint() {
GOOGLE_DCHECK(!checkpoints_.empty());
checkpoints_.pop_back();
if (checkpoints_.empty()) {
// All checkpoints have been cleared: we can now commit all of the pending
// data.
symbols_after_checkpoint_.clear();
files_after_checkpoint_.clear();
extensions_after_checkpoint_.clear();
}
}
void DescriptorPool::Tables::RollbackToLastCheckpoint() {
GOOGLE_DCHECK(!checkpoints_.empty());
const CheckPoint& checkpoint = checkpoints_.back();
for (size_t i = checkpoint.pending_symbols_before_checkpoint;
i < symbols_after_checkpoint_.size(); i++) {
symbols_by_name_.erase(symbols_after_checkpoint_[i]);
}
for (size_t i = checkpoint.pending_files_before_checkpoint;
i < files_after_checkpoint_.size(); i++) {
files_by_name_.erase(files_after_checkpoint_[i]->name());
}
for (size_t i = checkpoint.pending_extensions_before_checkpoint;
i < extensions_after_checkpoint_.size(); i++) {
extensions_.erase(extensions_after_checkpoint_[i]);
}
symbols_after_checkpoint_.resize(
checkpoint.pending_symbols_before_checkpoint);
files_after_checkpoint_.resize(checkpoint.pending_files_before_checkpoint);
extensions_after_checkpoint_.resize(
checkpoint.pending_extensions_before_checkpoint);
flat_allocs_.resize(checkpoint.flat_allocations_before_checkpoint);
misc_allocs_.resize(checkpoint.misc_allocations_before_checkpoint);
checkpoints_.pop_back();
}
// -------------------------------------------------------------------
inline Symbol DescriptorPool::Tables::FindSymbol(StringPiece key) const {
Symbol::QueryKey name;
name.name = key;
auto it = symbols_by_name_.find(name);
return it == symbols_by_name_.end() ? Symbol() : *it;
}
inline Symbol FileDescriptorTables::FindNestedSymbol(
const void* parent, StringPiece name) const {
Symbol::QueryKey query;
query.name = name;
query.parent = parent;
auto it = symbols_by_parent_.find(query);
return it == symbols_by_parent_.end() ? Symbol() : *it;
}
Symbol DescriptorPool::Tables::FindByNameHelper(const DescriptorPool* pool,
StringPiece name) {
if (pool->mutex_ != nullptr) {
// Fast path: the Symbol is already cached. This is just a hash lookup.
ReaderMutexLock lock(pool->mutex_);
if (known_bad_symbols_.empty() && known_bad_files_.empty()) {
Symbol result = FindSymbol(name);
if (!result.IsNull()) return result;
}
}
MutexLockMaybe lock(pool->mutex_);
if (pool->fallback_database_ != nullptr) {
known_bad_symbols_.clear();
known_bad_files_.clear();
}
Symbol result = FindSymbol(name);
if (result.IsNull() && pool->underlay_ != nullptr) {
// Symbol not found; check the underlay.
result = pool->underlay_->tables_->FindByNameHelper(pool->underlay_, name);
}
if (result.IsNull()) {
// Symbol still not found, so check fallback database.
if (pool->TryFindSymbolInFallbackDatabase(name)) {
result = FindSymbol(name);
}
}
return result;
}
inline const FileDescriptor* DescriptorPool::Tables::FindFile(
StringPiece key) const {
return FindPtrOrNull(files_by_name_, key);
}
inline const FieldDescriptor* FileDescriptorTables::FindFieldByNumber(
const Descriptor* parent, int number) const {
// If `number` is within the sequential range, just index into the parent
// without doing a table lookup.
if (parent != nullptr && //
1 <= number && number <= parent->sequential_field_limit_) {
return parent->field(number - 1);
}
Symbol::QueryKey query;
query.parent = parent;
query.field_number = number;
auto it = fields_by_number_.find(query);
return it == fields_by_number_.end() ? nullptr : it->field_descriptor();
}
const void* FileDescriptorTables::FindParentForFieldsByMap(
const FieldDescriptor* field) const {
if (field->is_extension()) {
if (field->extension_scope() == nullptr) {
return field->file();
} else {
return field->extension_scope();
}
} else {
return field->containing_type();
}
}
void FileDescriptorTables::FieldsByLowercaseNamesLazyInitStatic(
const FileDescriptorTables* tables) {
tables->FieldsByLowercaseNamesLazyInitInternal();
}
void FileDescriptorTables::FieldsByLowercaseNamesLazyInitInternal() const {
auto* map = new FieldsByNameMap;
for (Symbol symbol : symbols_by_parent_) {
const FieldDescriptor* field = symbol.field_descriptor();
if (!field) continue;
(*map)[{FindParentForFieldsByMap(field), field->lowercase_name().c_str()}] =
field;
}
fields_by_lowercase_name_.store(map, std::memory_order_release);
}
inline const FieldDescriptor* FileDescriptorTables::FindFieldByLowercaseName(
const void* parent, StringPiece lowercase_name) const {
internal::call_once(
fields_by_lowercase_name_once_,
&FileDescriptorTables::FieldsByLowercaseNamesLazyInitStatic, this);
return FindPtrOrNull(
*fields_by_lowercase_name_.load(std::memory_order_acquire),
PointerStringPair(parent, lowercase_name));
}
void FileDescriptorTables::FieldsByCamelcaseNamesLazyInitStatic(
const FileDescriptorTables* tables) {
tables->FieldsByCamelcaseNamesLazyInitInternal();
}
void FileDescriptorTables::FieldsByCamelcaseNamesLazyInitInternal() const {
auto* map = new FieldsByNameMap;
for (Symbol symbol : symbols_by_parent_) {
const FieldDescriptor* field = symbol.field_descriptor();
if (!field) continue;
(*map)[{FindParentForFieldsByMap(field), field->camelcase_name().c_str()}] =
field;
}
fields_by_camelcase_name_.store(map, std::memory_order_release);
}
inline const FieldDescriptor* FileDescriptorTables::FindFieldByCamelcaseName(
const void* parent, StringPiece camelcase_name) const {
internal::call_once(
fields_by_camelcase_name_once_,
FileDescriptorTables::FieldsByCamelcaseNamesLazyInitStatic, this);
return FindPtrOrNull(
*fields_by_camelcase_name_.load(std::memory_order_acquire),
PointerStringPair(parent, camelcase_name));
}
inline const EnumValueDescriptor* FileDescriptorTables::FindEnumValueByNumber(
const EnumDescriptor* parent, int number) const {
// If `number` is within the sequential range, just index into the parent
// without doing a table lookup.
const int base = parent->value(0)->number();
if (base <= number &&
number <= static_cast<int64_t>(base) + parent->sequential_value_limit_) {
return parent->value(number - base);
}
Symbol::QueryKey query;
query.parent = parent;
query.field_number = number;
auto it = enum_values_by_number_.find(query);
return it == enum_values_by_number_.end() ? nullptr
: it->enum_value_descriptor();
}
inline const EnumValueDescriptor*
FileDescriptorTables::FindEnumValueByNumberCreatingIfUnknown(
const EnumDescriptor* parent, int number) const {
// First try, with map of compiled-in values.
{
const auto* value = FindEnumValueByNumber(parent, number);
if (value != nullptr) {
return value;
}
}
Symbol::QueryKey query;
query.parent = parent;
query.field_number = number;
// Second try, with reader lock held on unknown enum values: common case.
{
ReaderMutexLock l(&unknown_enum_values_mu_);
auto it = unknown_enum_values_by_number_.find(query);
if (it != unknown_enum_values_by_number_.end() &&
it->enum_value_descriptor() != nullptr) {
return it->enum_value_descriptor();
}
}
// If not found, try again with writer lock held, and create new descriptor if
// necessary.
{
WriterMutexLock l(&unknown_enum_values_mu_);
auto it = unknown_enum_values_by_number_.find(query);
if (it != unknown_enum_values_by_number_.end() &&
it->enum_value_descriptor() != nullptr) {
return it->enum_value_descriptor();
}
// Create an EnumValueDescriptor dynamically. We don't insert it into the
// EnumDescriptor (it's not a part of the enum as originally defined), but
// we do insert it into the table so that we can return the same pointer
// later.
std::string enum_value_name = StringPrintf(
"UNKNOWN_ENUM_VALUE_%s_%d", parent->name().c_str(), number);
auto* pool = DescriptorPool::generated_pool();
auto* tables = const_cast<DescriptorPool::Tables*>(pool->tables_.get());
internal::FlatAllocator alloc;
alloc.PlanArray<EnumValueDescriptor>(1);
alloc.PlanArray<std::string>(2);
{
// Must lock the pool because we will do allocations in the shared arena.
MutexLockMaybe l2(pool->mutex_);
alloc.FinalizePlanning(tables);
}
EnumValueDescriptor* result = alloc.AllocateArray<EnumValueDescriptor>(1);
result->all_names_ = alloc.AllocateStrings(
enum_value_name,
StrCat(parent->full_name(), ".", enum_value_name));
result->number_ = number;
result->type_ = parent;
result->options_ = &EnumValueOptions::default_instance();
unknown_enum_values_by_number_.insert(Symbol::EnumValue(result, 0));
return result;
}
}
inline const FieldDescriptor* DescriptorPool::Tables::FindExtension(
const Descriptor* extendee, int number) const {
return FindPtrOrNull(extensions_, std::make_pair(extendee, number));
}
inline void DescriptorPool::Tables::FindAllExtensions(
const Descriptor* extendee,
std::vector<const FieldDescriptor*>* out) const {
ExtensionsGroupedByDescriptorMap::const_iterator it =
extensions_.lower_bound(std::make_pair(extendee, 0));
for (; it != extensions_.end() && it->first.first == extendee; ++it) {
out->push_back(it->second);
}
}
// -------------------------------------------------------------------
bool DescriptorPool::Tables::AddSymbol(const std::string& full_name,
Symbol symbol) {
GOOGLE_DCHECK_EQ(full_name, symbol.full_name());
if (symbols_by_name_.insert(symbol).second) {
symbols_after_checkpoint_.push_back(symbol);
return true;
} else {
return false;
}
}
bool FileDescriptorTables::AddAliasUnderParent(const void* parent,
const std::string& name,
Symbol symbol) {
GOOGLE_DCHECK_EQ(name, symbol.parent_name_key().second);
GOOGLE_DCHECK_EQ(parent, symbol.parent_name_key().first);
return symbols_by_parent_.insert(symbol).second;
}
bool DescriptorPool::Tables::AddFile(const FileDescriptor* file) {
if (InsertIfNotPresent(&files_by_name_, file->name(), file)) {
files_after_checkpoint_.push_back(file);
return true;
} else {
return false;
}
}
void FileDescriptorTables::FinalizeTables() {}
bool FileDescriptorTables::AddFieldByNumber(FieldDescriptor* field) {
// Skip fields that are at the start of the sequence.
if (field->containing_type() != nullptr && field->number() >= 1 &&
field->number() <= field->containing_type()->sequential_field_limit_) {
if (field->is_extension()) {
// Conflicts with the field that already exists in the sequential range.
return false;
}
// Only return true if the field at that index matches. Otherwise it
// conflicts with the existing field in the sequential range.
return field->containing_type()->field(field->number() - 1) == field;
}
return fields_by_number_.insert(Symbol(field)).second;
}
bool FileDescriptorTables::AddEnumValueByNumber(EnumValueDescriptor* value) {
// Skip values that are at the start of the sequence.
const int base = value->type()->value(0)->number();
if (base <= value->number() &&
value->number() <=
static_cast<int64_t>(base) + value->type()->sequential_value_limit_)
return true;
return enum_values_by_number_.insert(Symbol::EnumValue(value, 0)).second;
}
bool DescriptorPool::Tables::AddExtension(const FieldDescriptor* field) {
DescriptorIntPair key(field->containing_type(), field->number());
if (InsertIfNotPresent(&extensions_, key, field)) {
extensions_after_checkpoint_.push_back(key);
return true;
} else {
return false;
}
}
// -------------------------------------------------------------------
template <typename Type>
Type* DescriptorPool::Tables::Allocate() {
static_assert(std::is_trivially_destructible<Type>::value, "");
static_assert(alignof(Type) <= 8, "");
return ::new (AllocateBytes(sizeof(Type))) Type{};
}
void* DescriptorPool::Tables::AllocateBytes(int size) {
if (size == 0) return nullptr;
void* p = ::operator new(size + RoundUpTo<8>(sizeof(int)));
int* sizep = static_cast<int*>(p);
misc_allocs_.emplace_back(sizep);
*sizep = size;
return static_cast<char*>(p) + RoundUpTo<8>(sizeof(int));
}
template <typename... T>
internal::FlatAllocator::Allocation* DescriptorPool::Tables::CreateFlatAlloc(
const TypeMap<IntT, T...>& sizes) {
auto ends = CalculateEnds(sizes);
using FlatAlloc = internal::FlatAllocator::Allocation;
int last_end = ends.template Get<
typename std::tuple_element<sizeof...(T) - 1, std::tuple<T...>>::type>();
size_t total_size =
last_end + RoundUpTo<FlatAlloc::kMaxAlign>(sizeof(FlatAlloc));
char* data = static_cast<char*>(::operator new(total_size));
auto* res = ::new (data) FlatAlloc(ends);
flat_allocs_.emplace_back(res);
return res;
}
void FileDescriptorTables::BuildLocationsByPath(
std::pair<const FileDescriptorTables*, const SourceCodeInfo*>* p) {
for (int i = 0, len = p->second->location_size(); i < len; ++i) {
const SourceCodeInfo_Location* loc = &p->second->location().Get(i);
p->first->locations_by_path_[Join(loc->path(), ",")] = loc;
}
}
const SourceCodeInfo_Location* FileDescriptorTables::GetSourceLocation(
const std::vector<int>& path, const SourceCodeInfo* info) const {
std::pair<const FileDescriptorTables*, const SourceCodeInfo*> p(
std::make_pair(this, info));
internal::call_once(locations_by_path_once_,
FileDescriptorTables::BuildLocationsByPath, &p);
return FindPtrOrNull(locations_by_path_, Join(path, ","));
}
// ===================================================================
// DescriptorPool
DescriptorPool::ErrorCollector::~ErrorCollector() {}
DescriptorPool::DescriptorPool()
: mutex_(nullptr),
fallback_database_(nullptr),
default_error_collector_(nullptr),
underlay_(nullptr),
tables_(new Tables),
enforce_dependencies_(true),
lazily_build_dependencies_(false),
allow_unknown_(false),
enforce_weak_(false),
disallow_enforce_utf8_(false) {}
DescriptorPool::DescriptorPool(DescriptorDatabase* fallback_database,
ErrorCollector* error_collector)
: mutex_(new internal::WrappedMutex),
fallback_database_(fallback_database),
default_error_collector_(error_collector),
underlay_(nullptr),
tables_(new Tables),
enforce_dependencies_(true),
lazily_build_dependencies_(false),
allow_unknown_(false),
enforce_weak_(false),
disallow_enforce_utf8_(false) {}
DescriptorPool::DescriptorPool(const DescriptorPool* underlay)
: mutex_(nullptr),
fallback_database_(nullptr),
default_error_collector_(nullptr),
underlay_(underlay),
tables_(new Tables),
enforce_dependencies_(true),
lazily_build_dependencies_(false),
allow_unknown_(false),
enforce_weak_(false),
disallow_enforce_utf8_(false) {}
DescriptorPool::~DescriptorPool() {
if (mutex_ != nullptr) delete mutex_;
}
// DescriptorPool::BuildFile() defined later.
// DescriptorPool::BuildFileCollectingErrors() defined later.
void DescriptorPool::InternalDontEnforceDependencies() {
enforce_dependencies_ = false;
}
void DescriptorPool::AddUnusedImportTrackFile(ConstStringParam file_name,
bool is_error) {
unused_import_track_files_[std::string(file_name)] = is_error;
}
void DescriptorPool::ClearUnusedImportTrackFiles() {
unused_import_track_files_.clear();
}
bool DescriptorPool::InternalIsFileLoaded(ConstStringParam filename) const {
MutexLockMaybe lock(mutex_);
return tables_->FindFile(filename) != nullptr;
}
// generated_pool ====================================================
namespace {
EncodedDescriptorDatabase* GeneratedDatabase() {
static auto generated_database =
internal::OnShutdownDelete(new EncodedDescriptorDatabase());
return generated_database;
}
DescriptorPool* NewGeneratedPool() {
auto generated_pool = new DescriptorPool(GeneratedDatabase());
generated_pool->InternalSetLazilyBuildDependencies();
return generated_pool;
}
} // anonymous namespace
DescriptorDatabase* DescriptorPool::internal_generated_database() {
return GeneratedDatabase();
}
DescriptorPool* DescriptorPool::internal_generated_pool() {
static DescriptorPool* generated_pool =
internal::OnShutdownDelete(NewGeneratedPool());
return generated_pool;
}
const DescriptorPool* DescriptorPool::generated_pool() {
const DescriptorPool* pool = internal_generated_pool();
// Ensure that descriptor.proto has been registered in the generated pool.
DescriptorProto::descriptor();
return pool;
}
void DescriptorPool::InternalAddGeneratedFile(
const void* encoded_file_descriptor, int size) {
// So, this function is called in the process of initializing the
// descriptors for generated proto classes. Each generated .pb.cc file
// has an internal procedure called AddDescriptors() which is called at
// process startup, and that function calls this one in order to register
// the raw bytes of the FileDescriptorProto representing the file.
//
// We do not actually construct the descriptor objects right away. We just
// hang on to the bytes until they are actually needed. We actually construct
// the descriptor the first time one of the following things happens:
// * Someone calls a method like descriptor(), GetDescriptor(), or
// GetReflection() on the generated types, which requires returning the
// descriptor or an object based on it.
// * Someone looks up the descriptor in DescriptorPool::generated_pool().
//
// Once one of these happens, the DescriptorPool actually parses the
// FileDescriptorProto and generates a FileDescriptor (and all its children)
// based on it.
//
// Note that FileDescriptorProto is itself a generated protocol message.
// Therefore, when we parse one, we have to be very careful to avoid using
// any descriptor-based operations, since this might cause infinite recursion
// or deadlock.
GOOGLE_CHECK(GeneratedDatabase()->Add(encoded_file_descriptor, size));
}
// Find*By* methods ==================================================
// TODO(kenton): There's a lot of repeated code here, but I'm not sure if
// there's any good way to factor it out. Think about this some time when
// there's nothing more important to do (read: never).
const FileDescriptor* DescriptorPool::FindFileByName(
ConstStringParam name) const {
MutexLockMaybe lock(mutex_);
if (fallback_database_ != nullptr) {
tables_->known_bad_symbols_.clear();
tables_->known_bad_files_.clear();
}
const FileDescriptor* result = tables_->FindFile(name);
if (result != nullptr) return result;
if (underlay_ != nullptr) {
result = underlay_->FindFileByName(name);
if (result != nullptr) return result;
}
if (TryFindFileInFallbackDatabase(name)) {
result = tables_->FindFile(name);
if (result != nullptr) return result;
}
return nullptr;
}
const FileDescriptor* DescriptorPool::FindFileContainingSymbol(
ConstStringParam symbol_name) const {
MutexLockMaybe lock(mutex_);
if (fallback_database_ != nullptr) {
tables_->known_bad_symbols_.clear();
tables_->known_bad_files_.clear();
}
Symbol result = tables_->FindSymbol(symbol_name);
if (!result.IsNull()) return result.GetFile();
if (underlay_ != nullptr) {
const FileDescriptor* file_result =
underlay_->FindFileContainingSymbol(symbol_name);
if (file_result != nullptr) return file_result;
}
if (TryFindSymbolInFallbackDatabase(symbol_name)) {
result = tables_->FindSymbol(symbol_name);
if (!result.IsNull()) return result.GetFile();
}
return nullptr;
}
const Descriptor* DescriptorPool::FindMessageTypeByName(
ConstStringParam name) const {
return tables_->FindByNameHelper(this, name).descriptor();
}
const FieldDescriptor* DescriptorPool::FindFieldByName(
ConstStringParam name) const {
if (const FieldDescriptor* field =
tables_->FindByNameHelper(this, name).field_descriptor()) {
if (!field->is_extension()) {
return field;
}
}
return nullptr;
}
const FieldDescriptor* DescriptorPool::FindExtensionByName(
ConstStringParam name) const {
if (const FieldDescriptor* field =
tables_->FindByNameHelper(this, name).field_descriptor()) {
if (field->is_extension()) {
return field;
}
}
return nullptr;
}
const OneofDescriptor* DescriptorPool::FindOneofByName(
ConstStringParam name) const {
return tables_->FindByNameHelper(this, name).oneof_descriptor();
}
const EnumDescriptor* DescriptorPool::FindEnumTypeByName(
ConstStringParam name) const {
return tables_->FindByNameHelper(this, name).enum_descriptor();
}
const EnumValueDescriptor* DescriptorPool::FindEnumValueByName(
ConstStringParam name) const {
return tables_->FindByNameHelper(this, name).enum_value_descriptor();
}
const ServiceDescriptor* DescriptorPool::FindServiceByName(
ConstStringParam name) const {
return tables_->FindByNameHelper(this, name).service_descriptor();
}
const MethodDescriptor* DescriptorPool::FindMethodByName(
ConstStringParam name) const {
return tables_->FindByNameHelper(this, name).method_descriptor();
}
const FieldDescriptor* DescriptorPool::FindExtensionByNumber(
const Descriptor* extendee, int number) const {
if (extendee->extension_range_count() == 0) return nullptr;
// A faster path to reduce lock contention in finding extensions, assuming
// most extensions will be cache hit.
if (mutex_ != nullptr) {
ReaderMutexLock lock(mutex_);
const FieldDescriptor* result = tables_->FindExtension(extendee, number);
if (result != nullptr) {
return result;
}
}
MutexLockMaybe lock(mutex_);
if (fallback_database_ != nullptr) {
tables_->known_bad_symbols_.clear();
tables_->known_bad_files_.clear();
}
const FieldDescriptor* result = tables_->FindExtension(extendee, number);
if (result != nullptr) {
return result;
}
if (underlay_ != nullptr) {
result = underlay_->FindExtensionByNumber(extendee, number);
if (result != nullptr) return result;
}
if (TryFindExtensionInFallbackDatabase(extendee, number)) {
result = tables_->FindExtension(extendee, number);
if (result != nullptr) {
return result;
}
}
return nullptr;
}
const FieldDescriptor* DescriptorPool::InternalFindExtensionByNumberNoLock(
const Descriptor* extendee, int number) const {
if (extendee->extension_range_count() == 0) return nullptr;
const FieldDescriptor* result = tables_->FindExtension(extendee, number);
if (result != nullptr) {
return result;
}
if (underlay_ != nullptr) {
result = underlay_->InternalFindExtensionByNumberNoLock(extendee, number);
if (result != nullptr) return result;
}
return nullptr;
}
const FieldDescriptor* DescriptorPool::FindExtensionByPrintableName(
const Descriptor* extendee, ConstStringParam printable_name) const {
if (extendee->extension_range_count() == 0) return nullptr;
const FieldDescriptor* result = FindExtensionByName(printable_name);
if (result != nullptr && result->containing_type() == extendee) {
return result;
}
if (extendee->options().message_set_wire_format()) {
// MessageSet extensions may be identified by type name.
const Descriptor* type = FindMessageTypeByName(printable_name);
if (type != nullptr) {
// Look for a matching extension in the foreign type's scope.
const int type_extension_count = type->extension_count();
for (int i = 0; i < type_extension_count; i++) {
const FieldDescriptor* extension = type->extension(i);
if (extension->containing_type() == extendee &&
extension->type() == FieldDescriptor::TYPE_MESSAGE &&
extension->is_optional() && extension->message_type() == type) {
// Found it.
return extension;
}
}
}
}
return nullptr;
}
void DescriptorPool::FindAllExtensions(
const Descriptor* extendee,
std::vector<const FieldDescriptor*>* out) const {
MutexLockMaybe lock(mutex_);
if (fallback_database_ != nullptr) {
tables_->known_bad_symbols_.clear();
tables_->known_bad_files_.clear();
}
// Initialize tables_->extensions_ from the fallback database first
// (but do this only once per descriptor).
if (fallback_database_ != nullptr &&
tables_->extensions_loaded_from_db_.count(extendee) == 0) {
std::vector<int> numbers;
if (fallback_database_->FindAllExtensionNumbers(extendee->full_name(),
&numbers)) {
for (int number : numbers) {
if (tables_->FindExtension(extendee, number) == nullptr) {
TryFindExtensionInFallbackDatabase(extendee, number);
}
}
tables_->extensions_loaded_from_db_.insert(extendee);
}
}
tables_->FindAllExtensions(extendee, out);
if (underlay_ != nullptr) {
underlay_->FindAllExtensions(extendee, out);
}
}
// -------------------------------------------------------------------
const FieldDescriptor* Descriptor::FindFieldByNumber(int key) const {
const FieldDescriptor* result = file()->tables_->FindFieldByNumber(this, key);
if (result == nullptr || result->is_extension()) {
return nullptr;
} else {
return result;
}
}
const FieldDescriptor* Descriptor::FindFieldByLowercaseName(
ConstStringParam key) const {
const FieldDescriptor* result =
file()->tables_->FindFieldByLowercaseName(this, key);
if (result == nullptr || result->is_extension()) {
return nullptr;
} else {
return result;
}
}
const FieldDescriptor* Descriptor::FindFieldByCamelcaseName(
ConstStringParam key) const {
const FieldDescriptor* result =
file()->tables_->FindFieldByCamelcaseName(this, key);
if (result == nullptr || result->is_extension()) {
return nullptr;
} else {
return result;
}
}
const FieldDescriptor* Descriptor::FindFieldByName(ConstStringParam key) const {
const FieldDescriptor* field =
file()->tables_->FindNestedSymbol(this, key).field_descriptor();
return field != nullptr && !field->is_extension() ? field : nullptr;
}
const OneofDescriptor* Descriptor::FindOneofByName(ConstStringParam key) const {
return file()->tables_->FindNestedSymbol(this, key).oneof_descriptor();
}
const FieldDescriptor* Descriptor::FindExtensionByName(
ConstStringParam key) const {
const FieldDescriptor* field =
file()->tables_->FindNestedSymbol(this, key).field_descriptor();
return field != nullptr && field->is_extension() ? field : nullptr;
}
const FieldDescriptor* Descriptor::FindExtensionByLowercaseName(
ConstStringParam key) const {
const FieldDescriptor* result =
file()->tables_->FindFieldByLowercaseName(this, key);
if (result == nullptr || !result->is_extension()) {
return nullptr;
} else {
return result;
}
}
const FieldDescriptor* Descriptor::FindExtensionByCamelcaseName(
ConstStringParam key) const {
const FieldDescriptor* result =
file()->tables_->FindFieldByCamelcaseName(this, key);
if (result == nullptr || !result->is_extension()) {
return nullptr;
} else {
return result;
}
}
const Descriptor* Descriptor::FindNestedTypeByName(ConstStringParam key) const {
return file()->tables_->FindNestedSymbol(this, key).descriptor();
}
const EnumDescriptor* Descriptor::FindEnumTypeByName(
ConstStringParam key) const {
return file()->tables_->FindNestedSymbol(this, key).enum_descriptor();
}
const EnumValueDescriptor* Descriptor::FindEnumValueByName(
ConstStringParam key) const {
return file()->tables_->FindNestedSymbol(this, key).enum_value_descriptor();
}
const FieldDescriptor* Descriptor::map_key() const {
if (!options().map_entry()) return nullptr;
GOOGLE_DCHECK_EQ(field_count(), 2);
return field(0);
}
const FieldDescriptor* Descriptor::map_value() const {
if (!options().map_entry()) return nullptr;
GOOGLE_DCHECK_EQ(field_count(), 2);
return field(1);
}
const EnumValueDescriptor* EnumDescriptor::FindValueByName(
ConstStringParam key) const {
return file()->tables_->FindNestedSymbol(this, key).enum_value_descriptor();
}
const EnumValueDescriptor* EnumDescriptor::FindValueByNumber(int key) const {
return file()->tables_->FindEnumValueByNumber(this, key);
}
const EnumValueDescriptor* EnumDescriptor::FindValueByNumberCreatingIfUnknown(
int key) const {
return file()->tables_->FindEnumValueByNumberCreatingIfUnknown(this, key);
}
const MethodDescriptor* ServiceDescriptor::FindMethodByName(
ConstStringParam key) const {
return file()->tables_->FindNestedSymbol(this, key).method_descriptor();
}
const Descriptor* FileDescriptor::FindMessageTypeByName(
ConstStringParam key) const {
return tables_->FindNestedSymbol(this, key).descriptor();
}
const EnumDescriptor* FileDescriptor::FindEnumTypeByName(
ConstStringParam key) const {
return tables_->FindNestedSymbol(this, key).enum_descriptor();
}
const EnumValueDescriptor* FileDescriptor::FindEnumValueByName(
ConstStringParam key) const {
return tables_->FindNestedSymbol(this, key).enum_value_descriptor();
}
const ServiceDescriptor* FileDescriptor::FindServiceByName(
ConstStringParam key) const {
return tables_->FindNestedSymbol(this, key).service_descriptor();
}
const FieldDescriptor* FileDescriptor::FindExtensionByName(
ConstStringParam key) const {
const FieldDescriptor* field =
tables_->FindNestedSymbol(this, key).field_descriptor();
return field != nullptr && field->is_extension() ? field : nullptr;
}
const FieldDescriptor* FileDescriptor::FindExtensionByLowercaseName(
ConstStringParam key) const {
const FieldDescriptor* result = tables_->FindFieldByLowercaseName(this, key);
if (result == nullptr || !result->is_extension()) {
return nullptr;
} else {
return result;
}
}
const FieldDescriptor* FileDescriptor::FindExtensionByCamelcaseName(
ConstStringParam key) const {
const FieldDescriptor* result = tables_->FindFieldByCamelcaseName(this, key);
if (result == nullptr || !result->is_extension()) {
return nullptr;
} else {
return result;
}
}
void Descriptor::ExtensionRange::CopyTo(
DescriptorProto_ExtensionRange* proto) const {
proto->set_start(this->start);
proto->set_end(this->end);
if (options_ != &ExtensionRangeOptions::default_instance()) {
*proto->mutable_options() = *options_;
}
}
const Descriptor::ExtensionRange*
Descriptor::FindExtensionRangeContainingNumber(int number) const {
// Linear search should be fine because we don't expect a message to have
// more than a couple extension ranges.
for (int i = 0; i < extension_range_count(); i++) {
if (number >= extension_range(i)->start &&
number < extension_range(i)->end) {
return extension_range(i);
}
}
return nullptr;
}
const Descriptor::ReservedRange* Descriptor::FindReservedRangeContainingNumber(
int number) const {
// TODO(chrisn): Consider a non-linear search.
for (int i = 0; i < reserved_range_count(); i++) {
if (number >= reserved_range(i)->start && number < reserved_range(i)->end) {
return reserved_range(i);
}
}
return nullptr;
}
const EnumDescriptor::ReservedRange*
EnumDescriptor::FindReservedRangeContainingNumber(int number) const {
// TODO(chrisn): Consider a non-linear search.
for (int i = 0; i < reserved_range_count(); i++) {
if (number >= reserved_range(i)->start &&
number <= reserved_range(i)->end) {
return reserved_range(i);
}
}
return nullptr;
}
// -------------------------------------------------------------------
bool DescriptorPool::TryFindFileInFallbackDatabase(
StringPiece name) const {
if (fallback_database_ == nullptr) return false;
auto name_string = std::string(name);
if (tables_->known_bad_files_.count(name_string) > 0) return false;
FileDescriptorProto file_proto;
if (!fallback_database_->FindFileByName(name_string, &file_proto) ||
BuildFileFromDatabase(file_proto) == nullptr) {
tables_->known_bad_files_.insert(std::move(name_string));
return false;
}
return true;
}
bool DescriptorPool::IsSubSymbolOfBuiltType(StringPiece name) const {
auto prefix = std::string(name);
for (;;) {
std::string::size_type dot_pos = prefix.find_last_of('.');
if (dot_pos == std::string::npos) {
break;
}
prefix = prefix.substr(0, dot_pos);
Symbol symbol = tables_->FindSymbol(prefix);
// If the symbol type is anything other than PACKAGE, then its complete
// definition is already known.
if (!symbol.IsNull() && !symbol.IsPackage()) {
return true;
}
}
if (underlay_ != nullptr) {
// Check to see if any prefix of this symbol exists in the underlay.
return underlay_->IsSubSymbolOfBuiltType(name);
}
return false;
}
bool DescriptorPool::TryFindSymbolInFallbackDatabase(
StringPiece name) const {
if (fallback_database_ == nullptr) return false;
auto name_string = std::string(name);
if (tables_->known_bad_symbols_.count(name_string) > 0) return false;
FileDescriptorProto file_proto;
if ( // We skip looking in the fallback database if the name is a sub-symbol
// of any descriptor that already exists in the descriptor pool (except
// for package descriptors). This is valid because all symbols except
// for packages are defined in a single file, so if the symbol exists
// then we should already have its definition.
//
// The other reason to do this is to support "overriding" type
// definitions by merging two databases that define the same type. (Yes,
// people do this.) The main difficulty with making this work is that
// FindFileContainingSymbol() is allowed to return both false positives
// (e.g., SimpleDescriptorDatabase, UpgradedDescriptorDatabase) and
// false negatives (e.g. ProtoFileParser, SourceTreeDescriptorDatabase).
// When two such databases are merged, looking up a non-existent
// sub-symbol of a type that already exists in the descriptor pool can
// result in an attempt to load multiple definitions of the same type.
// The check below avoids this.
IsSubSymbolOfBuiltType(name)
// Look up file containing this symbol in fallback database.
|| !fallback_database_->FindFileContainingSymbol(name_string, &file_proto)
// Check if we've already built this file. If so, it apparently doesn't
// contain the symbol we're looking for. Some DescriptorDatabases
// return false positives.
|| tables_->FindFile(file_proto.name()) != nullptr
// Build the file.
|| BuildFileFromDatabase(file_proto) == nullptr) {
tables_->known_bad_symbols_.insert(std::move(name_string));
return false;
}
return true;
}
bool DescriptorPool::TryFindExtensionInFallbackDatabase(
const Descriptor* containing_type, int field_number) const {
if (fallback_database_ == nullptr) return false;
FileDescriptorProto file_proto;
if (!fallback_database_->FindFileContainingExtension(
containing_type->full_name(), field_number, &file_proto)) {
return false;
}
if (tables_->FindFile(file_proto.name()) != nullptr) {
// We've already loaded this file, and it apparently doesn't contain the
// extension we're looking for. Some DescriptorDatabases return false
// positives.
return false;
}
if (BuildFileFromDatabase(file_proto) == nullptr) {
return false;
}
return true;
}
// ===================================================================
bool FieldDescriptor::is_map_message_type() const {
return type_descriptor_.message_type->options().map_entry();
}
std::string FieldDescriptor::DefaultValueAsString(
bool quote_string_type) const {
GOOGLE_CHECK(has_default_value()) << "No default value";
switch (cpp_type()) {
case CPPTYPE_INT32:
return StrCat(default_value_int32_t());
case CPPTYPE_INT64:
return StrCat(default_value_int64_t());
case CPPTYPE_UINT32:
return StrCat(default_value_uint32_t());
case CPPTYPE_UINT64:
return StrCat(default_value_uint64_t());
case CPPTYPE_FLOAT:
return SimpleFtoa(default_value_float());
case CPPTYPE_DOUBLE:
return SimpleDtoa(default_value_double());
case CPPTYPE_BOOL:
return default_value_bool() ? "true" : "false";
case CPPTYPE_STRING:
if (quote_string_type) {
return "\"" + CEscape(default_value_string()) + "\"";
} else {
if (type() == TYPE_BYTES) {
return CEscape(default_value_string());
} else {
return default_value_string();
}
}
case CPPTYPE_ENUM:
return default_value_enum()->name();
case CPPTYPE_MESSAGE:
GOOGLE_LOG(DFATAL) << "Messages can't have default values!";
break;
}
GOOGLE_LOG(FATAL) << "Can't get here: failed to get default value as string";
return "";
}
// CopyTo methods ====================================================
void FileDescriptor::CopyTo(FileDescriptorProto* proto) const {
proto->set_name(name());
if (!package().empty()) proto->set_package(package());
// TODO(liujisi): Also populate when syntax="proto2".
if (syntax() == SYNTAX_PROTO3) proto->set_syntax(SyntaxName(syntax()));
for (int i = 0; i < dependency_count(); i++) {
proto->add_dependency(dependency(i)->name());
}
for (int i = 0; i < public_dependency_count(); i++) {
proto->add_public_dependency(public_dependencies_[i]);
}
for (int i = 0; i < weak_dependency_count(); i++) {
proto->add_weak_dependency(weak_dependencies_[i]);
}
for (int i = 0; i < message_type_count(); i++) {
message_type(i)->CopyTo(proto->add_message_type());
}
for (int i = 0; i < enum_type_count(); i++) {
enum_type(i)->CopyTo(proto->add_enum_type());
}
for (int i = 0; i < service_count(); i++) {
service(i)->CopyTo(proto->add_service());
}
for (int i = 0; i < extension_count(); i++) {
extension(i)->CopyTo(proto->add_extension());
}
if (&options() != &FileOptions::default_instance()) {
proto->mutable_options()->CopyFrom(options());
}
}
void FileDescriptor::CopyJsonNameTo(FileDescriptorProto* proto) const {
if (message_type_count() != proto->message_type_size() ||
extension_count() != proto->extension_size()) {
GOOGLE_LOG(ERROR) << "Cannot copy json_name to a proto of a different size.";
return;
}
for (int i = 0; i < message_type_count(); i++) {
message_type(i)->CopyJsonNameTo(proto->mutable_message_type(i));
}
for (int i = 0; i < extension_count(); i++) {
extension(i)->CopyJsonNameTo(proto->mutable_extension(i));
}
}
void FileDescriptor::CopySourceCodeInfoTo(FileDescriptorProto* proto) const {
if (source_code_info_ &&
source_code_info_ != &SourceCodeInfo::default_instance()) {
proto->mutable_source_code_info()->CopyFrom(*source_code_info_);
}
}
void Descriptor::CopyTo(DescriptorProto* proto) const {
proto->set_name(name());
for (int i = 0; i < field_count(); i++) {
field(i)->CopyTo(proto->add_field());
}
for (int i = 0; i < oneof_decl_count(); i++) {
oneof_decl(i)->CopyTo(proto->add_oneof_decl());
}
for (int i = 0; i < nested_type_count(); i++) {
nested_type(i)->CopyTo(proto->add_nested_type());
}
for (int i = 0; i < enum_type_count(); i++) {
enum_type(i)->CopyTo(proto->add_enum_type());
}
for (int i = 0; i < extension_range_count(); i++) {
extension_range(i)->CopyTo(proto->add_extension_range());
}
for (int i = 0; i < extension_count(); i++) {
extension(i)->CopyTo(proto->add_extension());
}
for (int i = 0; i < reserved_range_count(); i++) {
DescriptorProto::ReservedRange* range = proto->add_reserved_range();
range->set_start(reserved_range(i)->start);
range->set_end(reserved_range(i)->end);
}
for (int i = 0; i < reserved_name_count(); i++) {
proto->add_reserved_name(reserved_name(i));
}
if (&options() != &MessageOptions::default_instance()) {
proto->mutable_options()->CopyFrom(options());
}
}
void Descriptor::CopyJsonNameTo(DescriptorProto* proto) const {
if (field_count() != proto->field_size() ||
nested_type_count() != proto->nested_type_size() ||
extension_count() != proto->extension_size()) {
GOOGLE_LOG(ERROR) << "Cannot copy json_name to a proto of a different size.";
return;
}
for (int i = 0; i < field_count(); i++) {
field(i)->CopyJsonNameTo(proto->mutable_field(i));
}
for (int i = 0; i < nested_type_count(); i++) {
nested_type(i)->CopyJsonNameTo(proto->mutable_nested_type(i));
}
for (int i = 0; i < extension_count(); i++) {
extension(i)->CopyJsonNameTo(proto->mutable_extension(i));
}
}
void FieldDescriptor::CopyTo(FieldDescriptorProto* proto) const {
proto->set_name(name());
proto->set_number(number());
if (has_json_name_) {
proto->set_json_name(json_name());
}
if (proto3_optional_) {
proto->set_proto3_optional(true);
}
// Some compilers do not allow static_cast directly between two enum types,
// so we must cast to int first.
proto->set_label(static_cast<FieldDescriptorProto::Label>(
implicit_cast<int>(label())));
proto->set_type(static_cast<FieldDescriptorProto::Type>(
implicit_cast<int>(type())));
if (is_extension()) {
if (!containing_type()->is_unqualified_placeholder_) {
proto->set_extendee(".");
}
proto->mutable_extendee()->append(containing_type()->full_name());
}
if (cpp_type() == CPPTYPE_MESSAGE) {
if (message_type()->is_placeholder_) {
// We don't actually know if the type is a message type. It could be
// an enum.
proto->clear_type();
}
if (!message_type()->is_unqualified_placeholder_) {
proto->set_type_name(".");
}
proto->mutable_type_name()->append(message_type()->full_name());
} else if (cpp_type() == CPPTYPE_ENUM) {
if (!enum_type()->is_unqualified_placeholder_) {
proto->set_type_name(".");
}
proto->mutable_type_name()->append(enum_type()->full_name());
}
if (has_default_value()) {
proto->set_default_value(DefaultValueAsString(false));
}
if (containing_oneof() != nullptr && !is_extension()) {
proto->set_oneof_index(containing_oneof()->index());
}
if (&options() != &FieldOptions::default_instance()) {
proto->mutable_options()->CopyFrom(options());
}
}
void FieldDescriptor::CopyJsonNameTo(FieldDescriptorProto* proto) const {
proto->set_json_name(json_name());
}
void OneofDescriptor::CopyTo(OneofDescriptorProto* proto) const {
proto->set_name(name());
if (&options() != &OneofOptions::default_instance()) {
proto->mutable_options()->CopyFrom(options());
}
}
void EnumDescriptor::CopyTo(EnumDescriptorProto* proto) const {
proto->set_name(name());
for (int i = 0; i < value_count(); i++) {
value(i)->CopyTo(proto->add_value());
}
for (int i = 0; i < reserved_range_count(); i++) {
EnumDescriptorProto::EnumReservedRange* range = proto->add_reserved_range();
range->set_start(reserved_range(i)->start);
range->set_end(reserved_range(i)->end);
}
for (int i = 0; i < reserved_name_count(); i++) {
proto->add_reserved_name(reserved_name(i));
}
if (&options() != &EnumOptions::default_instance()) {
proto->mutable_options()->CopyFrom(options());
}
}
void EnumValueDescriptor::CopyTo(EnumValueDescriptorProto* proto) const {
proto->set_name(name());
proto->set_number(number());
if (&options() != &EnumValueOptions::default_instance()) {
proto->mutable_options()->CopyFrom(options());
}
}
void ServiceDescriptor::CopyTo(ServiceDescriptorProto* proto) const {
proto->set_name(name());
for (int i = 0; i < method_count(); i++) {
method(i)->CopyTo(proto->add_method());
}
if (&options() != &ServiceOptions::default_instance()) {
proto->mutable_options()->CopyFrom(options());
}
}
void MethodDescriptor::CopyTo(MethodDescriptorProto* proto) const {
proto->set_name(name());
if (!input_type()->is_unqualified_placeholder_) {
proto->set_input_type(".");
}
proto->mutable_input_type()->append(input_type()->full_name());
if (!output_type()->is_unqualified_placeholder_) {
proto->set_output_type(".");
}
proto->mutable_output_type()->append(output_type()->full_name());
if (&options() != &MethodOptions::default_instance()) {
proto->mutable_options()->CopyFrom(options());
}
if (client_streaming_) {
proto->set_client_streaming(true);
}
if (server_streaming_) {
proto->set_server_streaming(true);
}
}
// DebugString methods ===============================================
namespace {
bool RetrieveOptionsAssumingRightPool(
int depth, const Message& options,
std::vector<std::string>* option_entries) {
option_entries->clear();
const Reflection* reflection = options.GetReflection();
std::vector<const FieldDescriptor*> fields;
reflection->ListFields(options, &fields);
for (const FieldDescriptor* field : fields) {
int count = 1;
bool repeated = false;
if (field->is_repeated()) {
count = reflection->FieldSize(options, field);
repeated = true;
}
for (int j = 0; j < count; j++) {
std::string fieldval;
if (field->cpp_type() == FieldDescriptor::CPPTYPE_MESSAGE) {
std::string tmp;
TextFormat::Printer printer;
printer.SetExpandAny(true);
printer.SetInitialIndentLevel(depth + 1);
printer.PrintFieldValueToString(options, field, repeated ? j : -1,
&tmp);
fieldval.append("{\n");
fieldval.append(tmp);
fieldval.append(depth * 2, ' ');
fieldval.append("}");
} else {
TextFormat::PrintFieldValueToString(options, field, repeated ? j : -1,
&fieldval);
}
std::string name;
if (field->is_extension()) {
name = "(." + field->full_name() + ")";
} else {
name = field->name();
}
option_entries->push_back(name + " = " + fieldval);
}
}
return !option_entries->empty();
}
// Used by each of the option formatters.
bool RetrieveOptions(int depth, const Message& options,
const DescriptorPool* pool,
std::vector<std::string>* option_entries) {
// When printing custom options for a descriptor, we must use an options
// message built on top of the same DescriptorPool where the descriptor
// is coming from. This is to ensure we are interpreting custom options
// against the right pool.
if (options.GetDescriptor()->file()->pool() == pool) {
return RetrieveOptionsAssumingRightPool(depth, options, option_entries);
} else {
const Descriptor* option_descriptor =
pool->FindMessageTypeByName(options.GetDescriptor()->full_name());
if (option_descriptor == nullptr) {
// descriptor.proto is not in the pool. This means no custom options are
// used so we are safe to proceed with the compiled options message type.
return RetrieveOptionsAssumingRightPool(depth, options, option_entries);
}
DynamicMessageFactory factory;
std::unique_ptr<Message> dynamic_options(
factory.GetPrototype(option_descriptor)->New());
std::string serialized = options.SerializeAsString();
io::CodedInputStream input(
reinterpret_cast<const uint8_t*>(serialized.c_str()),
serialized.size());
input.SetExtensionRegistry(pool, &factory);
if (dynamic_options->ParseFromCodedStream(&input)) {
return RetrieveOptionsAssumingRightPool(depth, *dynamic_options,
option_entries);
} else {
GOOGLE_LOG(ERROR) << "Found invalid proto option data for: "
<< options.GetDescriptor()->full_name();
return RetrieveOptionsAssumingRightPool(depth, options, option_entries);
}
}
}
// Formats options that all appear together in brackets. Does not include
// brackets.
bool FormatBracketedOptions(int depth, const Message& options,
const DescriptorPool* pool, std::string* output) {
std::vector<std::string> all_options;
if (RetrieveOptions(depth, options, pool, &all_options)) {
output->append(Join(all_options, ", "));
}
return !all_options.empty();
}
// Formats options one per line
bool FormatLineOptions(int depth, const Message& options,
const DescriptorPool* pool, std::string* output) {
std::string prefix(depth * 2, ' ');
std::vector<std::string> all_options;
if (RetrieveOptions(depth, options, pool, &all_options)) {
for (const std::string& option : all_options) {
strings::SubstituteAndAppend(output, "$0option $1;\n", prefix, option);
}
}
return !all_options.empty();
}
class SourceLocationCommentPrinter {
public:
template <typename DescType>
SourceLocationCommentPrinter(const DescType* desc, const std::string& prefix,
const DebugStringOptions& options)
: options_(options), prefix_(prefix) {
// Perform the SourceLocation lookup only if we're including user comments,
// because the lookup is fairly expensive.
have_source_loc_ =
options.include_comments && desc->GetSourceLocation(&source_loc_);
}
SourceLocationCommentPrinter(const FileDescriptor* file,
const std::vector<int>& path,
const std::string& prefix,
const DebugStringOptions& options)
: options_(options), prefix_(prefix) {
// Perform the SourceLocation lookup only if we're including user comments,
// because the lookup is fairly expensive.
have_source_loc_ =
options.include_comments && file->GetSourceLocation(path, &source_loc_);
}
void AddPreComment(std::string* output) {
if (have_source_loc_) {
// Detached leading comments.
for (const std::string& leading_detached_comment :
source_loc_.leading_detached_comments) {
*output += FormatComment(leading_detached_comment);
*output += "\n";
}
// Attached leading comments.
if (!source_loc_.leading_comments.empty()) {
*output += FormatComment(source_loc_.leading_comments);
}
}
}
void AddPostComment(std::string* output) {
if (have_source_loc_ && source_loc_.trailing_comments.size() > 0) {
*output += FormatComment(source_loc_.trailing_comments);
}
}
// Format comment such that each line becomes a full-line C++-style comment in
// the DebugString() output.
std::string FormatComment(const std::string& comment_text) {
std::string stripped_comment = comment_text;
StripWhitespace(&stripped_comment);
std::vector<std::string> lines = Split(stripped_comment, "\n");
std::string output;
for (const std::string& line : lines) {
strings::SubstituteAndAppend(&output, "$0// $1\n", prefix_, line);
}
return output;
}
private:
bool have_source_loc_;
SourceLocation source_loc_;
DebugStringOptions options_;
std::string prefix_;
};
} // anonymous namespace
std::string FileDescriptor::DebugString() const {
DebugStringOptions options; // default options
return DebugStringWithOptions(options);
}
std::string FileDescriptor::DebugStringWithOptions(
const DebugStringOptions& debug_string_options) const {
std::string contents;
{
std::vector<int> path;
path.push_back(FileDescriptorProto::kSyntaxFieldNumber);
SourceLocationCommentPrinter syntax_comment(this, path, "",
debug_string_options);
syntax_comment.AddPreComment(&contents);
strings::SubstituteAndAppend(&contents, "syntax = \"$0\";\n\n",
SyntaxName(syntax()));
syntax_comment.AddPostComment(&contents);
}
SourceLocationCommentPrinter comment_printer(this, "", debug_string_options);
comment_printer.AddPreComment(&contents);
std::set<int> public_dependencies;
std::set<int> weak_dependencies;
public_dependencies.insert(public_dependencies_,
public_dependencies_ + public_dependency_count_);
weak_dependencies.insert(weak_dependencies_,
weak_dependencies_ + weak_dependency_count_);
for (int i = 0; i < dependency_count(); i++) {
if (public_dependencies.count(i) > 0) {
strings::SubstituteAndAppend(&contents, "import public \"$0\";\n",
dependency(i)->name());
} else if (weak_dependencies.count(i) > 0) {
strings::SubstituteAndAppend(&contents, "import weak \"$0\";\n",
dependency(i)->name());
} else {
strings::SubstituteAndAppend(&contents, "import \"$0\";\n",
dependency(i)->name());
}
}
if (!package().empty()) {
std::vector<int> path;
path.push_back(FileDescriptorProto::kPackageFieldNumber);
SourceLocationCommentPrinter package_comment(this, path, "",
debug_string_options);
package_comment.AddPreComment(&contents);
strings::SubstituteAndAppend(&contents, "package $0;\n\n", package());
package_comment.AddPostComment(&contents);
}
if (FormatLineOptions(0, options(), pool(), &contents)) {
contents.append("\n"); // add some space if we had options
}
for (int i = 0; i < enum_type_count(); i++) {
enum_type(i)->DebugString(0, &contents, debug_string_options);
contents.append("\n");
}
// Find all the 'group' type extensions; we will not output their nested
// definitions (those will be done with their group field descriptor).
std::set<const Descriptor*> groups;
for (int i = 0; i < extension_count(); i++) {
if (extension(i)->type() == FieldDescriptor::TYPE_GROUP) {
groups.insert(extension(i)->message_type());
}
}
for (int i = 0; i < message_type_count(); i++) {
if (groups.count(message_type(i)) == 0) {
message_type(i)->DebugString(0, &contents, debug_string_options,
/* include_opening_clause */ true);
contents.append("\n");
}
}
for (int i = 0; i < service_count(); i++) {
service(i)->DebugString(&contents, debug_string_options);
contents.append("\n");
}
const Descriptor* containing_type = nullptr;
for (int i = 0; i < extension_count(); i++) {
if (extension(i)->containing_type() != containing_type) {
if (i > 0) contents.append("}\n\n");
containing_type = extension(i)->containing_type();
strings::SubstituteAndAppend(&contents, "extend .$0 {\n",
containing_type->full_name());
}
extension(i)->DebugString(1, &contents, debug_string_options);
}
if (extension_count() > 0) contents.append("}\n\n");
comment_printer.AddPostComment(&contents);
return contents;
}
std::string Descriptor::DebugString() const {
DebugStringOptions options; // default options
return DebugStringWithOptions(options);
}
std::string Descriptor::DebugStringWithOptions(
const DebugStringOptions& options) const {
std::string contents;
DebugString(0, &contents, options, /* include_opening_clause */ true);
return contents;
}
void Descriptor::DebugString(int depth, std::string* contents,
const DebugStringOptions& debug_string_options,
bool include_opening_clause) const {
if (options().map_entry()) {
// Do not generate debug string for auto-generated map-entry type.
return;
}
std::string prefix(depth * 2, ' ');
++depth;
SourceLocationCommentPrinter comment_printer(this, prefix,
debug_string_options);
comment_printer.AddPreComment(contents);
if (include_opening_clause) {
strings::SubstituteAndAppend(contents, "$0message $1", prefix, name());
}
contents->append(" {\n");
FormatLineOptions(depth, options(), file()->pool(), contents);
// Find all the 'group' types for fields and extensions; we will not output
// their nested definitions (those will be done with their group field
// descriptor).
std::set<const Descriptor*> groups;
for (int i = 0; i < field_count(); i++) {
if (field(i)->type() == FieldDescriptor::TYPE_GROUP) {
groups.insert(field(i)->message_type());
}
}
for (int i = 0; i < extension_count(); i++) {
if (extension(i)->type() == FieldDescriptor::TYPE_GROUP) {
groups.insert(extension(i)->message_type());
}
}
for (int i = 0; i < nested_type_count(); i++) {
if (groups.count(nested_type(i)) == 0) {
nested_type(i)->DebugString(depth, contents, debug_string_options,
/* include_opening_clause */ true);
}
}
for (int i = 0; i < enum_type_count(); i++) {
enum_type(i)->DebugString(depth, contents, debug_string_options);
}
for (int i = 0; i < field_count(); i++) {
if (field(i)->real_containing_oneof() == nullptr) {
field(i)->DebugString(depth, contents, debug_string_options);
} else if (field(i)->containing_oneof()->field(0) == field(i)) {
// This is the first field in this oneof, so print the whole oneof.
field(i)->containing_oneof()->DebugString(depth, contents,
debug_string_options);
}
}
for (int i = 0; i < extension_range_count(); i++) {
strings::SubstituteAndAppend(contents, "$0 extensions $1 to $2;\n", prefix,
extension_range(i)->start,
extension_range(i)->end - 1);
}
// Group extensions by what they extend, so they can be printed out together.
const Descriptor* containing_type = nullptr;
for (int i = 0; i < extension_count(); i++) {
if (extension(i)->containing_type() != containing_type) {
if (i > 0) strings::SubstituteAndAppend(contents, "$0 }\n", prefix);
containing_type = extension(i)->containing_type();
strings::SubstituteAndAppend(contents, "$0 extend .$1 {\n", prefix,
containing_type->full_name());
}
extension(i)->DebugString(depth + 1, contents, debug_string_options);
}
if (extension_count() > 0)
strings::SubstituteAndAppend(contents, "$0 }\n", prefix);
if (reserved_range_count() > 0) {
strings::SubstituteAndAppend(contents, "$0 reserved ", prefix);
for (int i = 0; i < reserved_range_count(); i++) {
const Descriptor::ReservedRange* range = reserved_range(i);
if (range->end == range->start + 1) {
strings::SubstituteAndAppend(contents, "$0, ", range->start);
} else if (range->end > FieldDescriptor::kMaxNumber) {
strings::SubstituteAndAppend(contents, "$0 to max, ", range->start);
} else {
strings::SubstituteAndAppend(contents, "$0 to $1, ", range->start,
range->end - 1);
}
}
contents->replace(contents->size() - 2, 2, ";\n");
}
if (reserved_name_count() > 0) {
strings::SubstituteAndAppend(contents, "$0 reserved ", prefix);
for (int i = 0; i < reserved_name_count(); i++) {
strings::SubstituteAndAppend(contents, "\"$0\", ",
CEscape(reserved_name(i)));
}
contents->replace(contents->size() - 2, 2, ";\n");
}
strings::SubstituteAndAppend(contents, "$0}\n", prefix);
comment_printer.AddPostComment(contents);
}
std::string FieldDescriptor::DebugString() const {
DebugStringOptions options; // default options
return DebugStringWithOptions(options);
}
std::string FieldDescriptor::DebugStringWithOptions(
const DebugStringOptions& debug_string_options) const {
std::string contents;
int depth = 0;
if (is_extension()) {
strings::SubstituteAndAppend(&contents, "extend .$0 {\n",
containing_type()->full_name());
depth = 1;
}
DebugString(depth, &contents, debug_string_options);
if (is_extension()) {
contents.append("}\n");
}
return contents;
}
// The field type string used in FieldDescriptor::DebugString()
std::string FieldDescriptor::FieldTypeNameDebugString() const {
switch (type()) {
case TYPE_MESSAGE:
return "." + message_type()->full_name();
case TYPE_ENUM:
return "." + enum_type()->full_name();
default:
return kTypeToName[type()];
}
}
void FieldDescriptor::DebugString(
int depth, std::string* contents,
const DebugStringOptions& debug_string_options) const {
std::string prefix(depth * 2, ' ');
std::string field_type;
// Special case map fields.
if (is_map()) {
strings::SubstituteAndAppend(
&field_type, "map<$0, $1>",
message_type()->field(0)->FieldTypeNameDebugString(),
message_type()->field(1)->FieldTypeNameDebugString());
} else {
field_type = FieldTypeNameDebugString();
}
std::string label = StrCat(kLabelToName[this->label()], " ");
// Label is omitted for maps, oneof, and plain proto3 fields.
if (is_map() || real_containing_oneof() ||
(is_optional() && !has_optional_keyword())) {
label.clear();
}
SourceLocationCommentPrinter comment_printer(this, prefix,
debug_string_options);
comment_printer.AddPreComment(contents);
strings::SubstituteAndAppend(
contents, "$0$1$2 $3 = $4", prefix, label, field_type,
type() == TYPE_GROUP ? message_type()->name() : name(), number());
bool bracketed = false;
if (has_default_value()) {
bracketed = true;
strings::SubstituteAndAppend(contents, " [default = $0",
DefaultValueAsString(true));
}
if (has_json_name_) {
if (!bracketed) {
bracketed = true;
contents->append(" [");
} else {
contents->append(", ");
}
contents->append("json_name = \"");
contents->append(CEscape(json_name()));
contents->append("\"");
}
std::string formatted_options;
if (FormatBracketedOptions(depth, options(), file()->pool(),
&formatted_options)) {
contents->append(bracketed ? ", " : " [");
bracketed = true;
contents->append(formatted_options);
}
if (bracketed) {
contents->append("]");
}
if (type() == TYPE_GROUP) {
if (debug_string_options.elide_group_body) {
contents->append(" { ... };\n");
} else {
message_type()->DebugString(depth, contents, debug_string_options,
/* include_opening_clause */ false);
}
} else {
contents->append(";\n");
}
comment_printer.AddPostComment(contents);
}
std::string OneofDescriptor::DebugString() const {
DebugStringOptions options; // default values
return DebugStringWithOptions(options);
}
std::string OneofDescriptor::DebugStringWithOptions(
const DebugStringOptions& options) const {
std::string contents;
DebugString(0, &contents, options);
return contents;
}
void OneofDescriptor::DebugString(
int depth, std::string* contents,
const DebugStringOptions& debug_string_options) const {
std::string prefix(depth * 2, ' ');
++depth;
SourceLocationCommentPrinter comment_printer(this, prefix,
debug_string_options);
comment_printer.AddPreComment(contents);
strings::SubstituteAndAppend(contents, "$0oneof $1 {", prefix, name());
FormatLineOptions(depth, options(), containing_type()->file()->pool(),
contents);
if (debug_string_options.elide_oneof_body) {
contents->append(" ... }\n");
} else {
contents->append("\n");
for (int i = 0; i < field_count(); i++) {
field(i)->DebugString(depth, contents, debug_string_options);
}
strings::SubstituteAndAppend(contents, "$0}\n", prefix);
}
comment_printer.AddPostComment(contents);
}
std::string EnumDescriptor::DebugString() const {
DebugStringOptions options; // default values
return DebugStringWithOptions(options);
}
std::string EnumDescriptor::DebugStringWithOptions(
const DebugStringOptions& options) const {
std::string contents;
DebugString(0, &contents, options);
return contents;
}
void EnumDescriptor::DebugString(
int depth, std::string* contents,
const DebugStringOptions& debug_string_options) const {
std::string prefix(depth * 2, ' ');
++depth;
SourceLocationCommentPrinter comment_printer(this, prefix,
debug_string_options);
comment_printer.AddPreComment(contents);
strings::SubstituteAndAppend(contents, "$0enum $1 {\n", prefix, name());
FormatLineOptions(depth, options(), file()->pool(), contents);
for (int i = 0; i < value_count(); i++) {
value(i)->DebugString(depth, contents, debug_string_options);
}
if (reserved_range_count() > 0) {
strings::SubstituteAndAppend(contents, "$0 reserved ", prefix);
for (int i = 0; i < reserved_range_count(); i++) {
const EnumDescriptor::ReservedRange* range = reserved_range(i);
if (range->end == range->start) {
strings::SubstituteAndAppend(contents, "$0, ", range->start);
} else if (range->end == INT_MAX) {
strings::SubstituteAndAppend(contents, "$0 to max, ", range->start);
} else {
strings::SubstituteAndAppend(contents, "$0 to $1, ", range->start,
range->end);
}
}
contents->replace(contents->size() - 2, 2, ";\n");
}
if (reserved_name_count() > 0) {
strings::SubstituteAndAppend(contents, "$0 reserved ", prefix);
for (int i = 0; i < reserved_name_count(); i++) {
strings::SubstituteAndAppend(contents, "\"$0\", ",
CEscape(reserved_name(i)));
}
contents->replace(contents->size() - 2, 2, ";\n");
}
strings::SubstituteAndAppend(contents, "$0}\n", prefix);
comment_printer.AddPostComment(contents);
}
std::string EnumValueDescriptor::DebugString() const {
DebugStringOptions options; // default values
return DebugStringWithOptions(options);
}
std::string EnumValueDescriptor::DebugStringWithOptions(
const DebugStringOptions& options) const {
std::string contents;
DebugString(0, &contents, options);
return contents;
}
void EnumValueDescriptor::DebugString(
int depth, std::string* contents,
const DebugStringOptions& debug_string_options) const {
std::string prefix(depth * 2, ' ');
SourceLocationCommentPrinter comment_printer(this, prefix,
debug_string_options);
comment_printer.AddPreComment(contents);
strings::SubstituteAndAppend(contents, "$0$1 = $2", prefix, name(), number());
std::string formatted_options;
if (FormatBracketedOptions(depth, options(), type()->file()->pool(),
&formatted_options)) {
strings::SubstituteAndAppend(contents, " [$0]", formatted_options);
}
contents->append(";\n");
comment_printer.AddPostComment(contents);
}
std::string ServiceDescriptor::DebugString() const {
DebugStringOptions options; // default values
return DebugStringWithOptions(options);
}
std::string ServiceDescriptor::DebugStringWithOptions(
const DebugStringOptions& options) const {
std::string contents;
DebugString(&contents, options);
return contents;
}
void ServiceDescriptor::DebugString(
std::string* contents,
const DebugStringOptions& debug_string_options) const {
SourceLocationCommentPrinter comment_printer(this, /* prefix */ "",
debug_string_options);
comment_printer.AddPreComment(contents);
strings::SubstituteAndAppend(contents, "service $0 {\n", name());
FormatLineOptions(1, options(), file()->pool(), contents);
for (int i = 0; i < method_count(); i++) {
method(i)->DebugString(1, contents, debug_string_options);
}
contents->append("}\n");
comment_printer.AddPostComment(contents);
}
std::string MethodDescriptor::DebugString() const {
DebugStringOptions options; // default values
return DebugStringWithOptions(options);
}
std::string MethodDescriptor::DebugStringWithOptions(
const DebugStringOptions& options) const {
std::string contents;
DebugString(0, &contents, options);
return contents;
}
void MethodDescriptor::DebugString(
int depth, std::string* contents,
const DebugStringOptions& debug_string_options) const {
std::string prefix(depth * 2, ' ');
++depth;
SourceLocationCommentPrinter comment_printer(this, prefix,
debug_string_options);
comment_printer.AddPreComment(contents);
strings::SubstituteAndAppend(
contents, "$0rpc $1($4.$2) returns ($5.$3)", prefix, name(),
input_type()->full_name(), output_type()->full_name(),
client_streaming() ? "stream " : "", server_streaming() ? "stream " : "");
std::string formatted_options;
if (FormatLineOptions(depth, options(), service()->file()->pool(),
&formatted_options)) {
strings::SubstituteAndAppend(contents, " {\n$0$1}\n", formatted_options,
prefix);
} else {
contents->append(";\n");
}
comment_printer.AddPostComment(contents);
}
// Location methods ===============================================
bool FileDescriptor::GetSourceLocation(const std::vector<int>& path,
SourceLocation* out_location) const {
GOOGLE_CHECK(out_location != nullptr);
if (source_code_info_) {
if (const SourceCodeInfo_Location* loc =
tables_->GetSourceLocation(path, source_code_info_)) {
const RepeatedField<int32_t>& span = loc->span();
if (span.size() == 3 || span.size() == 4) {
out_location->start_line = span.Get(0);
out_location->start_column = span.Get(1);
out_location->end_line = span.Get(span.size() == 3 ? 0 : 2);
out_location->end_column = span.Get(span.size() - 1);
out_location->leading_comments = loc->leading_comments();
out_location->trailing_comments = loc->trailing_comments();
out_location->leading_detached_comments.assign(
loc->leading_detached_comments().begin(),
loc->leading_detached_comments().end());
return true;
}
}
}
return false;
}
bool FileDescriptor::GetSourceLocation(SourceLocation* out_location) const {
std::vector<int> path; // empty path for root FileDescriptor
return GetSourceLocation(path, out_location);
}
bool FieldDescriptor::is_packed() const {
if (!is_packable()) return false;
if (file_->syntax() == FileDescriptor::SYNTAX_PROTO2) {
return (options_ != nullptr) && options_->packed();
} else {
return options_ == nullptr || !options_->has_packed() || options_->packed();
}
}
bool Descriptor::GetSourceLocation(SourceLocation* out_location) const {
std::vector<int> path;
GetLocationPath(&path);
return file()->GetSourceLocation(path, out_location);
}
bool FieldDescriptor::GetSourceLocation(SourceLocation* out_location) const {
std::vector<int> path;
GetLocationPath(&path);
return file()->GetSourceLocation(path, out_location);
}
bool OneofDescriptor::GetSourceLocation(SourceLocation* out_location) const {
std::vector<int> path;
GetLocationPath(&path);
return containing_type()->file()->GetSourceLocation(path, out_location);
}
bool EnumDescriptor::GetSourceLocation(SourceLocation* out_location) const {
std::vector<int> path;
GetLocationPath(&path);
return file()->GetSourceLocation(path, out_location);
}
bool MethodDescriptor::GetSourceLocation(SourceLocation* out_location) const {
std::vector<int> path;
GetLocationPath(&path);
return service()->file()->GetSourceLocation(path, out_location);
}
bool ServiceDescriptor::GetSourceLocation(SourceLocation* out_location) const {
std::vector<int> path;
GetLocationPath(&path);
return file()->GetSourceLocation(path, out_location);
}
bool EnumValueDescriptor::GetSourceLocation(
SourceLocation* out_location) const {
std::vector<int> path;
GetLocationPath(&path);
return type()->file()->GetSourceLocation(path, out_location);
}
void Descriptor::GetLocationPath(std::vector<int>* output) const {
if (containing_type()) {
containing_type()->GetLocationPath(output);
output->push_back(DescriptorProto::kNestedTypeFieldNumber);
output->push_back(index());
} else {
output->push_back(FileDescriptorProto::kMessageTypeFieldNumber);
output->push_back(index());
}
}
void FieldDescriptor::GetLocationPath(std::vector<int>* output) const {
if (is_extension()) {
if (extension_scope() == nullptr) {
output->push_back(FileDescriptorProto::kExtensionFieldNumber);
output->push_back(index());
} else {
extension_scope()->GetLocationPath(output);
output->push_back(DescriptorProto::kExtensionFieldNumber);
output->push_back(index());
}
} else {
containing_type()->GetLocationPath(output);
output->push_back(DescriptorProto::kFieldFieldNumber);
output->push_back(index());
}
}
void OneofDescriptor::GetLocationPath(std::vector<int>* output) const {
containing_type()->GetLocationPath(output);
output->push_back(DescriptorProto::kOneofDeclFieldNumber);
output->push_back(index());
}
void EnumDescriptor::GetLocationPath(std::vector<int>* output) const {
if (containing_type()) {
containing_type()->GetLocationPath(output);
output->push_back(DescriptorProto::kEnumTypeFieldNumber);
output->push_back(index());
} else {
output->push_back(FileDescriptorProto::kEnumTypeFieldNumber);
output->push_back(index());
}
}
void EnumValueDescriptor::GetLocationPath(std::vector<int>* output) const {
type()->GetLocationPath(output);
output->push_back(EnumDescriptorProto::kValueFieldNumber);
output->push_back(index());
}
void ServiceDescriptor::GetLocationPath(std::vector<int>* output) const {
output->push_back(FileDescriptorProto::kServiceFieldNumber);
output->push_back(index());
}
void MethodDescriptor::GetLocationPath(std::vector<int>* output) const {
service()->GetLocationPath(output);
output->push_back(ServiceDescriptorProto::kMethodFieldNumber);
output->push_back(index());
}
// ===================================================================
namespace {
// Represents an options message to interpret. Extension names in the option
// name are resolved relative to name_scope. element_name and orig_opt are
// used only for error reporting (since the parser records locations against
// pointers in the original options, not the mutable copy). The Message must be
// one of the Options messages in descriptor.proto.
struct OptionsToInterpret {
OptionsToInterpret(const std::string& ns, const std::string& el,
const std::vector<int>& path, const Message* orig_opt,
Message* opt)
: name_scope(ns),
element_name(el),
element_path(path),
original_options(orig_opt),
options(opt) {}
std::string name_scope;
std::string element_name;
std::vector<int> element_path;
const Message* original_options;
Message* options;
};
} // namespace
class DescriptorBuilder {
public:
DescriptorBuilder(const DescriptorPool* pool, DescriptorPool::Tables* tables,
DescriptorPool::ErrorCollector* error_collector);
~DescriptorBuilder();
const FileDescriptor* BuildFile(const FileDescriptorProto& proto);
private:
friend class OptionInterpreter;
// Non-recursive part of BuildFile functionality.
FileDescriptor* BuildFileImpl(const FileDescriptorProto& proto,
internal::FlatAllocator& alloc);
const DescriptorPool* pool_;
DescriptorPool::Tables* tables_; // for convenience
DescriptorPool::ErrorCollector* error_collector_;
// As we build descriptors we store copies of the options messages in
// them. We put pointers to those copies in this vector, as we build, so we
// can later (after cross-linking) interpret those options.
std::vector<OptionsToInterpret> options_to_interpret_;
bool had_errors_;
std::string filename_;
FileDescriptor* file_;
FileDescriptorTables* file_tables_;
std::set<const FileDescriptor*> dependencies_;
struct MessageHints {
int fields_to_suggest = 0;
const Message* first_reason = nullptr;
DescriptorPool::ErrorCollector::ErrorLocation first_reason_location =
DescriptorPool::ErrorCollector::ErrorLocation::OTHER;
void RequestHintOnFieldNumbers(
const Message& reason,
DescriptorPool::ErrorCollector::ErrorLocation reason_location,
int range_start = 0, int range_end = 1) {
auto fit = [](int value) {
return std::min(std::max(value, 0), FieldDescriptor::kMaxNumber);
};
fields_to_suggest =
fit(fields_to_suggest + fit(fit(range_end) - fit(range_start)));
if (first_reason) return;
first_reason = &reason;
first_reason_location = reason_location;
}
};
std::unordered_map<const Descriptor*, MessageHints> message_hints_;
// unused_dependency_ is used to record the unused imported files.
// Note: public import is not considered.
std::set<const FileDescriptor*> unused_dependency_;
// If LookupSymbol() finds a symbol that is in a file which is not a declared
// dependency of this file, it will fail, but will set
// possible_undeclared_dependency_ to point at that file. This is only used
// by AddNotDefinedError() to report a more useful error message.
// possible_undeclared_dependency_name_ is the name of the symbol that was
// actually found in possible_undeclared_dependency_, which may be a parent
// of the symbol actually looked for.
const FileDescriptor* possible_undeclared_dependency_;
std::string possible_undeclared_dependency_name_;
// If LookupSymbol() could resolve a symbol which is not defined,
// record the resolved name. This is only used by AddNotDefinedError()
// to report a more useful error message.
std::string undefine_resolved_name_;
// Tracker for current recursion depth to implement recursion protection.
//
// Counts down to 0 when there is no depth remaining.
//
// Maximum recursion depth corresponds to 32 nested message declarations.
int recursion_depth_ = 32;
void AddError(const std::string& element_name, const Message& descriptor,
DescriptorPool::ErrorCollector::ErrorLocation location,
const std::string& error);
void AddError(const std::string& element_name, const Message& descriptor,
DescriptorPool::ErrorCollector::ErrorLocation location,
const char* error);
void AddRecursiveImportError(const FileDescriptorProto& proto, int from_here);
void AddTwiceListedError(const FileDescriptorProto& proto, int index);
void AddImportError(const FileDescriptorProto& proto, int index);
// Adds an error indicating that undefined_symbol was not defined. Must
// only be called after LookupSymbol() fails.
void AddNotDefinedError(
const std::string& element_name, const Message& descriptor,
DescriptorPool::ErrorCollector::ErrorLocation location,
const std::string& undefined_symbol);
void AddWarning(const std::string& element_name, const Message& descriptor,
DescriptorPool::ErrorCollector::ErrorLocation location,
const std::string& error);
// Silly helper which determines if the given file is in the given package.
// I.e., either file->package() == package_name or file->package() is a
// nested package within package_name.
bool IsInPackage(const FileDescriptor* file, const std::string& package_name);
// Helper function which finds all public dependencies of the given file, and
// stores the them in the dependencies_ set in the builder.
void RecordPublicDependencies(const FileDescriptor* file);
// Like tables_->FindSymbol(), but additionally:
// - Search the pool's underlay if not found in tables_.
// - Insure that the resulting Symbol is from one of the file's declared
// dependencies.
Symbol FindSymbol(const std::string& name, bool build_it = true);
// Like FindSymbol() but does not require that the symbol is in one of the
// file's declared dependencies.
Symbol FindSymbolNotEnforcingDeps(const std::string& name,
bool build_it = true);
// This implements the body of FindSymbolNotEnforcingDeps().
Symbol FindSymbolNotEnforcingDepsHelper(const DescriptorPool* pool,
const std::string& name,
bool build_it = true);
// Like FindSymbol(), but looks up the name relative to some other symbol
// name. This first searches siblings of relative_to, then siblings of its
// parents, etc. For example, LookupSymbol("foo.bar", "baz.moo.corge") makes
// the following calls, returning the first non-null result:
// FindSymbol("baz.moo.foo.bar"), FindSymbol("baz.foo.bar"),
// FindSymbol("foo.bar"). If AllowUnknownDependencies() has been called
// on the DescriptorPool, this will generate a placeholder type if
// the name is not found (unless the name itself is malformed). The
// placeholder_type parameter indicates what kind of placeholder should be
// constructed in this case. The resolve_mode parameter determines whether
// any symbol is returned, or only symbols that are types. Note, however,
// that LookupSymbol may still return a non-type symbol in LOOKUP_TYPES mode,
// if it believes that's all it could refer to. The caller should always
// check that it receives the type of symbol it was expecting.
enum ResolveMode { LOOKUP_ALL, LOOKUP_TYPES };
Symbol LookupSymbol(const std::string& name, const std::string& relative_to,
DescriptorPool::PlaceholderType placeholder_type =
DescriptorPool::PLACEHOLDER_MESSAGE,
ResolveMode resolve_mode = LOOKUP_ALL,
bool build_it = true);
// Like LookupSymbol() but will not return a placeholder even if
// AllowUnknownDependencies() has been used.
Symbol LookupSymbolNoPlaceholder(const std::string& name,
const std::string& relative_to,
ResolveMode resolve_mode = LOOKUP_ALL,
bool build_it = true);
// Calls tables_->AddSymbol() and records an error if it fails. Returns
// true if successful or false if failed, though most callers can ignore
// the return value since an error has already been recorded.
bool AddSymbol(const std::string& full_name, const void* parent,
const std::string& name, const Message& proto, Symbol symbol);
// Like AddSymbol(), but succeeds if the symbol is already defined as long
// as the existing definition is also a package (because it's OK to define
// the same package in two different files). Also adds all parents of the
// package to the symbol table (e.g. AddPackage("foo.bar", ...) will add
// "foo.bar" and "foo" to the table).
void AddPackage(const std::string& name, const Message& proto,
FileDescriptor* file);
// Checks that the symbol name contains only alphanumeric characters and
// underscores. Records an error otherwise.
void ValidateSymbolName(const std::string& name, const std::string& full_name,
const Message& proto);
// Allocates a copy of orig_options in tables_ and stores it in the
// descriptor. Remembers its uninterpreted options, to be interpreted
// later. DescriptorT must be one of the Descriptor messages from
// descriptor.proto.
template <class DescriptorT>
void AllocateOptions(const typename DescriptorT::OptionsType& orig_options,
DescriptorT* descriptor, int options_field_tag,
const std::string& option_name,
internal::FlatAllocator& alloc);
// Specialization for FileOptions.
void AllocateOptions(const FileOptions& orig_options,
FileDescriptor* descriptor,
internal::FlatAllocator& alloc);
// Implementation for AllocateOptions(). Don't call this directly.
template <class DescriptorT>
void AllocateOptionsImpl(
const std::string& name_scope, const std::string& element_name,
const typename DescriptorT::OptionsType& orig_options,
DescriptorT* descriptor, const std::vector<int>& options_path,
const std::string& option_name, internal::FlatAllocator& alloc);
// Allocates an array of two strings, the first one is a copy of `proto_name`,
// and the second one is the full name.
// Full proto name is "scope.proto_name" if scope is non-empty and
// "proto_name" otherwise.
const std::string* AllocateNameStrings(const std::string& scope,
const std::string& proto_name,
internal::FlatAllocator& alloc);
// These methods all have the same signature for the sake of the BUILD_ARRAY
// macro, below.
void BuildMessage(const DescriptorProto& proto, const Descriptor* parent,
Descriptor* result, internal::FlatAllocator& alloc);
void BuildFieldOrExtension(const FieldDescriptorProto& proto,
Descriptor* parent, FieldDescriptor* result,
bool is_extension, internal::FlatAllocator& alloc);
void BuildField(const FieldDescriptorProto& proto, Descriptor* parent,
FieldDescriptor* result, internal::FlatAllocator& alloc) {
BuildFieldOrExtension(proto, parent, result, false, alloc);
}
void BuildExtension(const FieldDescriptorProto& proto, Descriptor* parent,
FieldDescriptor* result, internal::FlatAllocator& alloc) {
BuildFieldOrExtension(proto, parent, result, true, alloc);
}
void BuildExtensionRange(const DescriptorProto::ExtensionRange& proto,
const Descriptor* parent,
Descriptor::ExtensionRange* result,
internal::FlatAllocator& alloc);
void BuildReservedRange(const DescriptorProto::ReservedRange& proto,
const Descriptor* parent,
Descriptor::ReservedRange* result,
internal::FlatAllocator& alloc);
void BuildReservedRange(const EnumDescriptorProto::EnumReservedRange& proto,
const EnumDescriptor* parent,
EnumDescriptor::ReservedRange* result,
internal::FlatAllocator& alloc);
void BuildOneof(const OneofDescriptorProto& proto, Descriptor* parent,
OneofDescriptor* result, internal::FlatAllocator& alloc);
void CheckEnumValueUniqueness(const EnumDescriptorProto& proto,
const EnumDescriptor* result);
void BuildEnum(const EnumDescriptorProto& proto, const Descriptor* parent,
EnumDescriptor* result, internal::FlatAllocator& alloc);
void BuildEnumValue(const EnumValueDescriptorProto& proto,
const EnumDescriptor* parent, EnumValueDescriptor* result,
internal::FlatAllocator& alloc);
void BuildService(const ServiceDescriptorProto& proto, const void* dummy,
ServiceDescriptor* result, internal::FlatAllocator& alloc);
void BuildMethod(const MethodDescriptorProto& proto,
const ServiceDescriptor* parent, MethodDescriptor* result,
internal::FlatAllocator& alloc);
void LogUnusedDependency(const FileDescriptorProto& proto,
const FileDescriptor* result);
// Must be run only after building.
//
// NOTE: Options will not be available during cross-linking, as they
// have not yet been interpreted. Defer any handling of options to the
// Validate*Options methods.
void CrossLinkFile(FileDescriptor* file, const FileDescriptorProto& proto);
void CrossLinkMessage(Descriptor* message, const DescriptorProto& proto);
void CrossLinkField(FieldDescriptor* field,
const FieldDescriptorProto& proto);
void CrossLinkExtensionRange(Descriptor::ExtensionRange* range,
const DescriptorProto::ExtensionRange& proto);
void CrossLinkEnum(EnumDescriptor* enum_type,
const EnumDescriptorProto& proto);
void CrossLinkEnumValue(EnumValueDescriptor* enum_value,
const EnumValueDescriptorProto& proto);
void CrossLinkService(ServiceDescriptor* service,
const ServiceDescriptorProto& proto);
void CrossLinkMethod(MethodDescriptor* method,
const MethodDescriptorProto& proto);
void SuggestFieldNumbers(FileDescriptor* file,
const FileDescriptorProto& proto);
// Must be run only after cross-linking.
void InterpretOptions();
// A helper class for interpreting options.
class OptionInterpreter {
public:
// Creates an interpreter that operates in the context of the pool of the
// specified builder, which must not be nullptr. We don't take ownership of
// the builder.
explicit OptionInterpreter(DescriptorBuilder* builder);
~OptionInterpreter();
// Interprets the uninterpreted options in the specified Options message.
// On error, calls AddError() on the underlying builder and returns false.
// Otherwise returns true.
bool InterpretOptions(OptionsToInterpret* options_to_interpret);
// Updates the given source code info by re-writing uninterpreted option
// locations to refer to the corresponding interpreted option.
void UpdateSourceCodeInfo(SourceCodeInfo* info);
class AggregateOptionFinder;
private:
// Interprets uninterpreted_option_ on the specified message, which
// must be the mutable copy of the original options message to which
// uninterpreted_option_ belongs. The given src_path is the source
// location path to the uninterpreted option, and options_path is the
// source location path to the options message. The location paths are
// recorded and then used in UpdateSourceCodeInfo.
bool InterpretSingleOption(Message* options,
const std::vector<int>& src_path,
const std::vector<int>& options_path);
// Adds the uninterpreted_option to the given options message verbatim.
// Used when AllowUnknownDependencies() is in effect and we can't find
// the option's definition.
void AddWithoutInterpreting(const UninterpretedOption& uninterpreted_option,
Message* options);
// A recursive helper function that drills into the intermediate fields
// in unknown_fields to check if field innermost_field is set on the
// innermost message. Returns false and sets an error if so.
bool ExamineIfOptionIsSet(
std::vector<const FieldDescriptor*>::const_iterator
intermediate_fields_iter,
std::vector<const FieldDescriptor*>::const_iterator
intermediate_fields_end,
const FieldDescriptor* innermost_field,
const std::string& debug_msg_name,
const UnknownFieldSet& unknown_fields);
// Validates the value for the option field of the currently interpreted
// option and then sets it on the unknown_field.
bool SetOptionValue(const FieldDescriptor* option_field,
UnknownFieldSet* unknown_fields);
// Parses an aggregate value for a CPPTYPE_MESSAGE option and
// saves it into *unknown_fields.
bool SetAggregateOption(const FieldDescriptor* option_field,
UnknownFieldSet* unknown_fields);
// Convenience functions to set an int field the right way, depending on
// its wire type (a single int CppType can represent multiple wire types).
void SetInt32(int number, int32_t value, FieldDescriptor::Type type,
UnknownFieldSet* unknown_fields);
void SetInt64(int number, int64_t value, FieldDescriptor::Type type,
UnknownFieldSet* unknown_fields);
void SetUInt32(int number, uint32_t value, FieldDescriptor::Type type,
UnknownFieldSet* unknown_fields);
void SetUInt64(int number, uint64_t value, FieldDescriptor::Type type,
UnknownFieldSet* unknown_fields);
// A helper function that adds an error at the specified location of the
// option we're currently interpreting, and returns false.
bool AddOptionError(DescriptorPool::ErrorCollector::ErrorLocation location,
const std::string& msg) {
builder_->AddError(options_to_interpret_->element_name,
*uninterpreted_option_, location, msg);
return false;
}
// A helper function that adds an error at the location of the option name
// and returns false.
bool AddNameError(const std::string& msg) {
#ifdef PROTOBUF_INTERNAL_IGNORE_FIELD_NAME_ERRORS_
return true;
#else // PROTOBUF_INTERNAL_IGNORE_FIELD_NAME_ERRORS_
return AddOptionError(DescriptorPool::ErrorCollector::OPTION_NAME, msg);
#endif // PROTOBUF_INTERNAL_IGNORE_FIELD_NAME_ERRORS_
}
// A helper function that adds an error at the location of the option name
// and returns false.
bool AddValueError(const std::string& msg) {
return AddOptionError(DescriptorPool::ErrorCollector::OPTION_VALUE, msg);
}
// We interpret against this builder's pool. Is never nullptr. We don't own
// this pointer.
DescriptorBuilder* builder_;
// The options we're currently interpreting, or nullptr if we're not in a
// call to InterpretOptions.
const OptionsToInterpret* options_to_interpret_;
// The option we're currently interpreting within options_to_interpret_, or
// nullptr if we're not in a call to InterpretOptions(). This points to a
// submessage of the original option, not the mutable copy. Therefore we
// can use it to find locations recorded by the parser.
const UninterpretedOption* uninterpreted_option_;
// This maps the element path of uninterpreted options to the element path
// of the resulting interpreted option. This is used to modify a file's
// source code info to account for option interpretation.
std::map<std::vector<int>, std::vector<int>> interpreted_paths_;
// This maps the path to a repeated option field to the known number of
// elements the field contains. This is used to track the compute the
// index portion of the element path when interpreting a single option.
std::map<std::vector<int>, int> repeated_option_counts_;
// Factory used to create the dynamic messages we need to parse
// any aggregate option values we encounter.
DynamicMessageFactory dynamic_factory_;
GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(OptionInterpreter);
};
// Work-around for broken compilers: According to the C++ standard,
// OptionInterpreter should have access to the private members of any class
// which has declared DescriptorBuilder as a friend. Unfortunately some old
// versions of GCC and other compilers do not implement this correctly. So,
// we have to have these intermediate methods to provide access. We also
// redundantly declare OptionInterpreter a friend just to make things extra
// clear for these bad compilers.
friend class OptionInterpreter;
friend class OptionInterpreter::AggregateOptionFinder;
static inline bool get_allow_unknown(const DescriptorPool* pool) {
return pool->allow_unknown_;
}
static inline bool get_enforce_weak(const DescriptorPool* pool) {
return pool->enforce_weak_;
}
static inline bool get_is_placeholder(const Descriptor* descriptor) {
return descriptor != nullptr && descriptor->is_placeholder_;
}
static inline void assert_mutex_held(const DescriptorPool* pool) {
if (pool->mutex_ != nullptr) {
pool->mutex_->AssertHeld();
}
}
// Must be run only after options have been interpreted.
//
// NOTE: Validation code must only reference the options in the mutable
// descriptors, which are the ones that have been interpreted. The const
// proto references are passed in only so they can be provided to calls to
// AddError(). Do not look at their options, which have not been interpreted.
void ValidateFileOptions(FileDescriptor* file,
const FileDescriptorProto& proto);
void ValidateMessageOptions(Descriptor* message,
const DescriptorProto& proto);
void ValidateFieldOptions(FieldDescriptor* field,
const FieldDescriptorProto& proto);
void ValidateEnumOptions(EnumDescriptor* enm,
const EnumDescriptorProto& proto);
void ValidateEnumValueOptions(EnumValueDescriptor* enum_value,
const EnumValueDescriptorProto& proto);
void ValidateExtensionRangeOptions(
const std::string& full_name, Descriptor::ExtensionRange* extension_range,
const DescriptorProto_ExtensionRange& proto);
void ValidateServiceOptions(ServiceDescriptor* service,
const ServiceDescriptorProto& proto);
void ValidateMethodOptions(MethodDescriptor* method,
const MethodDescriptorProto& proto);
void ValidateProto3(FileDescriptor* file, const FileDescriptorProto& proto);
void ValidateProto3Message(Descriptor* message, const DescriptorProto& proto);
void ValidateProto3Field(FieldDescriptor* field,
const FieldDescriptorProto& proto);
void ValidateProto3Enum(EnumDescriptor* enm,
const EnumDescriptorProto& proto);
// Returns true if the map entry message is compatible with the
// auto-generated entry message from map fields syntax.
bool ValidateMapEntry(FieldDescriptor* field,
const FieldDescriptorProto& proto);
// Recursively detects naming conflicts with map entry types for a
// better error message.
void DetectMapConflicts(const Descriptor* message,
const DescriptorProto& proto);
void ValidateJSType(FieldDescriptor* field,
const FieldDescriptorProto& proto);
};
const FileDescriptor* DescriptorPool::BuildFile(
const FileDescriptorProto& proto) {
GOOGLE_CHECK(fallback_database_ == nullptr)
<< "Cannot call BuildFile on a DescriptorPool that uses a "
"DescriptorDatabase. You must instead find a way to get your file "
"into the underlying database.";
GOOGLE_CHECK(mutex_ == nullptr); // Implied by the above GOOGLE_CHECK.
tables_->known_bad_symbols_.clear();
tables_->known_bad_files_.clear();
return DescriptorBuilder(this, tables_.get(), nullptr).BuildFile(proto);
}
const FileDescriptor* DescriptorPool::BuildFileCollectingErrors(
const FileDescriptorProto& proto, ErrorCollector* error_collector) {
GOOGLE_CHECK(fallback_database_ == nullptr)
<< "Cannot call BuildFile on a DescriptorPool that uses a "
"DescriptorDatabase. You must instead find a way to get your file "
"into the underlying database.";
GOOGLE_CHECK(mutex_ == nullptr); // Implied by the above GOOGLE_CHECK.
tables_->known_bad_symbols_.clear();
tables_->known_bad_files_.clear();
return DescriptorBuilder(this, tables_.get(), error_collector)
.BuildFile(proto);
}
const FileDescriptor* DescriptorPool::BuildFileFromDatabase(
const FileDescriptorProto& proto) const {
mutex_->AssertHeld();
if (tables_->known_bad_files_.count(proto.name()) > 0) {
return nullptr;
}
const FileDescriptor* result =
DescriptorBuilder(this, tables_.get(), default_error_collector_)
.BuildFile(proto);
if (result == nullptr) {
tables_->known_bad_files_.insert(proto.name());
}
return result;
}
DescriptorBuilder::DescriptorBuilder(
const DescriptorPool* pool, DescriptorPool::Tables* tables,
DescriptorPool::ErrorCollector* error_collector)
: pool_(pool),
tables_(tables),
error_collector_(error_collector),
had_errors_(false),
possible_undeclared_dependency_(nullptr),
undefine_resolved_name_("") {}
DescriptorBuilder::~DescriptorBuilder() {}
void DescriptorBuilder::AddError(
const std::string& element_name, const Message& descriptor,
DescriptorPool::ErrorCollector::ErrorLocation location,
const std::string& error) {
if (error_collector_ == nullptr) {
if (!had_errors_) {
GOOGLE_LOG(ERROR) << "Invalid proto descriptor for file \"" << filename_
<< "\":";
}
GOOGLE_LOG(ERROR) << " " << element_name << ": " << error;
} else {
error_collector_->AddError(filename_, element_name, &descriptor, location,
error);
}
had_errors_ = true;
}
void DescriptorBuilder::AddError(
const std::string& element_name, const Message& descriptor,
DescriptorPool::ErrorCollector::ErrorLocation location, const char* error) {
AddError(element_name, descriptor, location, std::string(error));
}
void DescriptorBuilder::AddNotDefinedError(
const std::string& element_name, const Message& descriptor,
DescriptorPool::ErrorCollector::ErrorLocation location,
const std::string& undefined_symbol) {
if (possible_undeclared_dependency_ == nullptr &&
undefine_resolved_name_.empty()) {
AddError(element_name, descriptor, location,
"\"" + undefined_symbol + "\" is not defined.");
} else {
if (possible_undeclared_dependency_ != nullptr) {
AddError(element_name, descriptor, location,
"\"" + possible_undeclared_dependency_name_ +
"\" seems to be defined in \"" +
possible_undeclared_dependency_->name() +
"\", which is not "
"imported by \"" +
filename_ +
"\". To use it here, please "
"add the necessary import.");
}
if (!undefine_resolved_name_.empty()) {
AddError(element_name, descriptor, location,
"\"" + undefined_symbol + "\" is resolved to \"" +
undefine_resolved_name_ +
"\", which is not defined. "
"The innermost scope is searched first in name resolution. "
"Consider using a leading '.'(i.e., \"." +
undefined_symbol + "\") to start from the outermost scope.");
}
}
}
void DescriptorBuilder::AddWarning(
const std::string& element_name, const Message& descriptor,
DescriptorPool::ErrorCollector::ErrorLocation location,
const std::string& error) {
if (error_collector_ == nullptr) {
GOOGLE_LOG(WARNING) << filename_ << " " << element_name << ": " << error;
} else {
error_collector_->AddWarning(filename_, element_name, &descriptor, location,
error);
}
}
bool DescriptorBuilder::IsInPackage(const FileDescriptor* file,
const std::string& package_name) {
return HasPrefixString(file->package(), package_name) &&
(file->package().size() == package_name.size() ||
file->package()[package_name.size()] == '.');
}
void DescriptorBuilder::RecordPublicDependencies(const FileDescriptor* file) {
if (file == nullptr || !dependencies_.insert(file).second) return;
for (int i = 0; file != nullptr && i < file->public_dependency_count(); i++) {
RecordPublicDependencies(file->public_dependency(i));
}
}
Symbol DescriptorBuilder::FindSymbolNotEnforcingDepsHelper(
const DescriptorPool* pool, const std::string& name, bool build_it) {
// If we are looking at an underlay, we must lock its mutex_, since we are
// accessing the underlay's tables_ directly.
MutexLockMaybe lock((pool == pool_) ? nullptr : pool->mutex_);
Symbol result = pool->tables_->FindSymbol(name);
if (result.IsNull() && pool->underlay_ != nullptr) {
// Symbol not found; check the underlay.
result = FindSymbolNotEnforcingDepsHelper(pool->underlay_, name);
}
if (result.IsNull()) {
// With lazily_build_dependencies_, a symbol lookup at cross link time is
// not guaranteed to be successful. In most cases, build_it will be false,
// which intentionally prevents us from building an import until it's
// actually needed. In some cases, like registering an extension, we want
// to build the file containing the symbol, and build_it will be set.
// Also, build_it will be true when !lazily_build_dependencies_, to provide
// better error reporting of missing dependencies.
if (build_it && pool->TryFindSymbolInFallbackDatabase(name)) {
result = pool->tables_->FindSymbol(name);
}
}
return result;
}
Symbol DescriptorBuilder::FindSymbolNotEnforcingDeps(const std::string& name,
bool build_it) {
Symbol result = FindSymbolNotEnforcingDepsHelper(pool_, name, build_it);
// Only find symbols which were defined in this file or one of its
// dependencies.
const FileDescriptor* file = result.GetFile();
if (file == file_ || dependencies_.count(file) > 0) {
unused_dependency_.erase(file);
}
return result;
}
Symbol DescriptorBuilder::FindSymbol(const std::string& name, bool build_it) {
Symbol result = FindSymbolNotEnforcingDeps(name, build_it);
if (result.IsNull()) return result;
if (!pool_->enforce_dependencies_) {
// Hack for CompilerUpgrader, and also used for lazily_build_dependencies_
return result;
}
// Only find symbols which were defined in this file or one of its
// dependencies.
const FileDescriptor* file = result.GetFile();
if (file == file_ || dependencies_.count(file) > 0) {
return result;
}
if (result.IsPackage()) {
// Arg, this is overcomplicated. The symbol is a package name. It could
// be that the package was defined in multiple files. result.GetFile()
// returns the first file we saw that used this package. We've determined
// that that file is not a direct dependency of the file we are currently
// building, but it could be that some other file which *is* a direct
// dependency also defines the same package. We can't really rule out this
// symbol unless none of the dependencies define it.
if (IsInPackage(file_, name)) return result;
for (std::set<const FileDescriptor*>::const_iterator it =
dependencies_.begin();
it != dependencies_.end(); ++it) {
// Note: A dependency may be nullptr if it was not found or had errors.
if (*it != nullptr && IsInPackage(*it, name)) return result;
}
}
possible_undeclared_dependency_ = file;
possible_undeclared_dependency_name_ = name;
return Symbol();
}
Symbol DescriptorBuilder::LookupSymbolNoPlaceholder(
const std::string& name, const std::string& relative_to,
ResolveMode resolve_mode, bool build_it) {
possible_undeclared_dependency_ = nullptr;
undefine_resolved_name_.clear();
if (!name.empty() && name[0] == '.') {
// Fully-qualified name.
return FindSymbol(name.substr(1), build_it);
}
// If name is something like "Foo.Bar.baz", and symbols named "Foo" are
// defined in multiple parent scopes, we only want to find "Bar.baz" in the
// innermost one. E.g., the following should produce an error:
// message Bar { message Baz {} }
// message Foo {
// message Bar {
// }
// optional Bar.Baz baz = 1;
// }
// So, we look for just "Foo" first, then look for "Bar.baz" within it if
// found.
std::string::size_type name_dot_pos = name.find_first_of('.');
std::string first_part_of_name;
if (name_dot_pos == std::string::npos) {
first_part_of_name = name;
} else {
first_part_of_name = name.substr(0, name_dot_pos);
}
std::string scope_to_try(relative_to);
while (true) {
// Chop off the last component of the scope.
std::string::size_type dot_pos = scope_to_try.find_last_of('.');
if (dot_pos == std::string::npos) {
return FindSymbol(name, build_it);
} else {
scope_to_try.erase(dot_pos);
}
// Append ".first_part_of_name" and try to find.
std::string::size_type old_size = scope_to_try.size();
scope_to_try.append(1, '.');
scope_to_try.append(first_part_of_name);
Symbol result = FindSymbol(scope_to_try, build_it);
if (!result.IsNull()) {
if (first_part_of_name.size() < name.size()) {
// name is a compound symbol, of which we only found the first part.
// Now try to look up the rest of it.
if (result.IsAggregate()) {
scope_to_try.append(name, first_part_of_name.size(),
name.size() - first_part_of_name.size());
result = FindSymbol(scope_to_try, build_it);
if (result.IsNull()) {
undefine_resolved_name_ = scope_to_try;
}
return result;
} else {
// We found a symbol but it's not an aggregate. Continue the loop.
}
} else {
if (resolve_mode == LOOKUP_TYPES && !result.IsType()) {
// We found a symbol but it's not a type. Continue the loop.
} else {
return result;
}
}
}
// Not found. Remove the name so we can try again.
scope_to_try.erase(old_size);
}
}
Symbol DescriptorBuilder::LookupSymbol(
const std::string& name, const std::string& relative_to,
DescriptorPool::PlaceholderType placeholder_type, ResolveMode resolve_mode,
bool build_it) {
Symbol result =
LookupSymbolNoPlaceholder(name, relative_to, resolve_mode, build_it);
if (result.IsNull() && pool_->allow_unknown_) {
// Not found, but AllowUnknownDependencies() is enabled. Return a
// placeholder instead.
result = pool_->NewPlaceholderWithMutexHeld(name, placeholder_type);
}
return result;
}
static bool ValidateQualifiedName(StringPiece name) {
bool last_was_period = false;
for (char character : name) {
// I don't trust isalnum() due to locales. :(
if (('a' <= character && character <= 'z') ||
('A' <= character && character <= 'Z') ||
('0' <= character && character <= '9') || (character == '_')) {
last_was_period = false;
} else if (character == '.') {
if (last_was_period) return false;
last_was_period = true;
} else {
return false;
}
}
return !name.empty() && !last_was_period;
}
Symbol DescriptorPool::NewPlaceholder(StringPiece name,
PlaceholderType placeholder_type) const {
MutexLockMaybe lock(mutex_);
return NewPlaceholderWithMutexHeld(name, placeholder_type);
}
Symbol DescriptorPool::NewPlaceholderWithMutexHeld(
StringPiece name, PlaceholderType placeholder_type) const {
if (mutex_) {
mutex_->AssertHeld();
}
// Compute names.
StringPiece placeholder_full_name;
StringPiece placeholder_name;
const std::string* placeholder_package;
if (!ValidateQualifiedName(name)) return Symbol();
if (name[0] == '.') {
// Fully-qualified.
placeholder_full_name = name.substr(1);
} else {
placeholder_full_name = name;
}
// Create the placeholders.
internal::FlatAllocator alloc;
alloc.PlanArray<FileDescriptor>(1);
alloc.PlanArray<std::string>(2);
if (placeholder_type == PLACEHOLDER_ENUM) {
alloc.PlanArray<EnumDescriptor>(1);
alloc.PlanArray<EnumValueDescriptor>(1);
alloc.PlanArray<std::string>(2); // names for the descriptor.
alloc.PlanArray<std::string>(2); // names for the value.
} else {
alloc.PlanArray<Descriptor>(1);
alloc.PlanArray<std::string>(2); // names for the descriptor.
if (placeholder_type == PLACEHOLDER_EXTENDABLE_MESSAGE) {
alloc.PlanArray<Descriptor::ExtensionRange>(1);
}
}
alloc.FinalizePlanning(tables_);
const std::string::size_type dotpos = placeholder_full_name.find_last_of('.');
if (dotpos != std::string::npos) {
placeholder_package =
alloc.AllocateStrings(placeholder_full_name.substr(0, dotpos));
placeholder_name = placeholder_full_name.substr(dotpos + 1);
} else {
placeholder_package = alloc.AllocateStrings("");
placeholder_name = placeholder_full_name;
}
FileDescriptor* placeholder_file = NewPlaceholderFileWithMutexHeld(
StrCat(placeholder_full_name, ".placeholder.proto"), alloc);
placeholder_file->package_ = placeholder_package;
if (placeholder_type == PLACEHOLDER_ENUM) {
placeholder_file->enum_type_count_ = 1;
placeholder_file->enum_types_ = alloc.AllocateArray<EnumDescriptor>(1);
EnumDescriptor* placeholder_enum = &placeholder_file->enum_types_[0];
memset(static_cast<void*>(placeholder_enum), 0, sizeof(*placeholder_enum));
placeholder_enum->all_names_ =
alloc.AllocateStrings(placeholder_name, placeholder_full_name);
placeholder_enum->file_ = placeholder_file;
placeholder_enum->options_ = &EnumOptions::default_instance();
placeholder_enum->is_placeholder_ = true;
placeholder_enum->is_unqualified_placeholder_ = (name[0] != '.');
// Enums must have at least one value.
placeholder_enum->value_count_ = 1;
placeholder_enum->values_ = alloc.AllocateArray<EnumValueDescriptor>(1);
// Disable fast-path lookup for this enum.
placeholder_enum->sequential_value_limit_ = -1;
EnumValueDescriptor* placeholder_value = &placeholder_enum->values_[0];
memset(static_cast<void*>(placeholder_value), 0,
sizeof(*placeholder_value));
// Note that enum value names are siblings of their type, not children.
placeholder_value->all_names_ = alloc.AllocateStrings(
"PLACEHOLDER_VALUE", placeholder_package->empty()
? "PLACEHOLDER_VALUE"
: *placeholder_package + ".PLACEHOLDER_VALUE");
placeholder_value->number_ = 0;
placeholder_value->type_ = placeholder_enum;
placeholder_value->options_ = &EnumValueOptions::default_instance();
return Symbol(placeholder_enum);
} else {
placeholder_file->message_type_count_ = 1;
placeholder_file->message_types_ = alloc.AllocateArray<Descriptor>(1);
Descriptor* placeholder_message = &placeholder_file->message_types_[0];
memset(static_cast<void*>(placeholder_message), 0,
sizeof(*placeholder_message));
placeholder_message->all_names_ =
alloc.AllocateStrings(placeholder_name, placeholder_full_name);
placeholder_message->file_ = placeholder_file;
placeholder_message->options_ = &MessageOptions::default_instance();
placeholder_message->is_placeholder_ = true;
placeholder_message->is_unqualified_placeholder_ = (name[0] != '.');
if (placeholder_type == PLACEHOLDER_EXTENDABLE_MESSAGE) {
placeholder_message->extension_range_count_ = 1;
placeholder_message->extension_ranges_ =
alloc.AllocateArray<Descriptor::ExtensionRange>(1);
placeholder_message->extension_ranges_[0].start = 1;
// kMaxNumber + 1 because ExtensionRange::end is exclusive.
placeholder_message->extension_ranges_[0].end =
FieldDescriptor::kMaxNumber + 1;
placeholder_message->extension_ranges_[0].options_ = nullptr;
}
return Symbol(placeholder_message);
}
}
FileDescriptor* DescriptorPool::NewPlaceholderFile(
StringPiece name) const {
MutexLockMaybe lock(mutex_);
internal::FlatAllocator alloc;
alloc.PlanArray<FileDescriptor>(1);
alloc.PlanArray<std::string>(1);
alloc.FinalizePlanning(tables_);
return NewPlaceholderFileWithMutexHeld(name, alloc);
}
FileDescriptor* DescriptorPool::NewPlaceholderFileWithMutexHeld(
StringPiece name, internal::FlatAllocator& alloc) const {
if (mutex_) {
mutex_->AssertHeld();
}
FileDescriptor* placeholder = alloc.AllocateArray<FileDescriptor>(1);
memset(static_cast<void*>(placeholder), 0, sizeof(*placeholder));
placeholder->name_ = alloc.AllocateStrings(name);
placeholder->package_ = &internal::GetEmptyString();
placeholder->pool_ = this;
placeholder->options_ = &FileOptions::default_instance();
placeholder->tables_ = &FileDescriptorTables::GetEmptyInstance();
placeholder->source_code_info_ = &SourceCodeInfo::default_instance();
placeholder->is_placeholder_ = true;
placeholder->syntax_ = FileDescriptor::SYNTAX_UNKNOWN;
placeholder->finished_building_ = true;
// All other fields are zero or nullptr.
return placeholder;
}
bool DescriptorBuilder::AddSymbol(const std::string& full_name,
const void* parent, const std::string& name,
const Message& proto, Symbol symbol) {
// If the caller passed nullptr for the parent, the symbol is at file scope.
// Use its file as the parent instead.
if (parent == nullptr) parent = file_;
if (full_name.find('\0') != std::string::npos) {
AddError(full_name, proto, DescriptorPool::ErrorCollector::NAME,
"\"" + full_name + "\" contains null character.");
return false;
}
if (tables_->AddSymbol(full_name, symbol)) {
if (!file_tables_->AddAliasUnderParent(parent, name, symbol)) {
// This is only possible if there was already an error adding something of
// the same name.
if (!had_errors_) {
GOOGLE_LOG(DFATAL) << "\"" << full_name
<< "\" not previously defined in "
"symbols_by_name_, but was defined in "
"symbols_by_parent_; this shouldn't be possible.";
}
return false;
}
return true;
} else {
const FileDescriptor* other_file = tables_->FindSymbol(full_name).GetFile();
if (other_file == file_) {
std::string::size_type dot_pos = full_name.find_last_of('.');
if (dot_pos == std::string::npos) {
AddError(full_name, proto, DescriptorPool::ErrorCollector::NAME,
"\"" + full_name + "\" is already defined.");
} else {
AddError(full_name, proto, DescriptorPool::ErrorCollector::NAME,
"\"" + full_name.substr(dot_pos + 1) +
"\" is already defined in \"" +
full_name.substr(0, dot_pos) + "\".");
}
} else {
// Symbol seems to have been defined in a different file.
AddError(full_name, proto, DescriptorPool::ErrorCollector::NAME,
"\"" + full_name + "\" is already defined in file \"" +
(other_file == nullptr ? "null" : other_file->name()) +
"\".");
}
return false;
}
}
void DescriptorBuilder::AddPackage(const std::string& name,
const Message& proto, FileDescriptor* file) {
if (name.find('\0') != std::string::npos) {
AddError(name, proto, DescriptorPool::ErrorCollector::NAME,
"\"" + name + "\" contains null character.");
return;
}
Symbol existing_symbol = tables_->FindSymbol(name);
// It's OK to redefine a package.
if (existing_symbol.IsNull()) {
if (&name == &file->package()) {
// It is the toplevel package name, so insert the descriptor directly.
tables_->AddSymbol(file->package(), Symbol(file));
} else {
auto* package = tables_->Allocate<Symbol::Subpackage>();
// If the name is the package name, then it is already in the arena.
// If not, copy it there. It came from the call to AddPackage below.
package->name_size = static_cast<int>(name.size());
package->file = file;
tables_->AddSymbol(name, Symbol(package));
}
// Also add parent package, if any.
std::string::size_type dot_pos = name.find_last_of('.');
if (dot_pos == std::string::npos) {
// No parents.
ValidateSymbolName(name, name, proto);
} else {
// Has parent.
AddPackage(name.substr(0, dot_pos), proto, file);
ValidateSymbolName(name.substr(dot_pos + 1), name, proto);
}
} else if (!existing_symbol.IsPackage()) {
// Symbol seems to have been defined in a different file.
const FileDescriptor* other_file = existing_symbol.GetFile();
AddError(name, proto, DescriptorPool::ErrorCollector::NAME,
"\"" + name +
"\" is already defined (as something other than "
"a package) in file \"" +
(other_file == nullptr ? "null" : other_file->name()) + "\".");
}
}
void DescriptorBuilder::ValidateSymbolName(const std::string& name,
const std::string& full_name,
const Message& proto) {
if (name.empty()) {
AddError(full_name, proto, DescriptorPool::ErrorCollector::NAME,
"Missing name.");
} else {
for (char character : name) {
// I don't trust isalnum() due to locales. :(
if ((character < 'a' || 'z' < character) &&
(character < 'A' || 'Z' < character) &&
(character < '0' || '9' < character) && (character != '_')) {
AddError(full_name, proto, DescriptorPool::ErrorCollector::NAME,
"\"" + name + "\" is not a valid identifier.");
return;
}
}
}
}
// -------------------------------------------------------------------
// This generic implementation is good for all descriptors except
// FileDescriptor.
template <class DescriptorT>
void DescriptorBuilder::AllocateOptions(
const typename DescriptorT::OptionsType& orig_options,
DescriptorT* descriptor, int options_field_tag,
const std::string& option_name, internal::FlatAllocator& alloc) {
std::vector<int> options_path;
descriptor->GetLocationPath(&options_path);
options_path.push_back(options_field_tag);
AllocateOptionsImpl(descriptor->full_name(), descriptor->full_name(),
orig_options, descriptor, options_path, option_name,
alloc);
}
// We specialize for FileDescriptor.
void DescriptorBuilder::AllocateOptions(const FileOptions& orig_options,
FileDescriptor* descriptor,
internal::FlatAllocator& alloc) {
std::vector<int> options_path;
options_path.push_back(FileDescriptorProto::kOptionsFieldNumber);
// We add the dummy token so that LookupSymbol does the right thing.
AllocateOptionsImpl(descriptor->package() + ".dummy", descriptor->name(),
orig_options, descriptor, options_path,
"google.protobuf.FileOptions", alloc);
}
template <class DescriptorT>
void DescriptorBuilder::AllocateOptionsImpl(
const std::string& name_scope, const std::string& element_name,
const typename DescriptorT::OptionsType& orig_options,
DescriptorT* descriptor, const std::vector<int>& options_path,
const std::string& option_name, internal::FlatAllocator& alloc) {
auto* options = alloc.AllocateArray<typename DescriptorT::OptionsType>(1);
if (!orig_options.IsInitialized()) {
AddError(name_scope + "." + element_name, orig_options,
DescriptorPool::ErrorCollector::OPTION_NAME,
"Uninterpreted option is missing name or value.");
return;
}
// Avoid using MergeFrom()/CopyFrom() in this class to make it -fno-rtti
// friendly. Without RTTI, MergeFrom() and CopyFrom() will fallback to the
// reflection based method, which requires the Descriptor. However, we are in
// the middle of building the descriptors, thus the deadlock.
options->ParseFromString(orig_options.SerializeAsString());
descriptor->options_ = options;
// Don't add to options_to_interpret_ unless there were uninterpreted
// options. This not only avoids unnecessary work, but prevents a
// bootstrapping problem when building descriptors for descriptor.proto.
// descriptor.proto does not contain any uninterpreted options, but
// attempting to interpret options anyway will cause
// OptionsType::GetDescriptor() to be called which may then deadlock since
// we're still trying to build it.
if (options->uninterpreted_option_size() > 0) {
options_to_interpret_.push_back(OptionsToInterpret(
name_scope, element_name, options_path, &orig_options, options));
}
// If the custom option is in unknown fields, no need to interpret it.
// Remove the dependency file from unused_dependency.
const UnknownFieldSet& unknown_fields = orig_options.unknown_fields();
if (!unknown_fields.empty()) {
// Can not use options->GetDescriptor() which may case deadlock.
Symbol msg_symbol = tables_->FindSymbol(option_name);
if (msg_symbol.type() == Symbol::MESSAGE) {
for (int i = 0; i < unknown_fields.field_count(); ++i) {
assert_mutex_held(pool_);
const FieldDescriptor* field =
pool_->InternalFindExtensionByNumberNoLock(
msg_symbol.descriptor(), unknown_fields.field(i).number());
if (field) {
unused_dependency_.erase(field->file());
}
}
}
}
}
// A common pattern: We want to convert a repeated field in the descriptor
// to an array of values, calling some method to build each value.
#define BUILD_ARRAY(INPUT, OUTPUT, NAME, METHOD, PARENT) \
OUTPUT->NAME##_count_ = INPUT.NAME##_size(); \
OUTPUT->NAME##s_ = alloc.AllocateArray< \
typename std::remove_pointer<decltype(OUTPUT->NAME##s_)>::type>( \
INPUT.NAME##_size()); \
for (int i = 0; i < INPUT.NAME##_size(); i++) { \
METHOD(INPUT.NAME(i), PARENT, OUTPUT->NAME##s_ + i, alloc); \
}
void DescriptorBuilder::AddRecursiveImportError(
const FileDescriptorProto& proto, int from_here) {
std::string error_message("File recursively imports itself: ");
for (size_t i = from_here; i < tables_->pending_files_.size(); i++) {
error_message.append(tables_->pending_files_[i]);
error_message.append(" -> ");
}
error_message.append(proto.name());
if (static_cast<size_t>(from_here) < tables_->pending_files_.size() - 1) {
AddError(tables_->pending_files_[from_here + 1], proto,
DescriptorPool::ErrorCollector::IMPORT, error_message);
} else {
AddError(proto.name(), proto, DescriptorPool::ErrorCollector::IMPORT,
error_message);
}
}
void DescriptorBuilder::AddTwiceListedError(const FileDescriptorProto& proto,
int index) {
AddError(proto.dependency(index), proto,
DescriptorPool::ErrorCollector::IMPORT,
"Import \"" + proto.dependency(index) + "\" was listed twice.");
}
void DescriptorBuilder::AddImportError(const FileDescriptorProto& proto,
int index) {
std::string message;
if (pool_->fallback_database_ == nullptr) {
message = "Import \"" + proto.dependency(index) + "\" has not been loaded.";
} else {
message = "Import \"" + proto.dependency(index) +
"\" was not found or had errors.";
}
AddError(proto.dependency(index), proto,
DescriptorPool::ErrorCollector::IMPORT, message);
}
static bool ExistingFileMatchesProto(const FileDescriptor* existing_file,
const FileDescriptorProto& proto) {
FileDescriptorProto existing_proto;
existing_file->CopyTo(&existing_proto);
// TODO(liujisi): Remove it when CopyTo supports copying syntax params when
// syntax="proto2".
if (existing_file->syntax() == FileDescriptor::SYNTAX_PROTO2 &&
proto.has_syntax()) {
existing_proto.set_syntax(
existing_file->SyntaxName(existing_file->syntax()));
}
return existing_proto.SerializeAsString() == proto.SerializeAsString();
}
// These PlanAllocationSize functions will gather into the FlatAllocator all the
// necessary memory allocations that BuildXXX functions below will do on the
// Tables object.
// They *must* be kept in sync. If we miss some PlanArray call we won't have
// enough memory and will GOOGLE_CHECK-fail.
static void PlanAllocationSize(
const RepeatedPtrField<EnumValueDescriptorProto>& values,
internal::FlatAllocator& alloc) {
alloc.PlanArray<EnumValueDescriptor>(values.size());
alloc.PlanArray<std::string>(2 * values.size()); // name + full_name
for (const auto& v : values) {
if (v.has_options()) alloc.PlanArray<EnumValueOptions>(1);
}
}
static void PlanAllocationSize(
const RepeatedPtrField<EnumDescriptorProto>& enums,
internal::FlatAllocator& alloc) {
alloc.PlanArray<EnumDescriptor>(enums.size());
alloc.PlanArray<std::string>(2 * enums.size()); // name + full_name
for (const auto& e : enums) {
if (e.has_options()) alloc.PlanArray<EnumOptions>(1);
PlanAllocationSize(e.value(), alloc);
alloc.PlanArray<EnumDescriptor::ReservedRange>(e.reserved_range_size());
alloc.PlanArray<const std::string*>(e.reserved_name_size());
alloc.PlanArray<std::string>(e.reserved_name_size());
}
}
static void PlanAllocationSize(
const RepeatedPtrField<OneofDescriptorProto>& oneofs,
internal::FlatAllocator& alloc) {
alloc.PlanArray<OneofDescriptor>(oneofs.size());
alloc.PlanArray<std::string>(2 * oneofs.size()); // name + full_name
for (const auto& oneof : oneofs) {
if (oneof.has_options()) alloc.PlanArray<OneofOptions>(1);
}
}
static void PlanAllocationSize(
const RepeatedPtrField<FieldDescriptorProto>& fields,
internal::FlatAllocator& alloc) {
alloc.PlanArray<FieldDescriptor>(fields.size());
for (const auto& field : fields) {
if (field.has_options()) alloc.PlanArray<FieldOptions>(1);
alloc.PlanFieldNames(field.name(),
field.has_json_name() ? &field.json_name() : nullptr);
if (field.has_default_value() && field.has_type() &&
(field.type() == FieldDescriptorProto::TYPE_STRING ||
field.type() == FieldDescriptorProto::TYPE_BYTES)) {
// For the default string value.
alloc.PlanArray<std::string>(1);
}
}
}
static void PlanAllocationSize(
const RepeatedPtrField<DescriptorProto::ExtensionRange>& ranges,
internal::FlatAllocator& alloc) {
alloc.PlanArray<Descriptor::ExtensionRange>(ranges.size());
for (const auto& r : ranges) {
if (r.has_options()) alloc.PlanArray<ExtensionRangeOptions>(1);
}
}
static void PlanAllocationSize(
const RepeatedPtrField<DescriptorProto>& messages,
internal::FlatAllocator& alloc) {
alloc.PlanArray<Descriptor>(messages.size());
alloc.PlanArray<std::string>(2 * messages.size()); // name + full_name
for (const auto& message : messages) {
if (message.has_options()) alloc.PlanArray<MessageOptions>(1);
PlanAllocationSize(message.nested_type(), alloc);
PlanAllocationSize(message.field(), alloc);
PlanAllocationSize(message.extension(), alloc);
PlanAllocationSize(message.extension_range(), alloc);
alloc.PlanArray<Descriptor::ReservedRange>(message.reserved_range_size());
alloc.PlanArray<const std::string*>(message.reserved_name_size());
alloc.PlanArray<std::string>(message.reserved_name_size());
PlanAllocationSize(message.enum_type(), alloc);
PlanAllocationSize(message.oneof_decl(), alloc);
}
}
static void PlanAllocationSize(
const RepeatedPtrField<MethodDescriptorProto>& methods,
internal::FlatAllocator& alloc) {
alloc.PlanArray<MethodDescriptor>(methods.size());
alloc.PlanArray<std::string>(2 * methods.size()); // name + full_name
for (const auto& m : methods) {
if (m.has_options()) alloc.PlanArray<MethodOptions>(1);
}
}
static void PlanAllocationSize(
const RepeatedPtrField<ServiceDescriptorProto>& services,
internal::FlatAllocator& alloc) {
alloc.PlanArray<ServiceDescriptor>(services.size());
alloc.PlanArray<std::string>(2 * services.size()); // name + full_name
for (const auto& service : services) {
if (service.has_options()) alloc.PlanArray<ServiceOptions>(1);
PlanAllocationSize(service.method(), alloc);
}
}
static void PlanAllocationSize(const FileDescriptorProto& proto,
internal::FlatAllocator& alloc) {
alloc.PlanArray<FileDescriptor>(1);
alloc.PlanArray<FileDescriptorTables>(1);
alloc.PlanArray<std::string>(2); // name + package
if (proto.has_options()) alloc.PlanArray<FileOptions>(1);
if (proto.has_source_code_info()) alloc.PlanArray<SourceCodeInfo>(1);
PlanAllocationSize(proto.service(), alloc);
PlanAllocationSize(proto.message_type(), alloc);
PlanAllocationSize(proto.enum_type(), alloc);
PlanAllocationSize(proto.extension(), alloc);
alloc.PlanArray<int>(proto.weak_dependency_size());
alloc.PlanArray<int>(proto.public_dependency_size());
alloc.PlanArray<const FileDescriptor*>(proto.dependency_size());
}
const FileDescriptor* DescriptorBuilder::BuildFile(
const FileDescriptorProto& proto) {
filename_ = proto.name();
// Check if the file already exists and is identical to the one being built.
// Note: This only works if the input is canonical -- that is, it
// fully-qualifies all type names, has no UninterpretedOptions, etc.
// This is fine, because this idempotency "feature" really only exists to
// accommodate one hack in the proto1->proto2 migration layer.
const FileDescriptor* existing_file = tables_->FindFile(filename_);
if (existing_file != nullptr) {
// File already in pool. Compare the existing one to the input.
if (ExistingFileMatchesProto(existing_file, proto)) {
// They're identical. Return the existing descriptor.
return existing_file;
}
// Not a match. The error will be detected and handled later.
}
// Check to see if this file is already on the pending files list.
// TODO(kenton): Allow recursive imports? It may not work with some
// (most?) programming languages. E.g., in C++, a forward declaration
// of a type is not sufficient to allow it to be used even in a
// generated header file due to inlining. This could perhaps be
// worked around using tricks involving inserting #include statements
// mid-file, but that's pretty ugly, and I'm pretty sure there are
// some languages out there that do not allow recursive dependencies
// at all.
for (size_t i = 0; i < tables_->pending_files_.size(); i++) {
if (tables_->pending_files_[i] == proto.name()) {
AddRecursiveImportError(proto, i);
return nullptr;
}
}
static const int kMaximumPackageLength = 511;
if (proto.package().size() > kMaximumPackageLength) {
AddError(proto.package(), proto, DescriptorPool::ErrorCollector::NAME,
"Package name is too long");
return nullptr;
}
// If we have a fallback_database_, and we aren't doing lazy import building,
// attempt to load all dependencies now, before checkpointing tables_. This
// avoids confusion with recursive checkpoints.
if (!pool_->lazily_build_dependencies_) {
if (pool_->fallback_database_ != nullptr) {
tables_->pending_files_.push_back(proto.name());
for (int i = 0; i < proto.dependency_size(); i++) {
if (tables_->FindFile(proto.dependency(i)) == nullptr &&
(pool_->underlay_ == nullptr ||
pool_->underlay_->FindFileByName(proto.dependency(i)) ==
nullptr)) {
// We don't care what this returns since we'll find out below anyway.
pool_->TryFindFileInFallbackDatabase(proto.dependency(i));
}
}
tables_->pending_files_.pop_back();
}
}
// Checkpoint the tables so that we can roll back if something goes wrong.
tables_->AddCheckpoint();
internal::FlatAllocator alloc;
PlanAllocationSize(proto, alloc);
alloc.FinalizePlanning(tables_);
FileDescriptor* result = BuildFileImpl(proto, alloc);
file_tables_->FinalizeTables();
if (result) {
tables_->ClearLastCheckpoint();
result->finished_building_ = true;
alloc.ExpectConsumed();
} else {
tables_->RollbackToLastCheckpoint();
}
return result;
}
FileDescriptor* DescriptorBuilder::BuildFileImpl(
const FileDescriptorProto& proto, internal::FlatAllocator& alloc) {
FileDescriptor* result = alloc.AllocateArray<FileDescriptor>(1);
file_ = result;
result->is_placeholder_ = false;
result->finished_building_ = false;
SourceCodeInfo* info = nullptr;
if (proto.has_source_code_info()) {
info = alloc.AllocateArray<SourceCodeInfo>(1);
info->CopyFrom(proto.source_code_info());
result->source_code_info_ = info;
} else {
result->source_code_info_ = &SourceCodeInfo::default_instance();
}
file_tables_ = alloc.AllocateArray<FileDescriptorTables>(1);
file_->tables_ = file_tables_;
if (!proto.has_name()) {
AddError("", proto, DescriptorPool::ErrorCollector::OTHER,
"Missing field: FileDescriptorProto.name.");
}
// TODO(liujisi): Report error when the syntax is empty after all the protos
// have added the syntax statement.
if (proto.syntax().empty() || proto.syntax() == "proto2") {
file_->syntax_ = FileDescriptor::SYNTAX_PROTO2;
} else if (proto.syntax() == "proto3") {
file_->syntax_ = FileDescriptor::SYNTAX_PROTO3;
} else {
file_->syntax_ = FileDescriptor::SYNTAX_UNKNOWN;
AddError(proto.name(), proto, DescriptorPool::ErrorCollector::OTHER,
"Unrecognized syntax: " + proto.syntax());
}
result->name_ = alloc.AllocateStrings(proto.name());
if (proto.has_package()) {
result->package_ = alloc.AllocateStrings(proto.package());
} else {
// We cannot rely on proto.package() returning a valid string if
// proto.has_package() is false, because we might be running at static
// initialization time, in which case default values have not yet been
// initialized.
result->package_ = alloc.AllocateStrings("");
}
result->pool_ = pool_;
if (result->name().find('\0') != std::string::npos) {
AddError(result->name(), proto, DescriptorPool::ErrorCollector::NAME,
"\"" + result->name() + "\" contains null character.");
return nullptr;
}
// Add to tables.
if (!tables_->AddFile(result)) {
AddError(proto.name(), proto, DescriptorPool::ErrorCollector::OTHER,
"A file with this name is already in the pool.");
// Bail out early so that if this is actually the exact same file, we
// don't end up reporting that every single symbol is already defined.
return nullptr;
}
if (!result->package().empty()) {
if (std::count(result->package().begin(), result->package().end(), '.') >
kPackageLimit) {
AddError(result->package(), proto, DescriptorPool::ErrorCollector::NAME,
"Exceeds Maximum Package Depth");
return nullptr;
}
AddPackage(result->package(), proto, result);
}
// Make sure all dependencies are loaded.
std::set<std::string> seen_dependencies;
result->dependency_count_ = proto.dependency_size();
result->dependencies_ =
alloc.AllocateArray<const FileDescriptor*>(proto.dependency_size());
result->dependencies_once_ = nullptr;
unused_dependency_.clear();
std::set<int> weak_deps;
for (int i = 0; i < proto.weak_dependency_size(); ++i) {
weak_deps.insert(proto.weak_dependency(i));
}
bool need_lazy_deps = false;
for (int i = 0; i < proto.dependency_size(); i++) {
if (!seen_dependencies.insert(proto.dependency(i)).second) {
AddTwiceListedError(proto, i);
}
const FileDescriptor* dependency = tables_->FindFile(proto.dependency(i));
if (dependency == nullptr && pool_->underlay_ != nullptr) {
dependency = pool_->underlay_->FindFileByName(proto.dependency(i));
}
if (dependency == result) {
// Recursive import. dependency/result is not fully initialized, and it's
// dangerous to try to do anything with it. The recursive import error
// will be detected and reported in DescriptorBuilder::BuildFile().
return nullptr;
}
if (dependency == nullptr) {
if (!pool_->lazily_build_dependencies_) {
if (pool_->allow_unknown_ ||
(!pool_->enforce_weak_ && weak_deps.find(i) != weak_deps.end())) {
internal::FlatAllocator lazy_dep_alloc;
lazy_dep_alloc.PlanArray<FileDescriptor>(1);
lazy_dep_alloc.PlanArray<std::string>(1);
lazy_dep_alloc.FinalizePlanning(tables_);
dependency = pool_->NewPlaceholderFileWithMutexHeld(
proto.dependency(i), lazy_dep_alloc);
} else {
AddImportError(proto, i);
}
}
} else {
// Add to unused_dependency_ to track unused imported files.
// Note: do not track unused imported files for public import.
if (pool_->enforce_dependencies_ &&
(pool_->unused_import_track_files_.find(proto.name()) !=
pool_->unused_import_track_files_.end()) &&
(dependency->public_dependency_count() == 0)) {
unused_dependency_.insert(dependency);
}
}
result->dependencies_[i] = dependency;
if (pool_->lazily_build_dependencies_ && !dependency) {
need_lazy_deps = true;
}
}
if (need_lazy_deps) {
int total_char_size = 0;
for (int i = 0; i < proto.dependency_size(); i++) {
if (result->dependencies_[i] == nullptr) {
total_char_size += static_cast<int>(proto.dependency(i).size());
}
++total_char_size; // For NUL char
}
void* data = tables_->AllocateBytes(
static_cast<int>(sizeof(internal::once_flag) + total_char_size));
result->dependencies_once_ = ::new (data) internal::once_flag{};
char* name_data = reinterpret_cast<char*>(result->dependencies_once_ + 1);
for (int i = 0; i < proto.dependency_size(); i++) {
if (result->dependencies_[i] == nullptr) {
memcpy(name_data, proto.dependency(i).c_str(),
proto.dependency(i).size());
name_data += proto.dependency(i).size();
}
*name_data++ = '\0';
}
}
// Check public dependencies.
int public_dependency_count = 0;
result->public_dependencies_ =
alloc.AllocateArray<int>(proto.public_dependency_size());
for (int i = 0; i < proto.public_dependency_size(); i++) {
// Only put valid public dependency indexes.
int index = proto.public_dependency(i);
if (index >= 0 && index < proto.dependency_size()) {
result->public_dependencies_[public_dependency_count++] = index;
// Do not track unused imported files for public import.
// Calling dependency(i) builds that file when doing lazy imports,
// need to avoid doing this. Unused dependency detection isn't done
// when building lazily, anyways.
if (!pool_->lazily_build_dependencies_) {
unused_dependency_.erase(result->dependency(index));
}
} else {
AddError(proto.name(), proto, DescriptorPool::ErrorCollector::OTHER,
"Invalid public dependency index.");
}
}
result->public_dependency_count_ = public_dependency_count;
// Build dependency set
dependencies_.clear();
// We don't/can't do proper dependency error checking when
// lazily_build_dependencies_, and calling dependency(i) will force
// a dependency to be built, which we don't want.
if (!pool_->lazily_build_dependencies_) {
for (int i = 0; i < result->dependency_count(); i++) {
RecordPublicDependencies(result->dependency(i));
}
}
// Check weak dependencies.
int weak_dependency_count = 0;
result->weak_dependencies_ =
alloc.AllocateArray<int>(proto.weak_dependency_size());
for (int i = 0; i < proto.weak_dependency_size(); i++) {
int index = proto.weak_dependency(i);
if (index >= 0 && index < proto.dependency_size()) {
result->weak_dependencies_[weak_dependency_count++] = index;
} else {
AddError(proto.name(), proto, DescriptorPool::ErrorCollector::OTHER,
"Invalid weak dependency index.");
}
}
result->weak_dependency_count_ = weak_dependency_count;
// Convert children.
BUILD_ARRAY(proto, result, message_type, BuildMessage, nullptr);
BUILD_ARRAY(proto, result, enum_type, BuildEnum, nullptr);
BUILD_ARRAY(proto, result, service, BuildService, nullptr);
BUILD_ARRAY(proto, result, extension, BuildExtension, nullptr);
// Copy options.
result->options_ = nullptr; // Set to default_instance later if necessary.
if (proto.has_options()) {
AllocateOptions(proto.options(), result, alloc);
}
// Note that the following steps must occur in exactly the specified order.
// Cross-link.
CrossLinkFile(result, proto);
if (!message_hints_.empty()) {
SuggestFieldNumbers(result, proto);
}
// Interpret any remaining uninterpreted options gathered into
// options_to_interpret_ during descriptor building. Cross-linking has made
// extension options known, so all interpretations should now succeed.
if (!had_errors_) {
OptionInterpreter option_interpreter(this);
for (std::vector<OptionsToInterpret>::iterator iter =
options_to_interpret_.begin();
iter != options_to_interpret_.end(); ++iter) {
option_interpreter.InterpretOptions(&(*iter));
}
options_to_interpret_.clear();
if (info != nullptr) {
option_interpreter.UpdateSourceCodeInfo(info);
}
}
// Validate options. See comments at InternalSetLazilyBuildDependencies about
// error checking and lazy import building.
if (!had_errors_ && !pool_->lazily_build_dependencies_) {
ValidateFileOptions(result, proto);
}
// Additional naming conflict check for map entry types. Only need to check
// this if there are already errors.
if (had_errors_) {
for (int i = 0; i < proto.message_type_size(); ++i) {
DetectMapConflicts(result->message_type(i), proto.message_type(i));
}
}
// Again, see comments at InternalSetLazilyBuildDependencies about error
// checking. Also, don't log unused dependencies if there were previous
// errors, since the results might be inaccurate.
if (!had_errors_ && !unused_dependency_.empty() &&
!pool_->lazily_build_dependencies_) {
LogUnusedDependency(proto, result);
}
if (had_errors_) {
return nullptr;
} else {
return result;
}
}
const std::string* DescriptorBuilder::AllocateNameStrings(
const std::string& scope, const std::string& proto_name,
internal::FlatAllocator& alloc) {
if (scope.empty()) {
return alloc.AllocateStrings(proto_name, proto_name);
} else {
return alloc.AllocateStrings(proto_name,
StrCat(scope, ".", proto_name));
}
}
namespace {
// Helper for BuildMessage below.
struct IncrementWhenDestroyed {
~IncrementWhenDestroyed() { ++to_increment; }
int& to_increment;
};
} // namespace
void DescriptorBuilder::BuildMessage(const DescriptorProto& proto,
const Descriptor* parent,
Descriptor* result,
internal::FlatAllocator& alloc) {
const std::string& scope =
(parent == nullptr) ? file_->package() : parent->full_name();
result->all_names_ = AllocateNameStrings(scope, proto.name(), alloc);
ValidateSymbolName(proto.name(), result->full_name(), proto);
result->file_ = file_;
result->containing_type_ = parent;
result->is_placeholder_ = false;
result->is_unqualified_placeholder_ = false;
result->well_known_type_ = Descriptor::WELLKNOWNTYPE_UNSPECIFIED;
result->options_ = nullptr; // Set to default_instance later if necessary.
auto it = pool_->tables_->well_known_types_.find(result->full_name());
if (it != pool_->tables_->well_known_types_.end()) {
result->well_known_type_ = it->second;
}
// Calculate the continuous sequence of fields.
// These can be fast-path'd during lookup and don't need to be added to the
// tables.
// We use uint16_t to save space for sequential_field_limit_, so stop before
// overflowing it. Worst case, we are not taking full advantage on huge
// messages, but it is unlikely.
result->sequential_field_limit_ = 0;
for (int i = 0; i < std::numeric_limits<uint16_t>::max() &&
i < proto.field_size() && proto.field(i).number() == i + 1;
++i) {
result->sequential_field_limit_ = i + 1;
}
// Build oneofs first so that fields and extension ranges can refer to them.
BUILD_ARRAY(proto, result, oneof_decl, BuildOneof, result);
BUILD_ARRAY(proto, result, field, BuildField, result);
BUILD_ARRAY(proto, result, enum_type, BuildEnum, result);
BUILD_ARRAY(proto, result, extension_range, BuildExtensionRange, result);
BUILD_ARRAY(proto, result, extension, BuildExtension, result);
BUILD_ARRAY(proto, result, reserved_range, BuildReservedRange, result);
// Before building submessages, check recursion limit.
--recursion_depth_;
IncrementWhenDestroyed revert{recursion_depth_};
if (recursion_depth_ <= 0) {
AddError(result->full_name(), proto, DescriptorPool::ErrorCollector::OTHER,
"Reached maximum recursion limit for nested messages.");
result->nested_types_ = nullptr;
result->nested_type_count_ = 0;
return;
}
BUILD_ARRAY(proto, result, nested_type, BuildMessage, result);
// Copy reserved names.
int reserved_name_count = proto.reserved_name_size();
result->reserved_name_count_ = reserved_name_count;
result->reserved_names_ =
alloc.AllocateArray<const std::string*>(reserved_name_count);
for (int i = 0; i < reserved_name_count; ++i) {
result->reserved_names_[i] =
alloc.AllocateStrings(proto.reserved_name(i));
}
// Copy options.
if (proto.has_options()) {
AllocateOptions(proto.options(), result,
DescriptorProto::kOptionsFieldNumber,
"google.protobuf.MessageOptions", alloc);
}
AddSymbol(result->full_name(), parent, result->name(), proto, Symbol(result));
for (int i = 0; i < proto.reserved_range_size(); i++) {
const DescriptorProto_ReservedRange& range1 = proto.reserved_range(i);
for (int j = i + 1; j < proto.reserved_range_size(); j++) {
const DescriptorProto_ReservedRange& range2 = proto.reserved_range(j);
if (range1.end() > range2.start() && range2.end() > range1.start()) {
AddError(result->full_name(), proto.reserved_range(i),
DescriptorPool::ErrorCollector::NUMBER,
strings::Substitute("Reserved range $0 to $1 overlaps with "
"already-defined range $2 to $3.",
range2.start(), range2.end() - 1,
range1.start(), range1.end() - 1));
}
}
}
HASH_SET<std::string> reserved_name_set;
for (int i = 0; i < proto.reserved_name_size(); i++) {
const std::string& name = proto.reserved_name(i);
if (reserved_name_set.find(name) == reserved_name_set.end()) {
reserved_name_set.insert(name);
} else {
AddError(name, proto, DescriptorPool::ErrorCollector::NAME,
strings::Substitute("Field name \"$0\" is reserved multiple times.",
name));
}
}
for (int i = 0; i < result->field_count(); i++) {
const FieldDescriptor* field = result->field(i);
for (int j = 0; j < result->extension_range_count(); j++) {
const Descriptor::ExtensionRange* range = result->extension_range(j);
if (range->start <= field->number() && field->number() < range->end) {
message_hints_[result].RequestHintOnFieldNumbers(
proto.extension_range(j), DescriptorPool::ErrorCollector::NUMBER);
AddError(
field->full_name(), proto.extension_range(j),
DescriptorPool::ErrorCollector::NUMBER,
strings::Substitute(
"Extension range $0 to $1 includes field \"$2\" ($3).",
range->start, range->end - 1, field->name(), field->number()));
}
}
for (int j = 0; j < result->reserved_range_count(); j++) {
const Descriptor::ReservedRange* range = result->reserved_range(j);
if (range->start <= field->number() && field->number() < range->end) {
message_hints_[result].RequestHintOnFieldNumbers(
proto.reserved_range(j), DescriptorPool::ErrorCollector::NUMBER);
AddError(field->full_name(), proto.reserved_range(j),
DescriptorPool::ErrorCollector::NUMBER,
strings::Substitute("Field \"$0\" uses reserved number $1.",
field->name(), field->number()));
}
}
if (reserved_name_set.find(field->name()) != reserved_name_set.end()) {
AddError(
field->full_name(), proto.field(i),
DescriptorPool::ErrorCollector::NAME,
strings::Substitute("Field name \"$0\" is reserved.", field->name()));
}
}
// Check that extension ranges don't overlap and don't include
// reserved field numbers or names.
for (int i = 0; i < result->extension_range_count(); i++) {
const Descriptor::ExtensionRange* range1 = result->extension_range(i);
for (int j = 0; j < result->reserved_range_count(); j++) {
const Descriptor::ReservedRange* range2 = result->reserved_range(j);
if (range1->end > range2->start && range2->end > range1->start) {
AddError(result->full_name(), proto.extension_range(i),
DescriptorPool::ErrorCollector::NUMBER,
strings::Substitute("Extension range $0 to $1 overlaps with "
"reserved range $2 to $3.",
range1->start, range1->end - 1, range2->start,
range2->end - 1));
}
}
for (int j = i + 1; j < result->extension_range_count(); j++) {
const Descriptor::ExtensionRange* range2 = result->extension_range(j);
if (range1->end > range2->start && range2->end > range1->start) {
AddError(result->full_name(), proto.extension_range(i),
DescriptorPool::ErrorCollector::NUMBER,
strings::Substitute("Extension range $0 to $1 overlaps with "
"already-defined range $2 to $3.",
range2->start, range2->end - 1, range1->start,
range1->end - 1));
}
}
}
}
void DescriptorBuilder::BuildFieldOrExtension(const FieldDescriptorProto& proto,
Descriptor* parent,
FieldDescriptor* result,
bool is_extension,
internal::FlatAllocator& alloc) {
const std::string& scope =
(parent == nullptr) ? file_->package() : parent->full_name();
// We allocate all names in a single array, and dedup them.
// We remember the indices for the potentially deduped values.
auto all_names = alloc.AllocateFieldNames(
proto.name(), scope,
proto.has_json_name() ? &proto.json_name() : nullptr);
result->all_names_ = all_names.array;
result->lowercase_name_index_ = all_names.lowercase_index;
result->camelcase_name_index_ = all_names.camelcase_index;
result->json_name_index_ = all_names.json_index;
ValidateSymbolName(proto.name(), result->full_name(), proto);
result->file_ = file_;
result->number_ = proto.number();
result->is_extension_ = is_extension;
result->is_oneof_ = false;
result->proto3_optional_ = proto.proto3_optional();
if (proto.proto3_optional() &&
file_->syntax() != FileDescriptor::SYNTAX_PROTO3) {
AddError(result->full_name(), proto, DescriptorPool::ErrorCollector::TYPE,
"The [proto3_optional=true] option may only be set on proto3"
"fields, not " +
result->full_name());
}
result->has_json_name_ = proto.has_json_name();
// Some compilers do not allow static_cast directly between two enum types,
// so we must cast to int first.
result->type_ = static_cast<FieldDescriptor::Type>(
implicit_cast<int>(proto.type()));
result->label_ = static_cast<FieldDescriptor::Label>(
implicit_cast<int>(proto.label()));
if (result->label_ == FieldDescriptor::LABEL_REQUIRED) {
// An extension cannot have a required field (b/13365836).
if (result->is_extension_) {
AddError(result->full_name(), proto,
// Error location `TYPE`: we would really like to indicate
// `LABEL`, but the `ErrorLocation` enum has no entry for this,
// and we don't necessarily know about all implementations of the
// `ErrorCollector` interface to extend them to handle the new
// error location type properly.
DescriptorPool::ErrorCollector::TYPE,
"The extension " + result->full_name() + " cannot be required.");
}
}
// Some of these may be filled in when cross-linking.
result->containing_type_ = nullptr;
result->type_once_ = nullptr;
result->default_value_enum_ = nullptr;
result->has_default_value_ = proto.has_default_value();
if (proto.has_default_value() && result->is_repeated()) {
AddError(result->full_name(), proto,
DescriptorPool::ErrorCollector::DEFAULT_VALUE,
"Repeated fields can't have default values.");
}
if (proto.has_type()) {
if (proto.has_default_value()) {
char* end_pos = nullptr;
switch (result->cpp_type()) {
case FieldDescriptor::CPPTYPE_INT32:
result->default_value_int32_t_ =
strtol(proto.default_value().c_str(), &end_pos, 0);
break;
case FieldDescriptor::CPPTYPE_INT64:
result->default_value_int64_t_ =
strto64(proto.default_value().c_str(), &end_pos, 0);
break;
case FieldDescriptor::CPPTYPE_UINT32:
result->default_value_uint32_t_ =
strtoul(proto.default_value().c_str(), &end_pos, 0);
break;
case FieldDescriptor::CPPTYPE_UINT64:
result->default_value_uint64_t_ =
strtou64(proto.default_value().c_str(), &end_pos, 0);
break;
case FieldDescriptor::CPPTYPE_FLOAT:
if (proto.default_value() == "inf") {
result->default_value_float_ =
std::numeric_limits<float>::infinity();
} else if (proto.default_value() == "-inf") {
result->default_value_float_ =
-std::numeric_limits<float>::infinity();
} else if (proto.default_value() == "nan") {
result->default_value_float_ =
std::numeric_limits<float>::quiet_NaN();
} else {
result->default_value_float_ = io::SafeDoubleToFloat(
io::NoLocaleStrtod(proto.default_value().c_str(), &end_pos));
}
break;
case FieldDescriptor::CPPTYPE_DOUBLE:
if (proto.default_value() == "inf") {
result->default_value_double_ =
std::numeric_limits<double>::infinity();
} else if (proto.default_value() == "-inf") {
result->default_value_double_ =
-std::numeric_limits<double>::infinity();
} else if (proto.default_value() == "nan") {
result->default_value_double_ =
std::numeric_limits<double>::quiet_NaN();
} else {
result->default_value_double_ =
io::NoLocaleStrtod(proto.default_value().c_str(), &end_pos);
}
break;
case FieldDescriptor::CPPTYPE_BOOL:
if (proto.default_value() == "true") {
result->default_value_bool_ = true;
} else if (proto.default_value() == "false") {
result->default_value_bool_ = false;
} else {
AddError(result->full_name(), proto,
DescriptorPool::ErrorCollector::DEFAULT_VALUE,
"Boolean default must be true or false.");
}
break;
case FieldDescriptor::CPPTYPE_ENUM:
// This will be filled in when cross-linking.
result->default_value_enum_ = nullptr;
break;
case FieldDescriptor::CPPTYPE_STRING:
if (result->type() == FieldDescriptor::TYPE_BYTES) {
result->default_value_string_ = alloc.AllocateStrings(
UnescapeCEscapeString(proto.default_value()));
} else {
result->default_value_string_ =
alloc.AllocateStrings(proto.default_value());
}
break;
case FieldDescriptor::CPPTYPE_MESSAGE:
AddError(result->full_name(), proto,
DescriptorPool::ErrorCollector::DEFAULT_VALUE,
"Messages can't have default values.");
result->has_default_value_ = false;
result->default_generated_instance_ = nullptr;
break;
}
if (end_pos != nullptr) {
// end_pos is only set non-null by the parsers for numeric types,
// above. This checks that the default was non-empty and had no extra
// junk after the end of the number.
if (proto.default_value().empty() || *end_pos != '\0') {
AddError(result->full_name(), proto,
DescriptorPool::ErrorCollector::DEFAULT_VALUE,
"Couldn't parse default value \"" + proto.default_value() +
"\".");
}
}
} else {
// No explicit default value
switch (result->cpp_type()) {
case FieldDescriptor::CPPTYPE_INT32:
result->default_value_int32_t_ = 0;
break;
case FieldDescriptor::CPPTYPE_INT64:
result->default_value_int64_t_ = 0;
break;
case FieldDescriptor::CPPTYPE_UINT32:
result->default_value_uint32_t_ = 0;
break;
case FieldDescriptor::CPPTYPE_UINT64:
result->default_value_uint64_t_ = 0;
break;
case FieldDescriptor::CPPTYPE_FLOAT:
result->default_value_float_ = 0.0f;
break;
case FieldDescriptor::CPPTYPE_DOUBLE:
result->default_value_double_ = 0.0;
break;
case FieldDescriptor::CPPTYPE_BOOL:
result->default_value_bool_ = false;
break;
case FieldDescriptor::CPPTYPE_ENUM:
// This will be filled in when cross-linking.
result->default_value_enum_ = nullptr;
break;
case FieldDescriptor::CPPTYPE_STRING:
result->default_value_string_ = &internal::GetEmptyString();
break;
case FieldDescriptor::CPPTYPE_MESSAGE:
result->default_generated_instance_ = nullptr;
break;
}
}
}
if (result->number() <= 0) {
message_hints_[parent].RequestHintOnFieldNumbers(
proto, DescriptorPool::ErrorCollector::NUMBER);
AddError(result->full_name(), proto, DescriptorPool::ErrorCollector::NUMBER,
"Field numbers must be positive integers.");
} else if (!is_extension && result->number() > FieldDescriptor::kMaxNumber) {
// Only validate that the number is within the valid field range if it is
// not an extension. Since extension numbers are validated with the
// extendee's valid set of extension numbers, and those are in turn
// validated against the max allowed number, the check is unnecessary for
// extension fields.
// This avoids cross-linking issues that arise when attempting to check if
// the extendee is a message_set_wire_format message, which has a higher max
// on extension numbers.
message_hints_[parent].RequestHintOnFieldNumbers(
proto, DescriptorPool::ErrorCollector::NUMBER);
AddError(result->full_name(), proto, DescriptorPool::ErrorCollector::NUMBER,
strings::Substitute("Field numbers cannot be greater than $0.",
FieldDescriptor::kMaxNumber));
} else if (result->number() >= FieldDescriptor::kFirstReservedNumber &&
result->number() <= FieldDescriptor::kLastReservedNumber) {
message_hints_[parent].RequestHintOnFieldNumbers(
proto, DescriptorPool::ErrorCollector::NUMBER);
AddError(result->full_name(), proto, DescriptorPool::ErrorCollector::NUMBER,
strings::Substitute(
"Field numbers $0 through $1 are reserved for the protocol "
"buffer library implementation.",
FieldDescriptor::kFirstReservedNumber,
FieldDescriptor::kLastReservedNumber));
}
if (is_extension) {
if (!proto.has_extendee()) {
AddError(result->full_name(), proto,
DescriptorPool::ErrorCollector::EXTENDEE,
"FieldDescriptorProto.extendee not set for extension field.");
}
result->scope_.extension_scope = parent;
if (proto.has_oneof_index()) {
AddError(result->full_name(), proto, DescriptorPool::ErrorCollector::TYPE,
"FieldDescriptorProto.oneof_index should not be set for "
"extensions.");
}
} else {
if (proto.has_extendee()) {
AddError(result->full_name(), proto,
DescriptorPool::ErrorCollector::EXTENDEE,
"FieldDescriptorProto.extendee set for non-extension field.");
}
result->containing_type_ = parent;
if (proto.has_oneof_index()) {
if (proto.oneof_index() < 0 ||
proto.oneof_index() >= parent->oneof_decl_count()) {
AddError(result->full_name(), proto,
DescriptorPool::ErrorCollector::TYPE,
strings::Substitute("FieldDescriptorProto.oneof_index $0 is "
"out of range for type \"$1\".",
proto.oneof_index(), parent->name()));
} else {
result->is_oneof_ = true;
result->scope_.containing_oneof =
parent->oneof_decl(proto.oneof_index());
}
}
}
// Copy options.
result->options_ = nullptr; // Set to default_instance later if necessary.
if (proto.has_options()) {
AllocateOptions(proto.options(), result,
FieldDescriptorProto::kOptionsFieldNumber,
"google.protobuf.FieldOptions", alloc);
}
AddSymbol(result->full_name(), parent, result->name(), proto, Symbol(result));
}
void DescriptorBuilder::BuildExtensionRange(
const DescriptorProto::ExtensionRange& proto, const Descriptor* parent,
Descriptor::ExtensionRange* result, internal::FlatAllocator& alloc) {
result->start = proto.start();
result->end = proto.end();
if (result->start <= 0) {
message_hints_[parent].RequestHintOnFieldNumbers(
proto, DescriptorPool::ErrorCollector::NUMBER, result->start,
result->end);
AddError(parent->full_name(), proto, DescriptorPool::ErrorCollector::NUMBER,
"Extension numbers must be positive integers.");
}
// Checking of the upper bound of the extension range is deferred until after
// options interpreting. This allows messages with message_set_wire_format to
// have extensions beyond FieldDescriptor::kMaxNumber, since the extension
// numbers are actually used as int32s in the message_set_wire_format.
if (result->start >= result->end) {
AddError(parent->full_name(), proto, DescriptorPool::ErrorCollector::NUMBER,
"Extension range end number must be greater than start number.");
}
result->options_ = nullptr; // Set to default_instance later if necessary.
if (proto.has_options()) {
std::vector<int> options_path;
parent->GetLocationPath(&options_path);
options_path.push_back(DescriptorProto::kExtensionRangeFieldNumber);
// find index of this extension range in order to compute path
int index;
for (index = 0; parent->extension_ranges_ + index != result; index++) {
}
options_path.push_back(index);
options_path.push_back(DescriptorProto_ExtensionRange::kOptionsFieldNumber);
AllocateOptionsImpl(parent->full_name(), parent->full_name(),
proto.options(), result, options_path,
"google.protobuf.ExtensionRangeOptions", alloc);
}
}
void DescriptorBuilder::BuildReservedRange(
const DescriptorProto::ReservedRange& proto, const Descriptor* parent,
Descriptor::ReservedRange* result, internal::FlatAllocator&) {
result->start = proto.start();
result->end = proto.end();
if (result->start <= 0) {
message_hints_[parent].RequestHintOnFieldNumbers(
proto, DescriptorPool::ErrorCollector::NUMBER, result->start,
result->end);
AddError(parent->full_name(), proto, DescriptorPool::ErrorCollector::NUMBER,
"Reserved numbers must be positive integers.");
}
}
void DescriptorBuilder::BuildReservedRange(
const EnumDescriptorProto::EnumReservedRange& proto,
const EnumDescriptor* parent, EnumDescriptor::ReservedRange* result,
internal::FlatAllocator&) {
result->start = proto.start();
result->end = proto.end();
if (result->start > result->end) {
AddError(parent->full_name(), proto, DescriptorPool::ErrorCollector::NUMBER,
"Reserved range end number must be greater than start number.");
}
}
void DescriptorBuilder::BuildOneof(const OneofDescriptorProto& proto,
Descriptor* parent, OneofDescriptor* result,
internal::FlatAllocator& alloc) {
result->all_names_ =
AllocateNameStrings(parent->full_name(), proto.name(), alloc);
ValidateSymbolName(proto.name(), result->full_name(), proto);
result->containing_type_ = parent;
// We need to fill these in later.
result->field_count_ = 0;
result->fields_ = nullptr;
result->options_ = nullptr;
// Copy options.
if (proto.has_options()) {
AllocateOptions(proto.options(), result,
OneofDescriptorProto::kOptionsFieldNumber,
"google.protobuf.OneofOptions", alloc);
}
AddSymbol(result->full_name(), parent, result->name(), proto, Symbol(result));
}
void DescriptorBuilder::CheckEnumValueUniqueness(
const EnumDescriptorProto& proto, const EnumDescriptor* result) {
// Check that enum labels are still unique when we remove the enum prefix from
// values that have it.
//
// This will fail for something like:
//
// enum MyEnum {
// MY_ENUM_FOO = 0;
// FOO = 1;
// }
//
// By enforcing this reasonable constraint, we allow code generators to strip
// the prefix and/or PascalCase it without creating conflicts. This can lead
// to much nicer language-specific enums like:
//
// enum NameType {
// FirstName = 1,
// LastName = 2,
// }
//
// Instead of:
//
// enum NameType {
// NAME_TYPE_FIRST_NAME = 1,
// NAME_TYPE_LAST_NAME = 2,
// }
PrefixRemover remover(result->name());
std::map<std::string, const EnumValueDescriptor*> values;
for (int i = 0; i < result->value_count(); i++) {
const EnumValueDescriptor* value = result->value(i);
std::string stripped =
EnumValueToPascalCase(remover.MaybeRemove(value->name()));
std::pair<std::map<std::string, const EnumValueDescriptor*>::iterator, bool>
insert_result = values.insert(std::make_pair(stripped, value));
bool inserted = insert_result.second;
// We don't throw the error if the two conflicting symbols are identical, or
// if they map to the same number. In the former case, the normal symbol
// duplication error will fire so we don't need to (and its error message
// will make more sense). We allow the latter case so users can create
// aliases which add or remove the prefix (code generators that do prefix
// stripping should de-dup the labels in this case).
if (!inserted && insert_result.first->second->name() != value->name() &&
insert_result.first->second->number() != value->number()) {
std::string error_message =
"Enum name " + value->name() + " has the same name as " +
values[stripped]->name() +
" if you ignore case and strip out the enum name prefix (if any). "
"This is error-prone and can lead to undefined behavior. "
"Please avoid doing this. If you are using allow_alias, please "
"assign the same numeric value to both enums.";
// There are proto2 enums out there with conflicting names, so to preserve
// compatibility we issue only a warning for proto2.
if (result->file()->syntax() == FileDescriptor::SYNTAX_PROTO2) {
AddWarning(value->full_name(), proto.value(i),
DescriptorPool::ErrorCollector::NAME, error_message);
} else {
AddError(value->full_name(), proto.value(i),
DescriptorPool::ErrorCollector::NAME, error_message);
}
}
}
}
void DescriptorBuilder::BuildEnum(const EnumDescriptorProto& proto,
const Descriptor* parent,
EnumDescriptor* result,
internal::FlatAllocator& alloc) {
const std::string& scope =
(parent == nullptr) ? file_->package() : parent->full_name();
result->all_names_ = AllocateNameStrings(scope, proto.name(), alloc);
ValidateSymbolName(proto.name(), result->full_name(), proto);
result->file_ = file_;
result->containing_type_ = parent;
result->is_placeholder_ = false;
result->is_unqualified_placeholder_ = false;
if (proto.value_size() == 0) {
// We cannot allow enums with no values because this would mean there
// would be no valid default value for fields of this type.
AddError(result->full_name(), proto, DescriptorPool::ErrorCollector::NAME,
"Enums must contain at least one value.");
}
// Calculate the continuous sequence of the labels.
// These can be fast-path'd during lookup and don't need to be added to the
// tables.
// We use uint16_t to save space for sequential_value_limit_, so stop before
// overflowing it. Worst case, we are not taking full advantage on huge
// enums, but it is unlikely.
for (int i = 0;
i < std::numeric_limits<uint16_t>::max() && i < proto.value_size() &&
// We do the math in int64_t to avoid overflows.
proto.value(i).number() ==
static_cast<int64_t>(i) + proto.value(0).number();
++i) {
result->sequential_value_limit_ = i;
}
BUILD_ARRAY(proto, result, value, BuildEnumValue, result);
BUILD_ARRAY(proto, result, reserved_range, BuildReservedRange, result);
// Copy reserved names.
int reserved_name_count = proto.reserved_name_size();
result->reserved_name_count_ = reserved_name_count;
result->reserved_names_ =
alloc.AllocateArray<const std::string*>(reserved_name_count);
for (int i = 0; i < reserved_name_count; ++i) {
result->reserved_names_[i] =
alloc.AllocateStrings(proto.reserved_name(i));
}
CheckEnumValueUniqueness(proto, result);
// Copy options.
result->options_ = nullptr; // Set to default_instance later if necessary.
if (proto.has_options()) {
AllocateOptions(proto.options(), result,
EnumDescriptorProto::kOptionsFieldNumber,
"google.protobuf.EnumOptions", alloc);
}
AddSymbol(result->full_name(), parent, result->name(), proto, Symbol(result));
for (int i = 0; i < proto.reserved_range_size(); i++) {
const EnumDescriptorProto_EnumReservedRange& range1 =
proto.reserved_range(i);
for (int j = i + 1; j < proto.reserved_range_size(); j++) {
const EnumDescriptorProto_EnumReservedRange& range2 =
proto.reserved_range(j);
if (range1.end() >= range2.start() && range2.end() >= range1.start()) {
AddError(result->full_name(), proto.reserved_range(i),
DescriptorPool::ErrorCollector::NUMBER,
strings::Substitute("Reserved range $0 to $1 overlaps with "
"already-defined range $2 to $3.",
range2.start(), range2.end(), range1.start(),
range1.end()));
}
}
}
HASH_SET<std::string> reserved_name_set;
for (int i = 0; i < proto.reserved_name_size(); i++) {
const std::string& name = proto.reserved_name(i);
if (reserved_name_set.find(name) == reserved_name_set.end()) {
reserved_name_set.insert(name);
} else {
AddError(name, proto, DescriptorPool::ErrorCollector::NAME,
strings::Substitute("Enum value \"$0\" is reserved multiple times.",
name));
}
}
for (int i = 0; i < result->value_count(); i++) {
const EnumValueDescriptor* value = result->value(i);
for (int j = 0; j < result->reserved_range_count(); j++) {
const EnumDescriptor::ReservedRange* range = result->reserved_range(j);
if (range->start <= value->number() && value->number() <= range->end) {
AddError(value->full_name(), proto.reserved_range(j),
DescriptorPool::ErrorCollector::NUMBER,
strings::Substitute("Enum value \"$0\" uses reserved number $1.",
value->name(), value->number()));
}
}
if (reserved_name_set.find(value->name()) != reserved_name_set.end()) {
AddError(
value->full_name(), proto.value(i),
DescriptorPool::ErrorCollector::NAME,
strings::Substitute("Enum value \"$0\" is reserved.", value->name()));
}
}
}
void DescriptorBuilder::BuildEnumValue(const EnumValueDescriptorProto& proto,
const EnumDescriptor* parent,
EnumValueDescriptor* result,
internal::FlatAllocator& alloc) {
// Note: full_name for enum values is a sibling to the parent's name, not a
// child of it.
std::string full_name;
size_t scope_len = parent->full_name().size() - parent->name().size();
full_name.reserve(scope_len + proto.name().size());
full_name.append(parent->full_name().data(), scope_len);
full_name.append(proto.name());
result->all_names_ =
alloc.AllocateStrings(proto.name(), std::move(full_name));
result->number_ = proto.number();
result->type_ = parent;
ValidateSymbolName(proto.name(), result->full_name(), proto);
// Copy options.
result->options_ = nullptr; // Set to default_instance later if necessary.
if (proto.has_options()) {
AllocateOptions(proto.options(), result,
EnumValueDescriptorProto::kOptionsFieldNumber,
"google.protobuf.EnumValueOptions", alloc);
}
// Again, enum values are weird because we makes them appear as siblings
// of the enum type instead of children of it. So, we use
// parent->containing_type() as the value's parent.
bool added_to_outer_scope =
AddSymbol(result->full_name(), parent->containing_type(), result->name(),
proto, Symbol::EnumValue(result, 0));
// However, we also want to be able to search for values within a single
// enum type, so we add it as a child of the enum type itself, too.
// Note: This could fail, but if it does, the error has already been
// reported by the above AddSymbol() call, so we ignore the return code.
bool added_to_inner_scope = file_tables_->AddAliasUnderParent(
parent, result->name(), Symbol::EnumValue(result, 1));
if (added_to_inner_scope && !added_to_outer_scope) {
// This value did not conflict with any values defined in the same enum,
// but it did conflict with some other symbol defined in the enum type's
// scope. Let's print an additional error to explain this.
std::string outer_scope;
if (parent->containing_type() == nullptr) {
outer_scope = file_->package();
} else {
outer_scope = parent->containing_type()->full_name();
}
if (outer_scope.empty()) {
outer_scope = "the global scope";
} else {
outer_scope = "\"" + outer_scope + "\"";
}
AddError(result->full_name(), proto, DescriptorPool::ErrorCollector::NAME,
"Note that enum values use C++ scoping rules, meaning that "
"enum values are siblings of their type, not children of it. "
"Therefore, \"" +
result->name() + "\" must be unique within " + outer_scope +
", not just within \"" + parent->name() + "\".");
}
// An enum is allowed to define two numbers that refer to the same value.
// FindValueByNumber() should return the first such value, so we simply
// ignore AddEnumValueByNumber()'s return code.
file_tables_->AddEnumValueByNumber(result);
}
void DescriptorBuilder::BuildService(const ServiceDescriptorProto& proto,
const void* /* dummy */,
ServiceDescriptor* result,
internal::FlatAllocator& alloc) {
result->all_names_ =
AllocateNameStrings(file_->package(), proto.name(), alloc);
result->file_ = file_;
ValidateSymbolName(proto.name(), result->full_name(), proto);
BUILD_ARRAY(proto, result, method, BuildMethod, result);
// Copy options.
result->options_ = nullptr; // Set to default_instance later if necessary.
if (proto.has_options()) {
AllocateOptions(proto.options(), result,
ServiceDescriptorProto::kOptionsFieldNumber,
"google.protobuf.ServiceOptions", alloc);
}
AddSymbol(result->full_name(), nullptr, result->name(), proto,
Symbol(result));
}
void DescriptorBuilder::BuildMethod(const MethodDescriptorProto& proto,
const ServiceDescriptor* parent,
MethodDescriptor* result,
internal::FlatAllocator& alloc) {
result->service_ = parent;
result->all_names_ =
AllocateNameStrings(parent->full_name(), proto.name(), alloc);
ValidateSymbolName(proto.name(), result->full_name(), proto);
// These will be filled in when cross-linking.
result->input_type_.Init();
result->output_type_.Init();
// Copy options.
result->options_ = nullptr; // Set to default_instance later if necessary.
if (proto.has_options()) {
AllocateOptions(proto.options(), result,
MethodDescriptorProto::kOptionsFieldNumber,
"google.protobuf.MethodOptions", alloc);
}
result->client_streaming_ = proto.client_streaming();
result->server_streaming_ = proto.server_streaming();
AddSymbol(result->full_name(), parent, result->name(), proto, Symbol(result));
}
#undef BUILD_ARRAY
// -------------------------------------------------------------------
void DescriptorBuilder::CrossLinkFile(FileDescriptor* file,
const FileDescriptorProto& proto) {
if (file->options_ == nullptr) {
file->options_ = &FileOptions::default_instance();
}
for (int i = 0; i < file->message_type_count(); i++) {
CrossLinkMessage(&file->message_types_[i], proto.message_type(i));
}
for (int i = 0; i < file->extension_count(); i++) {
CrossLinkField(&file->extensions_[i], proto.extension(i));
}
for (int i = 0; i < file->enum_type_count(); i++) {
CrossLinkEnum(&file->enum_types_[i], proto.enum_type(i));
}
for (int i = 0; i < file->service_count(); i++) {
CrossLinkService(&file->services_[i], proto.service(i));
}
}
void DescriptorBuilder::CrossLinkMessage(Descriptor* message,
const DescriptorProto& proto) {
if (message->options_ == nullptr) {
message->options_ = &MessageOptions::default_instance();
}
for (int i = 0; i < message->nested_type_count(); i++) {
CrossLinkMessage(&message->nested_types_[i], proto.nested_type(i));
}
for (int i = 0; i < message->enum_type_count(); i++) {
CrossLinkEnum(&message->enum_types_[i], proto.enum_type(i));
}
for (int i = 0; i < message->field_count(); i++) {
CrossLinkField(&message->fields_[i], proto.field(i));
}
for (int i = 0; i < message->extension_count(); i++) {
CrossLinkField(&message->extensions_[i], proto.extension(i));
}
for (int i = 0; i < message->extension_range_count(); i++) {
CrossLinkExtensionRange(&message->extension_ranges_[i],
proto.extension_range(i));
}
// Set up field array for each oneof.
// First count the number of fields per oneof.
for (int i = 0; i < message->field_count(); i++) {
const OneofDescriptor* oneof_decl = message->field(i)->containing_oneof();
if (oneof_decl != nullptr) {
// Make sure fields belonging to the same oneof are defined consecutively.
// This enables optimizations in codegens and reflection libraries to
// skip fields in the oneof group, as only one of the field can be set.
// Note that field_count() returns how many fields in this oneof we have
// seen so far. field_count() > 0 guarantees that i > 0, so field(i-1) is
// safe.
if (oneof_decl->field_count() > 0 &&
message->field(i - 1)->containing_oneof() != oneof_decl) {
AddError(message->full_name() + "." + message->field(i - 1)->name(),
proto.field(i - 1), DescriptorPool::ErrorCollector::TYPE,
strings::Substitute(
"Fields in the same oneof must be defined consecutively. "
"\"$0\" cannot be defined before the completion of the "
"\"$1\" oneof definition.",
message->field(i - 1)->name(), oneof_decl->name()));
}
// Must go through oneof_decls_ array to get a non-const version of the
// OneofDescriptor.
auto& out_oneof_decl = message->oneof_decls_[oneof_decl->index()];
if (out_oneof_decl.field_count_ == 0) {
out_oneof_decl.fields_ = message->field(i);
}
if (!had_errors_) {
// Verify that they are contiguous.
// This is assumed by OneofDescriptor::field(i).
// But only if there are no errors.
GOOGLE_CHECK_EQ(out_oneof_decl.fields_ + out_oneof_decl.field_count_,
message->field(i));
}
++out_oneof_decl.field_count_;
}
}
// Then verify the sizes.
for (int i = 0; i < message->oneof_decl_count(); i++) {
OneofDescriptor* oneof_decl = &message->oneof_decls_[i];
if (oneof_decl->field_count() == 0) {
AddError(message->full_name() + "." + oneof_decl->name(),
proto.oneof_decl(i), DescriptorPool::ErrorCollector::NAME,
"Oneof must have at least one field.");
}
if (oneof_decl->options_ == nullptr) {
oneof_decl->options_ = &OneofOptions::default_instance();
}
}
for (int i = 0; i < message->field_count(); i++) {
const FieldDescriptor* field = message->field(i);
if (field->proto3_optional_) {
if (!field->containing_oneof() ||
!field->containing_oneof()->is_synthetic()) {
AddError(message->full_name(), proto.field(i),
DescriptorPool::ErrorCollector::OTHER,
"Fields with proto3_optional set must be "
"a member of a one-field oneof");
}
}
}
// Synthetic oneofs must be last.
int first_synthetic = -1;
for (int i = 0; i < message->oneof_decl_count(); i++) {
const OneofDescriptor* oneof = message->oneof_decl(i);
if (oneof->is_synthetic()) {
if (first_synthetic == -1) {
first_synthetic = i;
}
} else {
if (first_synthetic != -1) {
AddError(message->full_name(), proto.oneof_decl(i),
DescriptorPool::ErrorCollector::OTHER,
"Synthetic oneofs must be after all other oneofs");
}
}
}
if (first_synthetic == -1) {
message->real_oneof_decl_count_ = message->oneof_decl_count_;
} else {
message->real_oneof_decl_count_ = first_synthetic;
}
}
void DescriptorBuilder::CrossLinkExtensionRange(
Descriptor::ExtensionRange* range,
const DescriptorProto::ExtensionRange& /*proto*/) {
if (range->options_ == nullptr) {
range->options_ = &ExtensionRangeOptions::default_instance();
}
}
void DescriptorBuilder::CrossLinkField(FieldDescriptor* field,
const FieldDescriptorProto& proto) {
if (field->options_ == nullptr) {
field->options_ = &FieldOptions::default_instance();
}
if (proto.has_extendee()) {
Symbol extendee =
LookupSymbol(proto.extendee(), field->full_name(),
DescriptorPool::PLACEHOLDER_EXTENDABLE_MESSAGE);
if (extendee.IsNull()) {
AddNotDefinedError(field->full_name(), proto,
DescriptorPool::ErrorCollector::EXTENDEE,
proto.extendee());
return;
} else if (extendee.type() != Symbol::MESSAGE) {
AddError(field->full_name(), proto,
DescriptorPool::ErrorCollector::EXTENDEE,
"\"" + proto.extendee() + "\" is not a message type.");
return;
}
field->containing_type_ = extendee.descriptor();
const Descriptor::ExtensionRange* extension_range =
field->containing_type()->FindExtensionRangeContainingNumber(
field->number());
if (extension_range == nullptr) {
// Set of valid extension numbers for MessageSet is different (< 2^32)
// from other extendees (< 2^29). If unknown deps are allowed, we may not
// have that information, and wrongly deem the extension as invalid.
auto skip_check = get_allow_unknown(pool_) &&
proto.extendee() == "google.protobuf.bridge.MessageSet";
if (!skip_check) {
AddError(field->full_name(), proto,
DescriptorPool::ErrorCollector::NUMBER,
strings::Substitute("\"$0\" does not declare $1 as an "
"extension number.",
field->containing_type()->full_name(),
field->number()));
}
}
}
if (field->containing_oneof() != nullptr) {
if (field->label() != FieldDescriptor::LABEL_OPTIONAL) {
// Note that this error will never happen when parsing .proto files.
// It can only happen if you manually construct a FileDescriptorProto
// that is incorrect.
AddError(field->full_name(), proto, DescriptorPool::ErrorCollector::NAME,
"Fields of oneofs must themselves have label LABEL_OPTIONAL.");
}
}
if (proto.has_type_name()) {
// Assume we are expecting a message type unless the proto contains some
// evidence that it expects an enum type. This only makes a difference if
// we end up creating a placeholder.
bool expecting_enum = (proto.type() == FieldDescriptorProto::TYPE_ENUM) ||
proto.has_default_value();
// In case of weak fields we force building the dependency. We need to know
// if the type exist or not. If it doesn't exist we substitute Empty which
// should only be done if the type can't be found in the generated pool.
// TODO(gerbens) Ideally we should query the database directly to check
// if weak fields exist or not so that we don't need to force building
// weak dependencies. However the name lookup rules for symbols are
// somewhat complicated, so I defer it too another CL.
bool is_weak = !pool_->enforce_weak_ && proto.options().weak();
bool is_lazy = pool_->lazily_build_dependencies_ && !is_weak;
Symbol type =
LookupSymbol(proto.type_name(), field->full_name(),
expecting_enum ? DescriptorPool::PLACEHOLDER_ENUM
: DescriptorPool::PLACEHOLDER_MESSAGE,
LOOKUP_TYPES, !is_lazy);
if (type.IsNull()) {
if (is_lazy) {
// Save the symbol names for later for lookup, and allocate the once
// object needed for the accessors.
const std::string& name = proto.type_name();
int name_sizes = static_cast<int>(name.size() + 1 +
proto.default_value().size() + 1);
field->type_once_ = ::new (tables_->AllocateBytes(static_cast<int>(
sizeof(internal::once_flag) + name_sizes))) internal::once_flag{};
char* names = reinterpret_cast<char*>(field->type_once_ + 1);
memcpy(names, name.c_str(), name.size() + 1);
memcpy(names + name.size() + 1, proto.default_value().c_str(),
proto.default_value().size() + 1);
// AddFieldByNumber and AddExtension are done later in this function,
// and can/must be done if the field type was not found. The related
// error checking is not necessary when in lazily_build_dependencies_
// mode, and can't be done without building the type's descriptor,
// which we don't want to do.
file_tables_->AddFieldByNumber(field);
if (field->is_extension()) {
tables_->AddExtension(field);
}
return;
} else {
// If the type is a weak type, we change the type to a google.protobuf.Empty
// field.
if (is_weak) {
type = FindSymbol(kNonLinkedWeakMessageReplacementName);
}
if (type.IsNull()) {
AddNotDefinedError(field->full_name(), proto,
DescriptorPool::ErrorCollector::TYPE,
proto.type_name());
return;
}
}
}
if (!proto.has_type()) {
// Choose field type based on symbol.
if (type.type() == Symbol::MESSAGE) {
field->type_ = FieldDescriptor::TYPE_MESSAGE;
} else if (type.type() == Symbol::ENUM) {
field->type_ = FieldDescriptor::TYPE_ENUM;
} else {
AddError(field->full_name(), proto,
DescriptorPool::ErrorCollector::TYPE,
"\"" + proto.type_name() + "\" is not a type.");
return;
}
}
if (field->cpp_type() == FieldDescriptor::CPPTYPE_MESSAGE) {
field->type_descriptor_.message_type = type.descriptor();
if (field->type_descriptor_.message_type == nullptr) {
AddError(field->full_name(), proto,
DescriptorPool::ErrorCollector::TYPE,
"\"" + proto.type_name() + "\" is not a message type.");
return;
}
if (field->has_default_value()) {
AddError(field->full_name(), proto,
DescriptorPool::ErrorCollector::DEFAULT_VALUE,
"Messages can't have default values.");
}
} else if (field->cpp_type() == FieldDescriptor::CPPTYPE_ENUM) {
field->type_descriptor_.enum_type = type.enum_descriptor();
if (field->type_descriptor_.enum_type == nullptr) {
AddError(field->full_name(), proto,
DescriptorPool::ErrorCollector::TYPE,
"\"" + proto.type_name() + "\" is not an enum type.");
return;
}
if (field->enum_type()->is_placeholder_) {
// We can't look up default values for placeholder types. We'll have
// to just drop them.
field->has_default_value_ = false;
}
if (field->has_default_value()) {
// Ensure that the default value is an identifier. Parser cannot always
// verify this because it does not have complete type information.
// N.B. that this check yields better error messages but is not
// necessary for correctness (an enum symbol must be a valid identifier
// anyway), only for better errors.
if (!io::Tokenizer::IsIdentifier(proto.default_value())) {
AddError(field->full_name(), proto,
DescriptorPool::ErrorCollector::DEFAULT_VALUE,
"Default value for an enum field must be an identifier.");
} else {
// We can't just use field->enum_type()->FindValueByName() here
// because that locks the pool's mutex, which we have already locked
// at this point.
const EnumValueDescriptor* default_value =
LookupSymbolNoPlaceholder(proto.default_value(),
field->enum_type()->full_name())
.enum_value_descriptor();
if (default_value != nullptr &&
default_value->type() == field->enum_type()) {
field->default_value_enum_ = default_value;
} else {
AddError(field->full_name(), proto,
DescriptorPool::ErrorCollector::DEFAULT_VALUE,
"Enum type \"" + field->enum_type()->full_name() +
"\" has no value named \"" + proto.default_value() +
"\".");
}
}
} else if (field->enum_type()->value_count() > 0) {
// All enums must have at least one value, or we would have reported
// an error elsewhere. We use the first defined value as the default
// if a default is not explicitly defined.
field->default_value_enum_ = field->enum_type()->value(0);
}
} else {
AddError(field->full_name(), proto, DescriptorPool::ErrorCollector::TYPE,
"Field with primitive type has type_name.");
}
} else {
if (field->cpp_type() == FieldDescriptor::CPPTYPE_MESSAGE ||
field->cpp_type() == FieldDescriptor::CPPTYPE_ENUM) {
AddError(field->full_name(), proto, DescriptorPool::ErrorCollector::TYPE,
"Field with message or enum type missing type_name.");
}
}
// Add the field to the fields-by-number table.
// Note: We have to do this *after* cross-linking because extensions do not
// know their containing type until now. If we're in
// lazily_build_dependencies_ mode, we're guaranteed there's no errors, so no
// risk to calling containing_type() or other accessors that will build
// dependencies.
if (!file_tables_->AddFieldByNumber(field)) {
const FieldDescriptor* conflicting_field = file_tables_->FindFieldByNumber(
field->containing_type(), field->number());
std::string containing_type_name =
field->containing_type() == nullptr
? "unknown"
: field->containing_type()->full_name();
if (field->is_extension()) {
AddError(field->full_name(), proto,
DescriptorPool::ErrorCollector::NUMBER,
strings::Substitute("Extension number $0 has already been used "
"in \"$1\" by extension \"$2\".",
field->number(), containing_type_name,
conflicting_field->full_name()));
} else {
AddError(field->full_name(), proto,
DescriptorPool::ErrorCollector::NUMBER,
strings::Substitute("Field number $0 has already been used in "
"\"$1\" by field \"$2\".",
field->number(), containing_type_name,
conflicting_field->name()));
}
} else {
if (field->is_extension()) {
if (!tables_->AddExtension(field)) {
const FieldDescriptor* conflicting_field =
tables_->FindExtension(field->containing_type(), field->number());
std::string containing_type_name =
field->containing_type() == nullptr
? "unknown"
: field->containing_type()->full_name();
std::string error_msg = strings::Substitute(
"Extension number $0 has already been used in \"$1\" by extension "
"\"$2\" defined in $3.",
field->number(), containing_type_name,
conflicting_field->full_name(), conflicting_field->file()->name());
// Conflicting extension numbers should be an error. However, before
// turning this into an error we need to fix all existing broken
// protos first.
// TODO(xiaofeng): Change this to an error.
AddWarning(field->full_name(), proto,
DescriptorPool::ErrorCollector::NUMBER, error_msg);
}
}
}
}
void DescriptorBuilder::CrossLinkEnum(EnumDescriptor* enum_type,
const EnumDescriptorProto& proto) {
if (enum_type->options_ == nullptr) {
enum_type->options_ = &EnumOptions::default_instance();
}
for (int i = 0; i < enum_type->value_count(); i++) {
CrossLinkEnumValue(&enum_type->values_[i], proto.value(i));
}
}
void DescriptorBuilder::CrossLinkEnumValue(
EnumValueDescriptor* enum_value,
const EnumValueDescriptorProto& /* proto */) {
if (enum_value->options_ == nullptr) {
enum_value->options_ = &EnumValueOptions::default_instance();
}
}
void DescriptorBuilder::CrossLinkService(ServiceDescriptor* service,
const ServiceDescriptorProto& proto) {
if (service->options_ == nullptr) {
service->options_ = &ServiceOptions::default_instance();
}
for (int i = 0; i < service->method_count(); i++) {
CrossLinkMethod(&service->methods_[i], proto.method(i));
}
}
void DescriptorBuilder::CrossLinkMethod(MethodDescriptor* method,
const MethodDescriptorProto& proto) {
if (method->options_ == nullptr) {
method->options_ = &MethodOptions::default_instance();
}
Symbol input_type =
LookupSymbol(proto.input_type(), method->full_name(),
DescriptorPool::PLACEHOLDER_MESSAGE, LOOKUP_ALL,
!pool_->lazily_build_dependencies_);
if (input_type.IsNull()) {
if (!pool_->lazily_build_dependencies_) {
AddNotDefinedError(method->full_name(), proto,
DescriptorPool::ErrorCollector::INPUT_TYPE,
proto.input_type());
} else {
method->input_type_.SetLazy(proto.input_type(), file_);
}
} else if (input_type.type() != Symbol::MESSAGE) {
AddError(method->full_name(), proto,
DescriptorPool::ErrorCollector::INPUT_TYPE,
"\"" + proto.input_type() + "\" is not a message type.");
} else {
method->input_type_.Set(input_type.descriptor());
}
Symbol output_type =
LookupSymbol(proto.output_type(), method->full_name(),
DescriptorPool::PLACEHOLDER_MESSAGE, LOOKUP_ALL,
!pool_->lazily_build_dependencies_);
if (output_type.IsNull()) {
if (!pool_->lazily_build_dependencies_) {
AddNotDefinedError(method->full_name(), proto,
DescriptorPool::ErrorCollector::OUTPUT_TYPE,
proto.output_type());
} else {
method->output_type_.SetLazy(proto.output_type(), file_);
}
} else if (output_type.type() != Symbol::MESSAGE) {
AddError(method->full_name(), proto,
DescriptorPool::ErrorCollector::OUTPUT_TYPE,
"\"" + proto.output_type() + "\" is not a message type.");
} else {
method->output_type_.Set(output_type.descriptor());
}
}
void DescriptorBuilder::SuggestFieldNumbers(FileDescriptor* file,
const FileDescriptorProto& proto) {
for (int message_index = 0; message_index < file->message_type_count();
message_index++) {
const Descriptor* message = &file->message_types_[message_index];
auto* hints = FindOrNull(message_hints_, message);
if (!hints) continue;
constexpr int kMaxSuggestions = 3;
int fields_to_suggest = std::min(kMaxSuggestions, hints->fields_to_suggest);
if (fields_to_suggest <= 0) continue;
struct Range {
int from;
int to;
};
std::vector<Range> used_ordinals;
auto add_ordinal = [&](int ordinal) {
if (ordinal <= 0 || ordinal > FieldDescriptor::kMaxNumber) return;
if (!used_ordinals.empty() &&
ordinal == used_ordinals.back().to) {
used_ordinals.back().to = ordinal + 1;
} else {
used_ordinals.push_back({ordinal, ordinal + 1});
}
};
auto add_range = [&](int from, int to) {
from = std::max(0, std::min(FieldDescriptor::kMaxNumber + 1, from));
to = std::max(0, std::min(FieldDescriptor::kMaxNumber + 1, to));
if (from >= to) return;
used_ordinals.push_back({from, to});
};
for (int i = 0; i < message->field_count(); i++) {
add_ordinal(message->field(i)->number());
}
for (int i = 0; i < message->extension_count(); i++) {
add_ordinal(message->extension(i)->number());
}
for (int i = 0; i < message->reserved_range_count(); i++) {
auto range = message->reserved_range(i);
add_range(range->start, range->end);
}
for (int i = 0; i < message->extension_range_count(); i++) {
auto range = message->extension_range(i);
add_range(range->start, range->end);
}
used_ordinals.push_back(
{FieldDescriptor::kMaxNumber, FieldDescriptor::kMaxNumber + 1});
used_ordinals.push_back({FieldDescriptor::kFirstReservedNumber,
FieldDescriptor::kLastReservedNumber});
std::sort(used_ordinals.begin(), used_ordinals.end(),
[](Range lhs, Range rhs) {
return std::tie(lhs.from, lhs.to) < std::tie(rhs.from, rhs.to);
});
int current_ordinal = 1;
std::stringstream id_list;
id_list << "Suggested field numbers for " << message->full_name() << ": ";
const char* separator = "";
for (auto& current_range : used_ordinals) {
while (current_ordinal < current_range.from && fields_to_suggest > 0) {
id_list << separator << current_ordinal++;
separator = ", ";
fields_to_suggest--;
}
if (fields_to_suggest == 0) break;
current_ordinal = std::max(current_ordinal, current_range.to);
}
if (hints->first_reason) {
AddError(message->full_name(), *hints->first_reason,
hints->first_reason_location, id_list.str());
}
}
}
// -------------------------------------------------------------------
#define VALIDATE_OPTIONS_FROM_ARRAY(descriptor, array_name, type) \
for (int i = 0; i < descriptor->array_name##_count(); ++i) { \
Validate##type##Options(descriptor->array_name##s_ + i, \
proto.array_name(i)); \
}
// Determine if the file uses optimize_for = LITE_RUNTIME, being careful to
// avoid problems that exist at init time.
static bool IsLite(const FileDescriptor* file) {
// TODO(kenton): I don't even remember how many of these conditions are
// actually possible. I'm just being super-safe.
return file != nullptr &&
&file->options() != &FileOptions::default_instance() &&
file->options().optimize_for() == FileOptions::LITE_RUNTIME;
}
void DescriptorBuilder::ValidateFileOptions(FileDescriptor* file,
const FileDescriptorProto& proto) {
VALIDATE_OPTIONS_FROM_ARRAY(file, message_type, Message);
VALIDATE_OPTIONS_FROM_ARRAY(file, enum_type, Enum);
VALIDATE_OPTIONS_FROM_ARRAY(file, service, Service);
VALIDATE_OPTIONS_FROM_ARRAY(file, extension, Field);
// Lite files can only be imported by other Lite files.
if (!IsLite(file)) {
for (int i = 0; i < file->dependency_count(); i++) {
if (IsLite(file->dependency(i))) {
AddError(
file->dependency(i)->name(), proto,
DescriptorPool::ErrorCollector::IMPORT,
"Files that do not use optimize_for = LITE_RUNTIME cannot import "
"files which do use this option. This file is not lite, but it "
"imports \"" +
file->dependency(i)->name() + "\" which is.");
break;
}
}
}
if (file->syntax() == FileDescriptor::SYNTAX_PROTO3) {
ValidateProto3(file, proto);
}
}
void DescriptorBuilder::ValidateProto3(FileDescriptor* file,
const FileDescriptorProto& proto) {
for (int i = 0; i < file->extension_count(); ++i) {
ValidateProto3Field(file->extensions_ + i, proto.extension(i));
}
for (int i = 0; i < file->message_type_count(); ++i) {
ValidateProto3Message(file->message_types_ + i, proto.message_type(i));
}
for (int i = 0; i < file->enum_type_count(); ++i) {
ValidateProto3Enum(file->enum_types_ + i, proto.enum_type(i));
}
}
static std::string ToLowercaseWithoutUnderscores(const std::string& name) {
std::string result;
for (char character : name) {
if (character != '_') {
if (character >= 'A' && character <= 'Z') {
result.push_back(character - 'A' + 'a');
} else {
result.push_back(character);
}
}
}
return result;
}
void DescriptorBuilder::ValidateProto3Message(Descriptor* message,
const DescriptorProto& proto) {
for (int i = 0; i < message->nested_type_count(); ++i) {
ValidateProto3Message(message->nested_types_ + i, proto.nested_type(i));
}
for (int i = 0; i < message->enum_type_count(); ++i) {
ValidateProto3Enum(message->enum_types_ + i, proto.enum_type(i));
}
for (int i = 0; i < message->field_count(); ++i) {
ValidateProto3Field(message->fields_ + i, proto.field(i));
}
for (int i = 0; i < message->extension_count(); ++i) {
ValidateProto3Field(message->extensions_ + i, proto.extension(i));
}
if (message->extension_range_count() > 0) {
AddError(message->full_name(), proto.extension_range(0),
DescriptorPool::ErrorCollector::NUMBER,
"Extension ranges are not allowed in proto3.");
}
if (message->options().message_set_wire_format()) {
// Using MessageSet doesn't make sense since we disallow extensions.
AddError(message->full_name(), proto, DescriptorPool::ErrorCollector::NAME,
"MessageSet is not supported in proto3.");
}
// In proto3, we reject field names if they conflict in camelCase.
// Note that we currently enforce a stricter rule: Field names must be
// unique after being converted to lowercase with underscores removed.
std::map<std::string, const FieldDescriptor*> name_to_field;
for (int i = 0; i < message->field_count(); ++i) {
std::string lowercase_name =
ToLowercaseWithoutUnderscores(message->field(i)->name());
if (name_to_field.find(lowercase_name) != name_to_field.end()) {
AddError(message->full_name(), proto.field(i),
DescriptorPool::ErrorCollector::NAME,
"The JSON camel-case name of field \"" +
message->field(i)->name() + "\" conflicts with field \"" +
name_to_field[lowercase_name]->name() + "\". This is not " +
"allowed in proto3.");
} else {
name_to_field[lowercase_name] = message->field(i);
}
}
}
void DescriptorBuilder::ValidateProto3Field(FieldDescriptor* field,
const FieldDescriptorProto& proto) {
if (field->is_extension() &&
!AllowedExtendeeInProto3(field->containing_type()->full_name())) {
AddError(field->full_name(), proto,
DescriptorPool::ErrorCollector::EXTENDEE,
"Extensions in proto3 are only allowed for defining options.");
}
if (field->is_required()) {
AddError(field->full_name(), proto, DescriptorPool::ErrorCollector::TYPE,
"Required fields are not allowed in proto3.");
}
if (field->has_default_value()) {
AddError(field->full_name(), proto,
DescriptorPool::ErrorCollector::DEFAULT_VALUE,
"Explicit default values are not allowed in proto3.");
}
if (field->cpp_type() == FieldDescriptor::CPPTYPE_ENUM &&
field->enum_type() &&
field->enum_type()->file()->syntax() != FileDescriptor::SYNTAX_PROTO3 &&
field->enum_type()->file()->syntax() != FileDescriptor::SYNTAX_UNKNOWN) {
// Proto3 messages can only use Proto3 enum types; otherwise we can't
// guarantee that the default value is zero.
AddError(field->full_name(), proto, DescriptorPool::ErrorCollector::TYPE,
"Enum type \"" + field->enum_type()->full_name() +
"\" is not a proto3 enum, but is used in \"" +
field->containing_type()->full_name() +
"\" which is a proto3 message type.");
}
if (field->type() == FieldDescriptor::TYPE_GROUP) {
AddError(field->full_name(), proto, DescriptorPool::ErrorCollector::TYPE,
"Groups are not supported in proto3 syntax.");
}
}
void DescriptorBuilder::ValidateProto3Enum(EnumDescriptor* enm,
const EnumDescriptorProto& proto) {
if (enm->value_count() > 0 && enm->value(0)->number() != 0) {
AddError(enm->full_name(), proto.value(0),
DescriptorPool::ErrorCollector::NUMBER,
"The first enum value must be zero in proto3.");
}
}
void DescriptorBuilder::ValidateMessageOptions(Descriptor* message,
const DescriptorProto& proto) {
VALIDATE_OPTIONS_FROM_ARRAY(message, field, Field);
VALIDATE_OPTIONS_FROM_ARRAY(message, nested_type, Message);
VALIDATE_OPTIONS_FROM_ARRAY(message, enum_type, Enum);
VALIDATE_OPTIONS_FROM_ARRAY(message, extension, Field);
const int64_t max_extension_range =
static_cast<int64_t>(message->options().message_set_wire_format()
? std::numeric_limits<int32_t>::max()
: FieldDescriptor::kMaxNumber);
for (int i = 0; i < message->extension_range_count(); ++i) {
if (message->extension_range(i)->end > max_extension_range + 1) {
AddError(message->full_name(), proto.extension_range(i),
DescriptorPool::ErrorCollector::NUMBER,
strings::Substitute("Extension numbers cannot be greater than $0.",
max_extension_range));
}
ValidateExtensionRangeOptions(message->full_name(),
message->extension_ranges_ + i,
proto.extension_range(i));
}
}
void DescriptorBuilder::ValidateFieldOptions(
FieldDescriptor* field, const FieldDescriptorProto& proto) {
if (pool_->lazily_build_dependencies_ && (!field || !field->message_type())) {
return;
}
// Only message type fields may be lazy.
if (field->options().lazy() || field->options().unverified_lazy()) {
if (field->type() != FieldDescriptor::TYPE_MESSAGE) {
AddError(field->full_name(), proto, DescriptorPool::ErrorCollector::TYPE,
"[lazy = true] can only be specified for submessage fields.");
}
}
// Only repeated primitive fields may be packed.
if (field->options().packed() && !field->is_packable()) {
AddError(
field->full_name(), proto, DescriptorPool::ErrorCollector::TYPE,
"[packed = true] can only be specified for repeated primitive fields.");
}
// Note: Default instance may not yet be initialized here, so we have to
// avoid reading from it.
if (field->containing_type_ != nullptr &&
&field->containing_type()->options() !=
&MessageOptions::default_instance() &&
field->containing_type()->options().message_set_wire_format()) {
if (field->is_extension()) {
if (!field->is_optional() ||
field->type() != FieldDescriptor::TYPE_MESSAGE) {
AddError(field->full_name(), proto,
DescriptorPool::ErrorCollector::TYPE,
"Extensions of MessageSets must be optional messages.");
}
} else {
AddError(field->full_name(), proto, DescriptorPool::ErrorCollector::NAME,
"MessageSets cannot have fields, only extensions.");
}
}
// Lite extensions can only be of Lite types.
if (IsLite(field->file()) && field->containing_type_ != nullptr &&
!IsLite(field->containing_type()->file())) {
AddError(field->full_name(), proto,
DescriptorPool::ErrorCollector::EXTENDEE,
"Extensions to non-lite types can only be declared in non-lite "
"files. Note that you cannot extend a non-lite type to contain "
"a lite type, but the reverse is allowed.");
}
// Validate map types.
if (field->is_map()) {
if (!ValidateMapEntry(field, proto)) {
AddError(field->full_name(), proto, DescriptorPool::ErrorCollector::TYPE,
"map_entry should not be set explicitly. Use map<KeyType, "
"ValueType> instead.");
}
}
ValidateJSType(field, proto);
// json_name option is not allowed on extension fields. Note that the
// json_name field in FieldDescriptorProto is always populated by protoc
// when it sends descriptor data to plugins (calculated from field name if
// the option is not explicitly set) so we can't rely on its presence to
// determine whether the json_name option is set on the field. Here we
// compare it against the default calculated json_name value and consider
// the option set if they are different. This won't catch the case when
// an user explicitly sets json_name to the default value, but should be
// good enough to catch common misuses.
if (field->is_extension() &&
(field->has_json_name() &&
field->json_name() != ToJsonName(field->name()))) {
AddError(field->full_name(), proto,
DescriptorPool::ErrorCollector::OPTION_NAME,
"option json_name is not allowed on extension fields.");
}
}
void DescriptorBuilder::ValidateEnumOptions(EnumDescriptor* enm,
const EnumDescriptorProto& proto) {
VALIDATE_OPTIONS_FROM_ARRAY(enm, value, EnumValue);
if (!enm->options().has_allow_alias() || !enm->options().allow_alias()) {
std::map<int, std::string> used_values;
for (int i = 0; i < enm->value_count(); ++i) {
const EnumValueDescriptor* enum_value = enm->value(i);
if (used_values.find(enum_value->number()) != used_values.end()) {
std::string error =
"\"" + enum_value->full_name() +
"\" uses the same enum value as \"" +
used_values[enum_value->number()] +
"\". If this is intended, set "
"'option allow_alias = true;' to the enum definition.";
if (!enm->options().allow_alias()) {
// Generate error if duplicated enum values are explicitly disallowed.
AddError(enm->full_name(), proto.value(i),
DescriptorPool::ErrorCollector::NUMBER, error);
}
} else {
used_values[enum_value->number()] = enum_value->full_name();
}
}
}
}
void DescriptorBuilder::ValidateEnumValueOptions(
EnumValueDescriptor* /* enum_value */,
const EnumValueDescriptorProto& /* proto */) {
// Nothing to do so far.
}
void DescriptorBuilder::ValidateExtensionRangeOptions(
const std::string& full_name, Descriptor::ExtensionRange* extension_range,
const DescriptorProto_ExtensionRange& proto) {
(void)full_name; // Parameter is used by Google-internal code.
(void)extension_range; // Parameter is used by Google-internal code.
}
void DescriptorBuilder::ValidateServiceOptions(
ServiceDescriptor* service, const ServiceDescriptorProto& proto) {
if (IsLite(service->file()) &&
(service->file()->options().cc_generic_services() ||
service->file()->options().java_generic_services())) {
AddError(service->full_name(), proto, DescriptorPool::ErrorCollector::NAME,
"Files with optimize_for = LITE_RUNTIME cannot define services "
"unless you set both options cc_generic_services and "
"java_generic_services to false.");
}
VALIDATE_OPTIONS_FROM_ARRAY(service, method, Method);
}
void DescriptorBuilder::ValidateMethodOptions(
MethodDescriptor* /* method */, const MethodDescriptorProto& /* proto */) {
// Nothing to do so far.
}
bool DescriptorBuilder::ValidateMapEntry(FieldDescriptor* field,
const FieldDescriptorProto& proto) {
const Descriptor* message = field->message_type();
if ( // Must not contain extensions, extension range or nested message or
// enums
message->extension_count() != 0 ||
field->label() != FieldDescriptor::LABEL_REPEATED ||
message->extension_range_count() != 0 ||
message->nested_type_count() != 0 || message->enum_type_count() != 0 ||
// Must contain exactly two fields
message->field_count() != 2 ||
// Field name and message name must match
message->name() != ToCamelCase(field->name(), false) + "Entry" ||
// Entry message must be in the same containing type of the field.
field->containing_type() != message->containing_type()) {
return false;
}
const FieldDescriptor* key = message->map_key();
const FieldDescriptor* value = message->map_value();
if (key->label() != FieldDescriptor::LABEL_OPTIONAL || key->number() != 1 ||
key->name() != "key") {
return false;
}
if (value->label() != FieldDescriptor::LABEL_OPTIONAL ||
value->number() != 2 || value->name() != "value") {
return false;
}
// Check key types are legal.
switch (key->type()) {
case FieldDescriptor::TYPE_ENUM:
AddError(field->full_name(), proto, DescriptorPool::ErrorCollector::TYPE,
"Key in map fields cannot be enum types.");
break;
case FieldDescriptor::TYPE_FLOAT:
case FieldDescriptor::TYPE_DOUBLE:
case FieldDescriptor::TYPE_MESSAGE:
case FieldDescriptor::TYPE_GROUP:
case FieldDescriptor::TYPE_BYTES:
AddError(
field->full_name(), proto, DescriptorPool::ErrorCollector::TYPE,
"Key in map fields cannot be float/double, bytes or message types.");
break;
case FieldDescriptor::TYPE_BOOL:
case FieldDescriptor::TYPE_INT32:
case FieldDescriptor::TYPE_INT64:
case FieldDescriptor::TYPE_SINT32:
case FieldDescriptor::TYPE_SINT64:
case FieldDescriptor::TYPE_STRING:
case FieldDescriptor::TYPE_UINT32:
case FieldDescriptor::TYPE_UINT64:
case FieldDescriptor::TYPE_FIXED32:
case FieldDescriptor::TYPE_FIXED64:
case FieldDescriptor::TYPE_SFIXED32:
case FieldDescriptor::TYPE_SFIXED64:
// Legal cases
break;
// Do not add a default, so that the compiler will complain when new types
// are added.
}
if (value->type() == FieldDescriptor::TYPE_ENUM) {
if (value->enum_type()->value(0)->number() != 0) {
AddError(field->full_name(), proto, DescriptorPool::ErrorCollector::TYPE,
"Enum value in map must define 0 as the first value.");
}
}
return true;
}
void DescriptorBuilder::DetectMapConflicts(const Descriptor* message,
const DescriptorProto& proto) {
std::map<std::string, const Descriptor*> seen_types;
for (int i = 0; i < message->nested_type_count(); ++i) {
const Descriptor* nested = message->nested_type(i);
std::pair<std::map<std::string, const Descriptor*>::iterator, bool> result =
seen_types.insert(std::make_pair(nested->name(), nested));
if (!result.second) {
if (result.first->second->options().map_entry() ||
nested->options().map_entry()) {
AddError(message->full_name(), proto,
DescriptorPool::ErrorCollector::NAME,
"Expanded map entry type " + nested->name() +
" conflicts with an existing nested message type.");
break;
}
}
// Recursively test on the nested types.
DetectMapConflicts(message->nested_type(i), proto.nested_type(i));
}
// Check for conflicted field names.
for (int i = 0; i < message->field_count(); ++i) {
const FieldDescriptor* field = message->field(i);
std::map<std::string, const Descriptor*>::iterator iter =
seen_types.find(field->name());
if (iter != seen_types.end() && iter->second->options().map_entry()) {
AddError(message->full_name(), proto,
DescriptorPool::ErrorCollector::NAME,
"Expanded map entry type " + iter->second->name() +
" conflicts with an existing field.");
}
}
// Check for conflicted enum names.
for (int i = 0; i < message->enum_type_count(); ++i) {
const EnumDescriptor* enum_desc = message->enum_type(i);
std::map<std::string, const Descriptor*>::iterator iter =
seen_types.find(enum_desc->name());
if (iter != seen_types.end() && iter->second->options().map_entry()) {
AddError(message->full_name(), proto,
DescriptorPool::ErrorCollector::NAME,
"Expanded map entry type " + iter->second->name() +
" conflicts with an existing enum type.");
}
}
// Check for conflicted oneof names.
for (int i = 0; i < message->oneof_decl_count(); ++i) {
const OneofDescriptor* oneof_desc = message->oneof_decl(i);
std::map<std::string, const Descriptor*>::iterator iter =
seen_types.find(oneof_desc->name());
if (iter != seen_types.end() && iter->second->options().map_entry()) {
AddError(message->full_name(), proto,
DescriptorPool::ErrorCollector::NAME,
"Expanded map entry type " + iter->second->name() +
" conflicts with an existing oneof type.");
}
}
}
void DescriptorBuilder::ValidateJSType(FieldDescriptor* field,
const FieldDescriptorProto& proto) {
FieldOptions::JSType jstype = field->options().jstype();
// The default is always acceptable.
if (jstype == FieldOptions::JS_NORMAL) {
return;
}
switch (field->type()) {
// Integral 64-bit types may be represented as JavaScript numbers or
// strings.
case FieldDescriptor::TYPE_UINT64:
case FieldDescriptor::TYPE_INT64:
case FieldDescriptor::TYPE_SINT64:
case FieldDescriptor::TYPE_FIXED64:
case FieldDescriptor::TYPE_SFIXED64:
if (jstype == FieldOptions::JS_STRING ||
jstype == FieldOptions::JS_NUMBER) {
return;
}
AddError(field->full_name(), proto, DescriptorPool::ErrorCollector::TYPE,
"Illegal jstype for int64, uint64, sint64, fixed64 "
"or sfixed64 field: " +
FieldOptions_JSType_descriptor()->value(jstype)->name());
break;
// No other types permit a jstype option.
default:
AddError(field->full_name(), proto, DescriptorPool::ErrorCollector::TYPE,
"jstype is only allowed on int64, uint64, sint64, fixed64 "
"or sfixed64 fields.");
break;
}
}
#undef VALIDATE_OPTIONS_FROM_ARRAY
// -------------------------------------------------------------------
DescriptorBuilder::OptionInterpreter::OptionInterpreter(
DescriptorBuilder* builder)
: builder_(builder) {
GOOGLE_CHECK(builder_);
}
DescriptorBuilder::OptionInterpreter::~OptionInterpreter() {}
bool DescriptorBuilder::OptionInterpreter::InterpretOptions(
OptionsToInterpret* options_to_interpret) {
// Note that these may be in different pools, so we can't use the same
// descriptor and reflection objects on both.
Message* options = options_to_interpret->options;
const Message* original_options = options_to_interpret->original_options;
bool failed = false;
options_to_interpret_ = options_to_interpret;
// Find the uninterpreted_option field in the mutable copy of the options
// and clear them, since we're about to interpret them.
const FieldDescriptor* uninterpreted_options_field =
options->GetDescriptor()->FindFieldByName("uninterpreted_option");
GOOGLE_CHECK(uninterpreted_options_field != nullptr)
<< "No field named \"uninterpreted_option\" in the Options proto.";
options->GetReflection()->ClearField(options, uninterpreted_options_field);
std::vector<int> src_path = options_to_interpret->element_path;
src_path.push_back(uninterpreted_options_field->number());
// Find the uninterpreted_option field in the original options.
const FieldDescriptor* original_uninterpreted_options_field =
original_options->GetDescriptor()->FindFieldByName(
"uninterpreted_option");
GOOGLE_CHECK(original_uninterpreted_options_field != nullptr)
<< "No field named \"uninterpreted_option\" in the Options proto.";
const int num_uninterpreted_options =
original_options->GetReflection()->FieldSize(
*original_options, original_uninterpreted_options_field);
for (int i = 0; i < num_uninterpreted_options; ++i) {
src_path.push_back(i);
uninterpreted_option_ = down_cast<const UninterpretedOption*>(
&original_options->GetReflection()->GetRepeatedMessage(
*original_options, original_uninterpreted_options_field, i));
if (!InterpretSingleOption(options, src_path,
options_to_interpret->element_path)) {
// Error already added by InterpretSingleOption().
failed = true;
break;
}
src_path.pop_back();
}
// Reset these, so we don't have any dangling pointers.
uninterpreted_option_ = nullptr;
options_to_interpret_ = nullptr;
if (!failed) {
// InterpretSingleOption() added the interpreted options in the
// UnknownFieldSet, in case the option isn't yet known to us. Now we
// serialize the options message and deserialize it back. That way, any
// option fields that we do happen to know about will get moved from the
// UnknownFieldSet into the real fields, and thus be available right away.
// If they are not known, that's OK too. They will get reparsed into the
// UnknownFieldSet and wait there until the message is parsed by something
// that does know about the options.
// Keep the unparsed options around in case the reparsing fails.
std::unique_ptr<Message> unparsed_options(options->New());
options->GetReflection()->Swap(unparsed_options.get(), options);
std::string buf;
if (!unparsed_options->AppendToString(&buf) ||
!options->ParseFromString(buf)) {
builder_->AddError(
options_to_interpret->element_name, *original_options,
DescriptorPool::ErrorCollector::OTHER,
"Some options could not be correctly parsed using the proto "
"descriptors compiled into this binary.\n"
"Unparsed options: " +
unparsed_options->ShortDebugString() +
"\n"
"Parsing attempt: " +
options->ShortDebugString());
// Restore the unparsed options.
options->GetReflection()->Swap(unparsed_options.get(), options);
}
}
return !failed;
}
bool DescriptorBuilder::OptionInterpreter::InterpretSingleOption(
Message* options, const std::vector<int>& src_path,
const std::vector<int>& options_path) {
// First do some basic validation.
if (uninterpreted_option_->name_size() == 0) {
// This should never happen unless the parser has gone seriously awry or
// someone has manually created the uninterpreted option badly.
return AddNameError("Option must have a name.");
}
if (uninterpreted_option_->name(0).name_part() == "uninterpreted_option") {
return AddNameError(
"Option must not use reserved name "
"\"uninterpreted_option\".");
}
const Descriptor* options_descriptor = nullptr;
// Get the options message's descriptor from the builder's pool, so that we
// get the version that knows about any extension options declared in the file
// we're currently building. The descriptor should be there as long as the
// file we're building imported descriptor.proto.
// Note that we use DescriptorBuilder::FindSymbolNotEnforcingDeps(), not
// DescriptorPool::FindMessageTypeByName() because we're already holding the
// pool's mutex, and the latter method locks it again. We don't use
// FindSymbol() because files that use custom options only need to depend on
// the file that defines the option, not descriptor.proto itself.
Symbol symbol = builder_->FindSymbolNotEnforcingDeps(
options->GetDescriptor()->full_name());
options_descriptor = symbol.descriptor();
if (options_descriptor == nullptr) {
// The options message's descriptor was not in the builder's pool, so use
// the standard version from the generated pool. We're not holding the
// generated pool's mutex, so we can search it the straightforward way.
options_descriptor = options->GetDescriptor();
}
GOOGLE_CHECK(options_descriptor);
// We iterate over the name parts to drill into the submessages until we find
// the leaf field for the option. As we drill down we remember the current
// submessage's descriptor in |descriptor| and the next field in that
// submessage in |field|. We also track the fields we're drilling down
// through in |intermediate_fields|. As we go, we reconstruct the full option
// name in |debug_msg_name|, for use in error messages.
const Descriptor* descriptor = options_descriptor;
const FieldDescriptor* field = nullptr;
std::vector<const FieldDescriptor*> intermediate_fields;
std::string debug_msg_name = "";
std::vector<int> dest_path = options_path;
for (int i = 0; i < uninterpreted_option_->name_size(); ++i) {
builder_->undefine_resolved_name_.clear();
const std::string& name_part = uninterpreted_option_->name(i).name_part();
if (debug_msg_name.size() > 0) {
debug_msg_name += ".";
}
if (uninterpreted_option_->name(i).is_extension()) {
debug_msg_name += "(" + name_part + ")";
// Search for the extension's descriptor as an extension in the builder's
// pool. Note that we use DescriptorBuilder::LookupSymbol(), not
// DescriptorPool::FindExtensionByName(), for two reasons: 1) It allows
// relative lookups, and 2) because we're already holding the pool's
// mutex, and the latter method locks it again.
symbol =
builder_->LookupSymbol(name_part, options_to_interpret_->name_scope);
field = symbol.field_descriptor();
// If we don't find the field then the field's descriptor was not in the
// builder's pool, but there's no point in looking in the generated
// pool. We require that you import the file that defines any extensions
// you use, so they must be present in the builder's pool.
} else {
debug_msg_name += name_part;
// Search for the field's descriptor as a regular field.
field = descriptor->FindFieldByName(name_part);
}
if (field == nullptr) {
if (get_allow_unknown(builder_->pool_)) {
// We can't find the option, but AllowUnknownDependencies() is enabled,
// so we will just leave it as uninterpreted.
AddWithoutInterpreting(*uninterpreted_option_, options);
return true;
} else if (!(builder_->undefine_resolved_name_).empty()) {
// Option is resolved to a name which is not defined.
return AddNameError(
"Option \"" + debug_msg_name + "\" is resolved to \"(" +
builder_->undefine_resolved_name_ +
")\", which is not defined. The innermost scope is searched first "
"in name resolution. Consider using a leading '.'(i.e., \"(." +
debug_msg_name.substr(1) +
"\") to start from the outermost scope.");
} else {
return AddNameError(
"Option \"" + debug_msg_name +
"\" unknown. Ensure that your proto" +
" definition file imports the proto which defines the option.");
}
} else if (field->containing_type() != descriptor) {
if (get_is_placeholder(field->containing_type())) {
// The field is an extension of a placeholder type, so we can't
// reliably verify whether it is a valid extension to use here (e.g.
// we don't know if it is an extension of the correct *Options message,
// or if it has a valid field number, etc.). Just leave it as
// uninterpreted instead.
AddWithoutInterpreting(*uninterpreted_option_, options);
return true;
} else {
// This can only happen if, due to some insane misconfiguration of the
// pools, we find the options message in one pool but the field in
// another. This would probably imply a hefty bug somewhere.
return AddNameError("Option field \"" + debug_msg_name +
"\" is not a field or extension of message \"" +
descriptor->name() + "\".");
}
} else {
// accumulate field numbers to form path to interpreted option
dest_path.push_back(field->number());
if (i < uninterpreted_option_->name_size() - 1) {
if (field->cpp_type() != FieldDescriptor::CPPTYPE_MESSAGE) {
return AddNameError("Option \"" + debug_msg_name +
"\" is an atomic type, not a message.");
} else if (field->is_repeated()) {
return AddNameError("Option field \"" + debug_msg_name +
"\" is a repeated message. Repeated message "
"options must be initialized using an "
"aggregate value.");
} else {
// Drill down into the submessage.
intermediate_fields.push_back(field);
descriptor = field->message_type();
}
}
}
}
// We've found the leaf field. Now we use UnknownFieldSets to set its value
// on the options message. We do so because the message may not yet know
// about its extension fields, so we may not be able to set the fields
// directly. But the UnknownFieldSets will serialize to the same wire-format
// message, so reading that message back in once the extension fields are
// known will populate them correctly.
// First see if the option is already set.
if (!field->is_repeated() &&
!ExamineIfOptionIsSet(
intermediate_fields.begin(), intermediate_fields.end(), field,
debug_msg_name,
options->GetReflection()->GetUnknownFields(*options))) {
return false; // ExamineIfOptionIsSet() already added the error.
}
// First set the value on the UnknownFieldSet corresponding to the
// innermost message.
std::unique_ptr<UnknownFieldSet> unknown_fields(new UnknownFieldSet());
if (!SetOptionValue(field, unknown_fields.get())) {
return false; // SetOptionValue() already added the error.
}
// Now wrap the UnknownFieldSet with UnknownFieldSets corresponding to all
// the intermediate messages.
for (std::vector<const FieldDescriptor*>::reverse_iterator iter =
intermediate_fields.rbegin();
iter != intermediate_fields.rend(); ++iter) {
std::unique_ptr<UnknownFieldSet> parent_unknown_fields(
new UnknownFieldSet());
switch ((*iter)->type()) {
case FieldDescriptor::TYPE_MESSAGE: {
std::string* outstr =
parent_unknown_fields->AddLengthDelimited((*iter)->number());
GOOGLE_CHECK(unknown_fields->SerializeToString(outstr))
<< "Unexpected failure while serializing option submessage "
<< debug_msg_name << "\".";
break;
}
case FieldDescriptor::TYPE_GROUP: {
parent_unknown_fields->AddGroup((*iter)->number())
->MergeFrom(*unknown_fields);
break;
}
default:
GOOGLE_LOG(FATAL) << "Invalid wire type for CPPTYPE_MESSAGE: "
<< (*iter)->type();
return false;
}
unknown_fields.reset(parent_unknown_fields.release());
}
// Now merge the UnknownFieldSet corresponding to the top-level message into
// the options message.
options->GetReflection()->MutableUnknownFields(options)->MergeFrom(
*unknown_fields);
// record the element path of the interpreted option
if (field->is_repeated()) {
int index = repeated_option_counts_[dest_path]++;
dest_path.push_back(index);
}
interpreted_paths_[src_path] = dest_path;
return true;
}
void DescriptorBuilder::OptionInterpreter::UpdateSourceCodeInfo(
SourceCodeInfo* info) {
if (interpreted_paths_.empty()) {
// nothing to do!
return;
}
// We find locations that match keys in interpreted_paths_ and
// 1) replace the path with the corresponding value in interpreted_paths_
// 2) remove any subsequent sub-locations (sub-location is one whose path
// has the parent path as a prefix)
//
// To avoid quadratic behavior of removing interior rows as we go,
// we keep a copy. But we don't actually copy anything until we've
// found the first match (so if the source code info has no locations
// that need to be changed, there is zero copy overhead).
RepeatedPtrField<SourceCodeInfo_Location>* locs = info->mutable_location();
RepeatedPtrField<SourceCodeInfo_Location> new_locs;
bool copying = false;
std::vector<int> pathv;
bool matched = false;
for (RepeatedPtrField<SourceCodeInfo_Location>::iterator loc = locs->begin();
loc != locs->end(); loc++) {
if (matched) {
// see if this location is in the range to remove
bool loc_matches = true;
if (loc->path_size() < static_cast<int64_t>(pathv.size())) {
loc_matches = false;
} else {
for (size_t j = 0; j < pathv.size(); j++) {
if (loc->path(j) != pathv[j]) {
loc_matches = false;
break;
}
}
}
if (loc_matches) {
// don't copy this row since it is a sub-location that we're removing
continue;
}
matched = false;
}
pathv.clear();
for (int j = 0; j < loc->path_size(); j++) {
pathv.push_back(loc->path(j));
}
std::map<std::vector<int>, std::vector<int>>::iterator entry =
interpreted_paths_.find(pathv);
if (entry == interpreted_paths_.end()) {
// not a match
if (copying) {
*new_locs.Add() = *loc;
}
continue;
}
matched = true;
if (!copying) {
// initialize the copy we are building
copying = true;
new_locs.Reserve(locs->size());
for (RepeatedPtrField<SourceCodeInfo_Location>::iterator it =
locs->begin();
it != loc; it++) {
*new_locs.Add() = *it;
}
}
// add replacement and update its path
SourceCodeInfo_Location* replacement = new_locs.Add();
*replacement = *loc;
replacement->clear_path();
for (std::vector<int>::iterator rit = entry->second.begin();
rit != entry->second.end(); rit++) {
replacement->add_path(*rit);
}
}
// if we made a changed copy, put it in place
if (copying) {
*locs = new_locs;
}
}
void DescriptorBuilder::OptionInterpreter::AddWithoutInterpreting(
const UninterpretedOption& uninterpreted_option, Message* options) {
const FieldDescriptor* field =
options->GetDescriptor()->FindFieldByName("uninterpreted_option");
GOOGLE_CHECK(field != nullptr);
options->GetReflection()
->AddMessage(options, field)
->CopyFrom(uninterpreted_option);
}
bool DescriptorBuilder::OptionInterpreter::ExamineIfOptionIsSet(
std::vector<const FieldDescriptor*>::const_iterator
intermediate_fields_iter,
std::vector<const FieldDescriptor*>::const_iterator intermediate_fields_end,
const FieldDescriptor* innermost_field, const std::string& debug_msg_name,
const UnknownFieldSet& unknown_fields) {
// We do linear searches of the UnknownFieldSet and its sub-groups. This
// should be fine since it's unlikely that any one options structure will
// contain more than a handful of options.
if (intermediate_fields_iter == intermediate_fields_end) {
// We're at the innermost submessage.
for (int i = 0; i < unknown_fields.field_count(); i++) {
if (unknown_fields.field(i).number() == innermost_field->number()) {
return AddNameError("Option \"" + debug_msg_name +
"\" was already set.");
}
}
return true;
}
for (int i = 0; i < unknown_fields.field_count(); i++) {
if (unknown_fields.field(i).number() ==
(*intermediate_fields_iter)->number()) {
const UnknownField* unknown_field = &unknown_fields.field(i);
FieldDescriptor::Type type = (*intermediate_fields_iter)->type();
// Recurse into the next submessage.
switch (type) {
case FieldDescriptor::TYPE_MESSAGE:
if (unknown_field->type() == UnknownField::TYPE_LENGTH_DELIMITED) {
UnknownFieldSet intermediate_unknown_fields;
if (intermediate_unknown_fields.ParseFromString(
unknown_field->length_delimited()) &&
!ExamineIfOptionIsSet(intermediate_fields_iter + 1,
intermediate_fields_end, innermost_field,
debug_msg_name,
intermediate_unknown_fields)) {
return false; // Error already added.
}
}
break;
case FieldDescriptor::TYPE_GROUP:
if (unknown_field->type() == UnknownField::TYPE_GROUP) {
if (!ExamineIfOptionIsSet(intermediate_fields_iter + 1,
intermediate_fields_end, innermost_field,
debug_msg_name, unknown_field->group())) {
return false; // Error already added.
}
}
break;
default:
GOOGLE_LOG(FATAL) << "Invalid wire type for CPPTYPE_MESSAGE: " << type;
return false;
}
}
}
return true;
}
bool DescriptorBuilder::OptionInterpreter::SetOptionValue(
const FieldDescriptor* option_field, UnknownFieldSet* unknown_fields) {
// We switch on the CppType to validate.
switch (option_field->cpp_type()) {
case FieldDescriptor::CPPTYPE_INT32:
if (uninterpreted_option_->has_positive_int_value()) {
if (uninterpreted_option_->positive_int_value() >
static_cast<uint64_t>(std::numeric_limits<int32_t>::max())) {
return AddValueError("Value out of range for int32 option \"" +
option_field->full_name() + "\".");
} else {
SetInt32(option_field->number(),
uninterpreted_option_->positive_int_value(),
option_field->type(), unknown_fields);
}
} else if (uninterpreted_option_->has_negative_int_value()) {
if (uninterpreted_option_->negative_int_value() <
static_cast<int64_t>(std::numeric_limits<int32_t>::min())) {
return AddValueError("Value out of range for int32 option \"" +
option_field->full_name() + "\".");
} else {
SetInt32(option_field->number(),
uninterpreted_option_->negative_int_value(),
option_field->type(), unknown_fields);
}
} else {
return AddValueError("Value must be integer for int32 option \"" +
option_field->full_name() + "\".");
}
break;
case FieldDescriptor::CPPTYPE_INT64:
if (uninterpreted_option_->has_positive_int_value()) {
if (uninterpreted_option_->positive_int_value() >
static_cast<uint64_t>(std::numeric_limits<int64_t>::max())) {
return AddValueError("Value out of range for int64 option \"" +
option_field->full_name() + "\".");
} else {
SetInt64(option_field->number(),
uninterpreted_option_->positive_int_value(),
option_field->type(), unknown_fields);
}
} else if (uninterpreted_option_->has_negative_int_value()) {
SetInt64(option_field->number(),
uninterpreted_option_->negative_int_value(),
option_field->type(), unknown_fields);
} else {
return AddValueError("Value must be integer for int64 option \"" +
option_field->full_name() + "\".");
}
break;
case FieldDescriptor::CPPTYPE_UINT32:
if (uninterpreted_option_->has_positive_int_value()) {
if (uninterpreted_option_->positive_int_value() >
std::numeric_limits<uint32_t>::max()) {
return AddValueError("Value out of range for uint32 option \"" +
option_field->name() + "\".");
} else {
SetUInt32(option_field->number(),
uninterpreted_option_->positive_int_value(),
option_field->type(), unknown_fields);
}
} else {
return AddValueError(
"Value must be non-negative integer for uint32 "
"option \"" +
option_field->full_name() + "\".");
}
break;
case FieldDescriptor::CPPTYPE_UINT64:
if (uninterpreted_option_->has_positive_int_value()) {
SetUInt64(option_field->number(),
uninterpreted_option_->positive_int_value(),
option_field->type(), unknown_fields);
} else {
return AddValueError(
"Value must be non-negative integer for uint64 "
"option \"" +
option_field->full_name() + "\".");
}
break;
case FieldDescriptor::CPPTYPE_FLOAT: {
float value;
if (uninterpreted_option_->has_double_value()) {
value = uninterpreted_option_->double_value();
} else if (uninterpreted_option_->has_positive_int_value()) {
value = uninterpreted_option_->positive_int_value();
} else if (uninterpreted_option_->has_negative_int_value()) {
value = uninterpreted_option_->negative_int_value();
} else {
return AddValueError("Value must be number for float option \"" +
option_field->full_name() + "\".");
}
unknown_fields->AddFixed32(option_field->number(),
internal::WireFormatLite::EncodeFloat(value));
break;
}
case FieldDescriptor::CPPTYPE_DOUBLE: {
double value;
if (uninterpreted_option_->has_double_value()) {
value = uninterpreted_option_->double_value();
} else if (uninterpreted_option_->has_positive_int_value()) {
value = uninterpreted_option_->positive_int_value();
} else if (uninterpreted_option_->has_negative_int_value()) {
value = uninterpreted_option_->negative_int_value();
} else {
return AddValueError("Value must be number for double option \"" +
option_field->full_name() + "\".");
}
unknown_fields->AddFixed64(option_field->number(),
internal::WireFormatLite::EncodeDouble(value));
break;
}
case FieldDescriptor::CPPTYPE_BOOL:
uint64_t value;
if (!uninterpreted_option_->has_identifier_value()) {
return AddValueError(
"Value must be identifier for boolean option "
"\"" +
option_field->full_name() + "\".");
}
if (uninterpreted_option_->identifier_value() == "true") {
value = 1;
} else if (uninterpreted_option_->identifier_value() == "false") {
value = 0;
} else {
return AddValueError(
"Value must be \"true\" or \"false\" for boolean "
"option \"" +
option_field->full_name() + "\".");
}
unknown_fields->AddVarint(option_field->number(), value);
break;
case FieldDescriptor::CPPTYPE_ENUM: {
if (!uninterpreted_option_->has_identifier_value()) {
return AddValueError(
"Value must be identifier for enum-valued option "
"\"" +
option_field->full_name() + "\".");
}
const EnumDescriptor* enum_type = option_field->enum_type();
const std::string& value_name = uninterpreted_option_->identifier_value();
const EnumValueDescriptor* enum_value = nullptr;
if (enum_type->file()->pool() != DescriptorPool::generated_pool()) {
// Note that the enum value's fully-qualified name is a sibling of the
// enum's name, not a child of it.
std::string fully_qualified_name = enum_type->full_name();
fully_qualified_name.resize(fully_qualified_name.size() -
enum_type->name().size());
fully_qualified_name += value_name;
// Search for the enum value's descriptor in the builder's pool. Note
// that we use DescriptorBuilder::FindSymbolNotEnforcingDeps(), not
// DescriptorPool::FindEnumValueByName() because we're already holding
// the pool's mutex, and the latter method locks it again.
Symbol symbol =
builder_->FindSymbolNotEnforcingDeps(fully_qualified_name);
if (auto* candicate_descriptor = symbol.enum_value_descriptor()) {
if (candicate_descriptor->type() != enum_type) {
return AddValueError(
"Enum type \"" + enum_type->full_name() +
"\" has no value named \"" + value_name + "\" for option \"" +
option_field->full_name() +
"\". This appears to be a value from a sibling type.");
} else {
enum_value = candicate_descriptor;
}
}
} else {
// The enum type is in the generated pool, so we can search for the
// value there.
enum_value = enum_type->FindValueByName(value_name);
}
if (enum_value == nullptr) {
return AddValueError("Enum type \"" +
option_field->enum_type()->full_name() +
"\" has no value named \"" + value_name +
"\" for "
"option \"" +
option_field->full_name() + "\".");
} else {
// Sign-extension is not a problem, since we cast directly from int32_t
// to uint64_t, without first going through uint32_t.
unknown_fields->AddVarint(
option_field->number(),
static_cast<uint64_t>(static_cast<int64_t>(enum_value->number())));
}
break;
}
case FieldDescriptor::CPPTYPE_STRING:
if (!uninterpreted_option_->has_string_value()) {
return AddValueError(
"Value must be quoted string for string option "
"\"" +
option_field->full_name() + "\".");
}
// The string has already been unquoted and unescaped by the parser.
unknown_fields->AddLengthDelimited(option_field->number(),
uninterpreted_option_->string_value());
break;
case FieldDescriptor::CPPTYPE_MESSAGE:
if (!SetAggregateOption(option_field, unknown_fields)) {
return false;
}
break;
}
return true;
}
class DescriptorBuilder::OptionInterpreter::AggregateOptionFinder
: public TextFormat::Finder {
public:
DescriptorBuilder* builder_;
const Descriptor* FindAnyType(const Message& /*message*/,
const std::string& prefix,
const std::string& name) const override {
if (prefix != internal::kTypeGoogleApisComPrefix &&
prefix != internal::kTypeGoogleProdComPrefix) {
return nullptr;
}
assert_mutex_held(builder_->pool_);
return builder_->FindSymbol(name).descriptor();
}
const FieldDescriptor* FindExtension(Message* message,
const std::string& name) const override {
assert_mutex_held(builder_->pool_);
const Descriptor* descriptor = message->GetDescriptor();
Symbol result =
builder_->LookupSymbolNoPlaceholder(name, descriptor->full_name());
if (auto* field = result.field_descriptor()) {
return field;
} else if (result.type() == Symbol::MESSAGE &&
descriptor->options().message_set_wire_format()) {
const Descriptor* foreign_type = result.descriptor();
// The text format allows MessageSet items to be specified using
// the type name, rather than the extension identifier. If the symbol
// lookup returned a Message, and the enclosing Message has
// message_set_wire_format = true, then return the message set
// extension, if one exists.
for (int i = 0; i < foreign_type->extension_count(); i++) {
const FieldDescriptor* extension = foreign_type->extension(i);
if (extension->containing_type() == descriptor &&
extension->type() == FieldDescriptor::TYPE_MESSAGE &&
extension->is_optional() &&
extension->message_type() == foreign_type) {
// Found it.
return extension;
}
}
}
return nullptr;
}
};
// A custom error collector to record any text-format parsing errors
namespace {
class AggregateErrorCollector : public io::ErrorCollector {
public:
std::string error_;
void AddError(int /* line */, int /* column */,
const std::string& message) override {
if (!error_.empty()) {
error_ += "; ";
}
error_ += message;
}
void AddWarning(int /* line */, int /* column */,
const std::string& /* message */) override {
// Ignore warnings
}
};
} // namespace
// We construct a dynamic message of the type corresponding to
// option_field, parse the supplied text-format string into this
// message, and serialize the resulting message to produce the value.
bool DescriptorBuilder::OptionInterpreter::SetAggregateOption(
const FieldDescriptor* option_field, UnknownFieldSet* unknown_fields) {
if (!uninterpreted_option_->has_aggregate_value()) {
return AddValueError("Option \"" + option_field->full_name() +
"\" is a message. To set the entire message, use "
"syntax like \"" +
option_field->name() +
" = { <proto text format> }\". "
"To set fields within it, use "
"syntax like \"" +
option_field->name() + ".foo = value\".");
}
const Descriptor* type = option_field->message_type();
std::unique_ptr<Message> dynamic(dynamic_factory_.GetPrototype(type)->New());
GOOGLE_CHECK(dynamic.get() != nullptr)
<< "Could not create an instance of " << option_field->DebugString();
AggregateErrorCollector collector;
AggregateOptionFinder finder;
finder.builder_ = builder_;
TextFormat::Parser parser;
parser.RecordErrorsTo(&collector);
parser.SetFinder(&finder);
if (!parser.ParseFromString(uninterpreted_option_->aggregate_value(),
dynamic.get())) {
AddValueError("Error while parsing option value for \"" +
option_field->name() + "\": " + collector.error_);
return false;
} else {
std::string serial;
dynamic->SerializeToString(&serial); // Never fails
if (option_field->type() == FieldDescriptor::TYPE_MESSAGE) {
unknown_fields->AddLengthDelimited(option_field->number(), serial);
} else {
GOOGLE_CHECK_EQ(option_field->type(), FieldDescriptor::TYPE_GROUP);
UnknownFieldSet* group = unknown_fields->AddGroup(option_field->number());
group->ParseFromString(serial);
}
return true;
}
}
void DescriptorBuilder::OptionInterpreter::SetInt32(
int number, int32_t value, FieldDescriptor::Type type,
UnknownFieldSet* unknown_fields) {
switch (type) {
case FieldDescriptor::TYPE_INT32:
unknown_fields->AddVarint(
number, static_cast<uint64_t>(static_cast<int64_t>(value)));
break;
case FieldDescriptor::TYPE_SFIXED32:
unknown_fields->AddFixed32(number, static_cast<uint32_t>(value));
break;
case FieldDescriptor::TYPE_SINT32:
unknown_fields->AddVarint(
number, internal::WireFormatLite::ZigZagEncode32(value));
break;
default:
GOOGLE_LOG(FATAL) << "Invalid wire type for CPPTYPE_INT32: " << type;
break;
}
}
void DescriptorBuilder::OptionInterpreter::SetInt64(
int number, int64_t value, FieldDescriptor::Type type,
UnknownFieldSet* unknown_fields) {
switch (type) {
case FieldDescriptor::TYPE_INT64:
unknown_fields->AddVarint(number, static_cast<uint64_t>(value));
break;
case FieldDescriptor::TYPE_SFIXED64:
unknown_fields->AddFixed64(number, static_cast<uint64_t>(value));
break;
case FieldDescriptor::TYPE_SINT64:
unknown_fields->AddVarint(
number, internal::WireFormatLite::ZigZagEncode64(value));
break;
default:
GOOGLE_LOG(FATAL) << "Invalid wire type for CPPTYPE_INT64: " << type;
break;
}
}
void DescriptorBuilder::OptionInterpreter::SetUInt32(
int number, uint32_t value, FieldDescriptor::Type type,
UnknownFieldSet* unknown_fields) {
switch (type) {
case FieldDescriptor::TYPE_UINT32:
unknown_fields->AddVarint(number, static_cast<uint64_t>(value));
break;
case FieldDescriptor::TYPE_FIXED32:
unknown_fields->AddFixed32(number, static_cast<uint32_t>(value));
break;
default:
GOOGLE_LOG(FATAL) << "Invalid wire type for CPPTYPE_UINT32: " << type;
break;
}
}
void DescriptorBuilder::OptionInterpreter::SetUInt64(
int number, uint64_t value, FieldDescriptor::Type type,
UnknownFieldSet* unknown_fields) {
switch (type) {
case FieldDescriptor::TYPE_UINT64:
unknown_fields->AddVarint(number, value);
break;
case FieldDescriptor::TYPE_FIXED64:
unknown_fields->AddFixed64(number, value);
break;
default:
GOOGLE_LOG(FATAL) << "Invalid wire type for CPPTYPE_UINT64: " << type;
break;
}
}
void DescriptorBuilder::LogUnusedDependency(const FileDescriptorProto& proto,
const FileDescriptor* result) {
(void)result; // Parameter is used by Google-internal code.
if (!unused_dependency_.empty()) {
auto itr = pool_->unused_import_track_files_.find(proto.name());
bool is_error =
itr != pool_->unused_import_track_files_.end() && itr->second;
for (std::set<const FileDescriptor*>::const_iterator it =
unused_dependency_.begin();
it != unused_dependency_.end(); ++it) {
std::string error_message = "Import " + (*it)->name() + " is unused.";
if (is_error) {
AddError((*it)->name(), proto, DescriptorPool::ErrorCollector::IMPORT,
error_message);
} else {
AddWarning((*it)->name(), proto, DescriptorPool::ErrorCollector::IMPORT,
error_message);
}
}
}
}
Symbol DescriptorPool::CrossLinkOnDemandHelper(StringPiece name,
bool expecting_enum) const {
(void)expecting_enum; // Parameter is used by Google-internal code.
auto lookup_name = std::string(name);
if (!lookup_name.empty() && lookup_name[0] == '.') {
lookup_name = lookup_name.substr(1);
}
Symbol result = tables_->FindByNameHelper(this, lookup_name);
return result;
}
// Handle the lazy import building for a message field whose type wasn't built
// at cross link time. If that was the case, we saved the name of the type to
// be looked up when the accessor for the type was called. Set type_,
// enum_type_, message_type_, and default_value_enum_ appropriately.
void FieldDescriptor::InternalTypeOnceInit() const {
GOOGLE_CHECK(file()->finished_building_ == true);
const EnumDescriptor* enum_type = nullptr;
const char* lazy_type_name = reinterpret_cast<const char*>(type_once_ + 1);
const char* lazy_default_value_enum_name =
lazy_type_name + strlen(lazy_type_name) + 1;
Symbol result = file()->pool()->CrossLinkOnDemandHelper(
lazy_type_name, type_ == FieldDescriptor::TYPE_ENUM);
if (result.type() == Symbol::MESSAGE) {
type_ = FieldDescriptor::TYPE_MESSAGE;
type_descriptor_.message_type = result.descriptor();
} else if (result.type() == Symbol::ENUM) {
type_ = FieldDescriptor::TYPE_ENUM;
enum_type = type_descriptor_.enum_type = result.enum_descriptor();
}
if (enum_type) {
if (lazy_default_value_enum_name[0] != '\0') {
// Have to build the full name now instead of at CrossLink time,
// because enum_type may not be known at the time.
std::string name = enum_type->full_name();
// Enum values reside in the same scope as the enum type.
std::string::size_type last_dot = name.find_last_of('.');
if (last_dot != std::string::npos) {
name = name.substr(0, last_dot) + "." + lazy_default_value_enum_name;
} else {
name = lazy_default_value_enum_name;
}
Symbol result = file()->pool()->CrossLinkOnDemandHelper(name, true);
default_value_enum_ = result.enum_value_descriptor();
} else {
default_value_enum_ = nullptr;
}
if (!default_value_enum_) {
// We use the first defined value as the default
// if a default is not explicitly defined.
GOOGLE_CHECK(enum_type->value_count());
default_value_enum_ = enum_type->value(0);
}
}
}
void FieldDescriptor::TypeOnceInit(const FieldDescriptor* to_init) {
to_init->InternalTypeOnceInit();
}
// message_type(), enum_type(), default_value_enum(), and type()
// all share the same internal::call_once init path to do lazy
// import building and cross linking of a field of a message.
const Descriptor* FieldDescriptor::message_type() const {
if (type_once_) {
internal::call_once(*type_once_, FieldDescriptor::TypeOnceInit, this);
}
return type_ == TYPE_MESSAGE || type_ == TYPE_GROUP
? type_descriptor_.message_type
: nullptr;
}
const EnumDescriptor* FieldDescriptor::enum_type() const {
if (type_once_) {
internal::call_once(*type_once_, FieldDescriptor::TypeOnceInit, this);
}
return type_ == TYPE_ENUM ? type_descriptor_.enum_type : nullptr;
}
const EnumValueDescriptor* FieldDescriptor::default_value_enum() const {
if (type_once_) {
internal::call_once(*type_once_, FieldDescriptor::TypeOnceInit, this);
}
return default_value_enum_;
}
const std::string& FieldDescriptor::PrintableNameForExtension() const {
const bool is_message_set_extension =
is_extension() &&
containing_type()->options().message_set_wire_format() &&
type() == FieldDescriptor::TYPE_MESSAGE && is_optional() &&
extension_scope() == message_type();
return is_message_set_extension ? message_type()->full_name() : full_name();
}
void FileDescriptor::InternalDependenciesOnceInit() const {
GOOGLE_CHECK(finished_building_ == true);
const char* names_ptr = reinterpret_cast<const char*>(dependencies_once_ + 1);
for (int i = 0; i < dependency_count(); i++) {
const char* name = names_ptr;
names_ptr += strlen(name) + 1;
if (name[0] != '\0') {
dependencies_[i] = pool_->FindFileByName(name);
}
}
}
void FileDescriptor::DependenciesOnceInit(const FileDescriptor* to_init) {
to_init->InternalDependenciesOnceInit();
}
const FileDescriptor* FileDescriptor::dependency(int index) const {
if (dependencies_once_) {
// Do once init for all indices, as it's unlikely only a single index would
// be called, and saves on internal::call_once allocations.
internal::call_once(*dependencies_once_,
FileDescriptor::DependenciesOnceInit, this);
}
return dependencies_[index];
}
const Descriptor* MethodDescriptor::input_type() const {
return input_type_.Get(service());
}
const Descriptor* MethodDescriptor::output_type() const {
return output_type_.Get(service());
}
namespace internal {
void LazyDescriptor::Set(const Descriptor* descriptor) {
GOOGLE_CHECK(!once_);
descriptor_ = descriptor;
}
void LazyDescriptor::SetLazy(StringPiece name,
const FileDescriptor* file) {
// verify Init() has been called and Set hasn't been called yet.
GOOGLE_CHECK(!descriptor_);
GOOGLE_CHECK(!once_);
GOOGLE_CHECK(file && file->pool_);
GOOGLE_CHECK(file->pool_->lazily_build_dependencies_);
GOOGLE_CHECK(!file->finished_building_);
once_ = ::new (file->pool_->tables_->AllocateBytes(static_cast<int>(
sizeof(internal::once_flag) + name.size() + 1))) internal::once_flag{};
char* lazy_name = reinterpret_cast<char*>(once_ + 1);
memcpy(lazy_name, name.data(), name.size());
lazy_name[name.size()] = 0;
}
void LazyDescriptor::Once(const ServiceDescriptor* service) {
if (once_) {
internal::call_once(*once_, [&] {
auto* file = service->file();
GOOGLE_CHECK(file->finished_building_);
const char* lazy_name = reinterpret_cast<const char*>(once_ + 1);
descriptor_ =
file->pool_->CrossLinkOnDemandHelper(lazy_name, false).descriptor();
});
}
}
} // namespace internal
} // namespace protobuf
} // namespace google
#include <google/protobuf/port_undef.inc>