DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Mercurial (923415cae003)

VCS Links

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388
//! User input.

use std::io::{self, Read, Write};
use std::ops;

use event::{self, Event, Key};
use raw::IntoRawMode;

/// An iterator over input keys.
pub struct Keys<R> {
    iter: Events<R>,
}

impl<R: Read> Iterator for Keys<R> {
    type Item = Result<Key, io::Error>;

    fn next(&mut self) -> Option<Result<Key, io::Error>> {
        loop {
            match self.iter.next() {
                Some(Ok(Event::Key(k))) => return Some(Ok(k)),
                Some(Ok(_)) => continue,
                e @ Some(Err(_)) => e,
                None => return None,
            };
        }
    }
}

/// An iterator over input events.
pub struct Events<R>  {
    inner: EventsAndRaw<R>
}

impl<R: Read> Iterator for Events<R> {
    type Item = Result<Event, io::Error>;

    fn next(&mut self) -> Option<Result<Event, io::Error>> {
        self.inner.next().map(|tuple| tuple.map(|(event, _raw)| event))
    }
}

/// An iterator over input events and the bytes that define them.
pub struct EventsAndRaw<R> {
    source: R,
    leftover: Option<u8>,
}

impl<R: Read> Iterator for EventsAndRaw<R> {
    type Item = Result<(Event, Vec<u8>), io::Error>;

    fn next(&mut self) -> Option<Result<(Event, Vec<u8>), io::Error>> {
        let mut source = &mut self.source;

        if let Some(c) = self.leftover {
            // we have a leftover byte, use it
            self.leftover = None;
            return Some(parse_event(c, &mut source.bytes()));
        }

        // Here we read two bytes at a time. We need to distinguish between single ESC key presses,
        // and escape sequences (which start with ESC or a x1B byte). The idea is that if this is
        // an escape sequence, we will read multiple bytes (the first byte being ESC) but if this
        // is a single ESC keypress, we will only read a single byte.
        let mut buf = [0u8; 2];
        let res = match source.read(&mut buf) {
            Ok(0) => return None,
            Ok(1) => {
                match buf[0] {
                    b'\x1B' => Ok((Event::Key(Key::Esc), vec![b'\x1B'])),
                    c => parse_event(c, &mut source.bytes()),
                }
            }
            Ok(2) => {
                let mut option_iter = &mut Some(buf[1]).into_iter();
                let result = {
                    let mut iter = option_iter.map(|c| Ok(c)).chain(source.bytes());
                    parse_event(buf[0], &mut iter)
                };
                // If the option_iter wasn't consumed, keep the byte for later.
                self.leftover = option_iter.next();
                result
            }
            Ok(_) => unreachable!(),
            Err(e) => Err(e),
        };

        Some(res)
    }
}

fn parse_event<I>(item: u8, iter: &mut I) -> Result<(Event, Vec<u8>), io::Error>
    where I: Iterator<Item = Result<u8, io::Error>>
{
    let mut buf = vec![item];
    let result = {
        let mut iter = iter.inspect(|byte| if let &Ok(byte) = byte {
                                        buf.push(byte);
                                    });
        event::parse_event(item, &mut iter)
    };
    result.or(Ok(Event::Unsupported(buf.clone()))).map(|e| (e, buf))
}


/// Extension to `Read` trait.
pub trait TermRead {
    /// An iterator over input events.
    fn events(self) -> Events<Self> where Self: Sized;

    /// An iterator over key inputs.
    fn keys(self) -> Keys<Self> where Self: Sized;

    /// Read a line.
    ///
    /// EOT and ETX will abort the prompt, returning `None`. Newline or carriage return will
    /// complete the input.
    fn read_line(&mut self) -> io::Result<Option<String>>;

    /// Read a password.
    ///
    /// EOT and ETX will abort the prompt, returning `None`. Newline or carriage return will
    /// complete the input.
    fn read_passwd<W: Write>(&mut self, writer: &mut W) -> io::Result<Option<String>> {
        let _raw = try!(writer.into_raw_mode());
        self.read_line()
    }
}


impl<R: Read + TermReadEventsAndRaw> TermRead for R {
    fn events(self) -> Events<Self> {
        Events {
            inner: self.events_and_raw()
        }
    }
    fn keys(self) -> Keys<Self> {
        Keys { iter: self.events() }
    }

    fn read_line(&mut self) -> io::Result<Option<String>> {
        let mut buf = Vec::with_capacity(30);

        for c in self.bytes() {
            match c {
                Err(e) => return Err(e),
                Ok(0) | Ok(3) | Ok(4) => return Ok(None),
                Ok(0x7f) => {
                    buf.pop();
                }
                Ok(b'\n') | Ok(b'\r') => break,
                Ok(c) => buf.push(c),
            }
        }

        let string = try!(String::from_utf8(buf)
            .map_err(|e| io::Error::new(io::ErrorKind::InvalidData, e)));
        Ok(Some(string))
    }
}

/// Extension to `TermRead` trait. A separate trait in order to maintain backwards compatibility.
pub trait TermReadEventsAndRaw {
    /// An iterator over input events and the bytes that define them.
    fn events_and_raw(self) -> EventsAndRaw<Self> where Self: Sized;
}

impl<R: Read> TermReadEventsAndRaw for R {
    fn events_and_raw(self) -> EventsAndRaw<Self> {
        EventsAndRaw {
            source: self,
            leftover: None,
        }
    }
}

/// A sequence of escape codes to enable terminal mouse support.
const ENTER_MOUSE_SEQUENCE: &'static str = csi!("?1000h\x1b[?1002h\x1b[?1015h\x1b[?1006h");

/// A sequence of escape codes to disable terminal mouse support.
const EXIT_MOUSE_SEQUENCE: &'static str = csi!("?1006l\x1b[?1015l\x1b[?1002l\x1b[?1000l");

/// A terminal with added mouse support.
///
/// This can be obtained through the `From` implementations.
pub struct MouseTerminal<W: Write> {
    term: W,
}

impl<W: Write> From<W> for MouseTerminal<W> {
    fn from(mut from: W) -> MouseTerminal<W> {
        from.write_all(ENTER_MOUSE_SEQUENCE.as_bytes()).unwrap();

        MouseTerminal { term: from }
    }
}

impl<W: Write> Drop for MouseTerminal<W> {
    fn drop(&mut self) {
        self.term.write_all(EXIT_MOUSE_SEQUENCE.as_bytes()).unwrap();
    }
}

impl<W: Write> ops::Deref for MouseTerminal<W> {
    type Target = W;

    fn deref(&self) -> &W {
        &self.term
    }
}

impl<W: Write> ops::DerefMut for MouseTerminal<W> {
    fn deref_mut(&mut self) -> &mut W {
        &mut self.term
    }
}

impl<W: Write> Write for MouseTerminal<W> {
    fn write(&mut self, buf: &[u8]) -> io::Result<usize> {
        self.term.write(buf)
    }

    fn flush(&mut self) -> io::Result<()> {
        self.term.flush()
    }
}

#[cfg(test)]
mod test {
    use super::*;
    use std::io;
    use event::{Key, Event, MouseEvent, MouseButton};

    #[test]
    fn test_keys() {
        let mut i = b"\x1Bayo\x7F\x1B[D".keys();

        assert_eq!(i.next().unwrap().unwrap(), Key::Alt('a'));
        assert_eq!(i.next().unwrap().unwrap(), Key::Char('y'));
        assert_eq!(i.next().unwrap().unwrap(), Key::Char('o'));
        assert_eq!(i.next().unwrap().unwrap(), Key::Backspace);
        assert_eq!(i.next().unwrap().unwrap(), Key::Left);
        assert!(i.next().is_none());
    }

    #[test]
    fn test_events() {
        let mut i =
            b"\x1B[\x00bc\x7F\x1B[D\
                    \x1B[M\x00\x22\x24\x1B[<0;2;4;M\x1B[32;2;4M\x1B[<0;2;4;m\x1B[35;2;4Mb"
                    .events();

        assert_eq!(i.next().unwrap().unwrap(),
                   Event::Unsupported(vec![0x1B, b'[', 0x00]));
        assert_eq!(i.next().unwrap().unwrap(), Event::Key(Key::Char('b')));
        assert_eq!(i.next().unwrap().unwrap(), Event::Key(Key::Char('c')));
        assert_eq!(i.next().unwrap().unwrap(), Event::Key(Key::Backspace));
        assert_eq!(i.next().unwrap().unwrap(), Event::Key(Key::Left));
        assert_eq!(i.next().unwrap().unwrap(),
                   Event::Mouse(MouseEvent::Press(MouseButton::WheelUp, 2, 4)));
        assert_eq!(i.next().unwrap().unwrap(),
                   Event::Mouse(MouseEvent::Press(MouseButton::Left, 2, 4)));
        assert_eq!(i.next().unwrap().unwrap(),
                   Event::Mouse(MouseEvent::Press(MouseButton::Left, 2, 4)));
        assert_eq!(i.next().unwrap().unwrap(),
                   Event::Mouse(MouseEvent::Release(2, 4)));
        assert_eq!(i.next().unwrap().unwrap(),
                   Event::Mouse(MouseEvent::Release(2, 4)));
        assert_eq!(i.next().unwrap().unwrap(), Event::Key(Key::Char('b')));
        assert!(i.next().is_none());
    }

    #[test]
    fn test_events_and_raw() {
        let input = b"\x1B[\x00bc\x7F\x1B[D\
                    \x1B[M\x00\x22\x24\x1B[<0;2;4;M\x1B[32;2;4M\x1B[<0;2;4;m\x1B[35;2;4Mb";
        let mut output = Vec::<u8>::new();
        {
            let mut i = input.events_and_raw().map(|res| res.unwrap())
                .inspect(|&(_, ref raw)| { output.extend(raw); }).map(|(event, _)| event);

            assert_eq!(i.next().unwrap(),
            Event::Unsupported(vec![0x1B, b'[', 0x00]));
            assert_eq!(i.next().unwrap(), Event::Key(Key::Char('b')));
            assert_eq!(i.next().unwrap(), Event::Key(Key::Char('c')));
            assert_eq!(i.next().unwrap(), Event::Key(Key::Backspace));
            assert_eq!(i.next().unwrap(), Event::Key(Key::Left));
            assert_eq!(i.next().unwrap(),
            Event::Mouse(MouseEvent::Press(MouseButton::WheelUp, 2, 4)));
            assert_eq!(i.next().unwrap(),
            Event::Mouse(MouseEvent::Press(MouseButton::Left, 2, 4)));
            assert_eq!(i.next().unwrap(),
            Event::Mouse(MouseEvent::Press(MouseButton::Left, 2, 4)));
            assert_eq!(i.next().unwrap(),
            Event::Mouse(MouseEvent::Release(2, 4)));
            assert_eq!(i.next().unwrap(),
            Event::Mouse(MouseEvent::Release(2, 4)));
            assert_eq!(i.next().unwrap(), Event::Key(Key::Char('b')));
            assert!(i.next().is_none());
        }

        assert_eq!(input.iter().map(|b| *b).collect::<Vec<u8>>(), output)
    }

    #[test]
    fn test_function_keys() {
        let mut st = b"\x1BOP\x1BOQ\x1BOR\x1BOS".keys();
        for i in 1..5 {
            assert_eq!(st.next().unwrap().unwrap(), Key::F(i));
        }

        let mut st = b"\x1B[11~\x1B[12~\x1B[13~\x1B[14~\x1B[15~\
        \x1B[17~\x1B[18~\x1B[19~\x1B[20~\x1B[21~\x1B[23~\x1B[24~"
                .keys();
        for i in 1..13 {
            assert_eq!(st.next().unwrap().unwrap(), Key::F(i));
        }
    }

    #[test]
    fn test_special_keys() {
        let mut st = b"\x1B[2~\x1B[H\x1B[7~\x1B[5~\x1B[3~\x1B[F\x1B[8~\x1B[6~".keys();
        assert_eq!(st.next().unwrap().unwrap(), Key::Insert);
        assert_eq!(st.next().unwrap().unwrap(), Key::Home);
        assert_eq!(st.next().unwrap().unwrap(), Key::Home);
        assert_eq!(st.next().unwrap().unwrap(), Key::PageUp);
        assert_eq!(st.next().unwrap().unwrap(), Key::Delete);
        assert_eq!(st.next().unwrap().unwrap(), Key::End);
        assert_eq!(st.next().unwrap().unwrap(), Key::End);
        assert_eq!(st.next().unwrap().unwrap(), Key::PageDown);
        assert!(st.next().is_none());
    }

    #[test]
    fn test_esc_key() {
        let mut st = b"\x1B".keys();
        assert_eq!(st.next().unwrap().unwrap(), Key::Esc);
        assert!(st.next().is_none());
    }

    fn line_match(a: &str, b: Option<&str>) {
        let mut sink = io::sink();

        let line = a.as_bytes().read_line().unwrap();
        let pass = a.as_bytes().read_passwd(&mut sink).unwrap();

        // godammit rustc

        assert_eq!(line, pass);

        if let Some(l) = line {
            assert_eq!(Some(l.as_str()), b);
        } else {
            assert!(b.is_none());
        }
    }

    #[test]
    fn test_read() {
        let test1 = "this is the first test";
        let test2 = "this is the second test";

        line_match(test1, Some(test1));
        line_match(test2, Some(test2));
    }

    #[test]
    fn test_backspace() {
        line_match("this is the\x7f first\x7f\x7f test",
                   Some("this is th fir test"));
        line_match("this is the seco\x7fnd test\x7f",
                   Some("this is the secnd tes"));
    }

    #[test]
    fn test_end() {
        line_match("abc\nhttps://www.youtube.com/watch?v=dQw4w9WgXcQ",
                   Some("abc"));
        line_match("hello\rhttps://www.youtube.com/watch?v=yPYZpwSpKmA",
                   Some("hello"));
    }

    #[test]
    fn test_abort() {
        line_match("abc\x03https://www.youtube.com/watch?v=dQw4w9WgXcQ", None);
        line_match("hello\x04https://www.youtube.com/watch?v=yPYZpwSpKmA", None);
    }

}