DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Mercurial (923415cae003)

VCS Links

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535
//! Miscellaneous utilities.

pub trait ToStr {
    /// Return the value as a `str`.
    fn to_str(&self) -> &str;
    fn newline(&self) -> String {
        format!("{}\n", self.to_str())
    }

    /// Append newline if the string is not empty.
    fn newline_if_not_empty(&self) -> String {
        let s = self.to_str();
        if s.len() == 0 {
            "".to_string()
        } else {
            format!("{}\n", s)
        }
    }
}

impl<'a> ToStr for &'a str {
    fn to_str(&self) -> &str {
        *self
    }
}

impl ToStr for str {
    fn to_str(&self) -> &str {
        self
    }
}

impl ToStr for String {
    fn to_str(&self) -> &str {
        &self
    }
}

/// A string or string-like construction that can be
/// converted to upper case, lower case, class case, etc
pub trait ToCases: ToStr {
    /// Return the value in class case, e.g.
    ///
    /// ```
    /// use binjs_meta::util::ToCases;
    ///
    /// assert_eq!(&"foo_bar".to_class_cases(), "FooBar");
    /// assert_eq!(&"fooBars".to_class_cases(), "FooBars");
    /// ```
    fn to_class_cases(&self) -> String {
        self.to_str().to_class_cases()
    }

    /// Return the value in a format suitable for use as a cpp `enum`
    /// variants.
    ///
    /// ```
    /// use binjs_meta::util::ToCases;
    ///
    /// assert_eq!(&"foo_bar".to_cpp_enum_case(), "FooBar");
    /// assert_eq!(&"fooBars".to_cpp_enum_case(), "FooBars");
    /// assert_eq!(&"+=".to_cpp_enum_case(), "PlusAssign");
    /// ```
    fn to_cpp_enum_case(&self) -> String {
        self.to_str().to_cpp_enum_case()
    }

    /// Return the value in a format suitable for use as a C++ field name
    /// or identifier.
    ///
    /// ```
    /// use binjs_meta::util::ToCases;
    ///
    /// assert_eq!(&"foo_bar".to_cpp_field_case(), "fooBar");
    /// assert_eq!(&"fooBars".to_cpp_field_case(), "fooBars");
    /// assert_eq!(&"class".to_cpp_field_case(), "class_");
    /// ```
    fn to_cpp_field_case(&self) -> String {
        self.to_str().to_cpp_field_case()
    }

    /// Return the value in a format suitable for use as a Rust field name
    /// or identifier.
    ///
    /// ```
    /// use binjs_meta::util::ToCases;
    ///
    /// assert_eq!(&"foo_bar".to_rust_identifier_case(), "foo_bar");
    /// assert_eq!(&"fooBars".to_rust_identifier_case(), "foo_bars");
    /// assert_eq!(&"self".to_rust_identifier_case(), "self_");
    /// ```
    fn to_rust_identifier_case(&self) -> String {
        self.to_str().to_rust_identifier_case()
    }
}

impl<T> ToCases for T
where
    T: ToStr,
{
    fn to_class_cases(&self) -> String {
        match self.to_str() {
            "" => "Null".to_string(),
            other => {
                let result = inflector::cases::pascalcase::to_pascal_case(other);
                assert!(
                    result.to_str().len() != 0,
                    "Could not convert '{}' to class case",
                    other
                );
                result
            }
        }
    }
    fn to_cpp_enum_case(&self) -> String {
        match self.to_str() {
            "+=" => "PlusAssign".to_string(),
            "-=" => "MinusAssign".to_string(),
            "*=" => "MulAssign".to_string(),
            "/=" => "DivAssign".to_string(),
            "%=" => "ModAssign".to_string(),
            "**=" => "PowAssign".to_string(),
            "<<=" => "LshAssign".to_string(),
            ">>=" => "RshAssign".to_string(),
            ">>>=" => "UrshAssign".to_string(),
            "|=" => "BitOrAssign".to_string(),
            "^=" => "BitXorAssign".to_string(),
            "&=" => "BitAndAssign".to_string(),
            "," => "Comma".to_string(),
            "||" => "LogicalOr".to_string(),
            "&&" => "LogicalAnd".to_string(),
            "|" => "BitOr".to_string(),
            "^" => "BitXor".to_string(),
            "&" => "BitAnd".to_string(),
            "==" => "Eq".to_string(),
            "!=" => "Neq".to_string(),
            "===" => "StrictEq".to_string(),
            "!==" => "StrictNeq".to_string(),
            "<" => "LessThan".to_string(),
            "<=" => "LeqThan".to_string(),
            ">" => "GreaterThan".to_string(),
            ">=" => "GeqThan".to_string(),
            "<<" => "Lsh".to_string(),
            ">>" => "Rsh".to_string(),
            ">>>" => "Ursh".to_string(),
            "+" => "Plus".to_string(),
            "-" => "Minus".to_string(),
            "~" => "BitNot".to_string(),
            "*" => "Mul".to_string(),
            "/" => "Div".to_string(),
            "%" => "Mod".to_string(),
            "**" => "Pow".to_string(),
            "!" => "Not".to_string(),
            "++" => "Incr".to_string(),
            "--" => "Decr".to_string(),
            "" => "_Null".to_string(),
            _ => {
                let class_cased = self.to_class_cases();
                assert!(
                    &class_cased != "",
                    "FIXME: `to_class_cases` does not handle {} yet",
                    self.to_str()
                );
                class_cased
            }
        }
    }
    fn to_cpp_field_case(&self) -> String {
        let snake = inflector::cases::camelcase::to_camel_case(self.to_str());
        match &snake as &str {
            "class" => "class_".to_string(),
            "operator" => "operator_".to_string(),
            "const" => "const_".to_string(),
            "void" => "void_".to_string(),
            "delete" => "delete_".to_string(),
            "in" => "in_".to_string(),
            // Names reserved by us
            "result" => "result_".to_string(),
            "kind" => "kind_".to_string(),
            // Special cases
            "" => unimplemented!(
                "FIXME: `to_cpp_field_case` does not handle {} yet",
                self.to_str()
            ),
            _ => snake,
        }
    }
    fn to_rust_identifier_case(&self) -> String {
        let snake = inflector::cases::snakecase::to_snake_case(self.to_str());
        match &snake as &str {
            "self" => "self_".to_string(),
            "super" => "super_".to_string(),
            "type" => "type_".to_string(),
            "" if self.to_str() == "" => "null".to_string(),
            "" => unimplemented!(
                "FIXME: `to_rust_identifier_case` does not handle {} yet",
                self.to_str()
            ),
            _ => snake,
        }
    }
}

/// A string or string-like construction that can be reindented.
pub trait Reindentable {
    /// Remove leading whitespace, replace it with `prefix`.
    ///
    /// If `self` spans more than one line, the leading whitespace
    /// is computed from the first line and extracted from all lines
    /// and `prefix` is added to all lines.
    ///
    /// ```
    /// use binjs_meta::util::Reindentable;
    ///
    /// assert_eq!(&"abc".reindent("   "), "   abc");
    /// assert_eq!(&" def".reindent("   "), "   def");
    /// assert_eq!(&"  ghi".reindent("   "), "   ghi");
    /// assert_eq!(&" jkl\n    mno".reindent("   "), "   jkl\n      mno");
    /// ```
    fn reindent(&self, prefix: &str) -> String;

    /// Remove leading whitespace, replace it with `prefix`,
    /// ensure that the text fits within `width` columns.
    ///
    /// If `self` spans more than one line, the leading whitespace
    /// is computed from the first line and extracted from all lines.
    /// and `prefix` is added to all lines.
    ///
    /// If the result goes past `width` columns, `self` is split
    /// into several lines to try and fit within `width` columns.
    ///
    /// ```
    /// use binjs_meta::util::Reindentable;
    ///
    /// assert_eq!(&"abc".fit("// ", 30), "// abc");
    /// assert_eq!(&" def".fit("// ", 30), "// def");
    /// assert_eq!(&"  ghi".fit("// ", 30), "// ghi");
    /// assert_eq!(&" jkl\n    mno".fit("// ", 30), "// jkl\n//    mno");
    /// assert_eq!(&"abc def ghi".fit("// ", 8), "// abc\n// def\n// ghi");
    /// assert_eq!(&"abc def ghi".fit("// ", 5), "// abc\n// def\n// ghi");
    /// ```
    fn fit(&self, prefix: &str, width: usize) -> String;
}

impl<T> Reindentable for T
where
    T: ToStr,
{
    fn reindent(&self, prefix: &str) -> String {
        use itertools::Itertools;

        let str = self.to_str();

        // Determine the number of whitespace chars on the first line.
        // Trim that many whitespace chars on the following lines.
        if let Some(first_line) = str.lines().next() {
            let indent_len = first_line
                .chars()
                .take_while(|c| char::is_whitespace(*c))
                .count();
            format!(
                "{}",
                str.lines()
                    .map(|line| if line.len() > indent_len {
                        format!(
                            "{prefix}{text}",
                            prefix = prefix,
                            text = line[indent_len..].to_string()
                        )
                    } else {
                        "".to_string()
                    })
                    .format("\n")
            )
        } else {
            "".to_string()
        }
    }

    fn fit(&self, prefix: &str, columns: usize) -> String {
        use itertools::Itertools;

        let str = self.to_str();
        // Determine the number of whitespace chars on the first line.
        // Trim that many whitespace chars on the following lines.
        if let Some(first_line) = str.lines().next() {
            let indent_len = first_line
                .chars()
                .take_while(|c| char::is_whitespace(*c))
                .count();
            let mut lines = vec![];
            'per_line: for line in str.lines() {
                eprintln!("Inspecting line {}", line);
                let text = &line[indent_len..];
                let mut gobbled = 0;
                while text.len() > gobbled {
                    let mut rest = &text[gobbled..];
                    eprintln!("Line still contains {} ({})", rest, gobbled);
                    if rest.len() + prefix.len() > columns {
                        // Try and find the largest prefix of `text` that fits within `columns`.
                        let mut iterator = rest
                            .chars()
                            .enumerate()
                            .filter(|&(_, c)| char::is_whitespace(c));
                        let mut last_whitespace_before_break = None;
                        let mut first_whitespace_after_break = None;
                        while let Some((found_pos, _)) = iterator.next() {
                            if found_pos + prefix.len() <= columns {
                                last_whitespace_before_break = Some(found_pos);
                            } else {
                                first_whitespace_after_break = Some(found_pos);
                                break;
                            }
                        }

                        match (last_whitespace_before_break, first_whitespace_after_break) {
                            (None, None) => {
                                eprintln!("Ok, string didn't contain any whitespace: '{}'", rest);
                                // Oh, `rest` does not contain any whitespace. Well, use everything.
                                lines.push(format!("{prefix}{rest}", prefix = prefix, rest = rest));
                                continue 'per_line;
                            }
                            (Some(pos), _) | (None, Some(pos)) if pos != 0 => {
                                eprintln!("Best whitespace found at {}", pos);
                                // Use `rest[0..pos]`, trimmed right.
                                gobbled += pos + 1;
                                let line = format!(
                                    "{prefix}{rest}",
                                    prefix = prefix,
                                    rest = rest[0..pos].trim_end()
                                );
                                lines.push(line)
                            }
                            _else => panic!("{:?}", _else),
                        }
                    } else {
                        let line = format!("{prefix}{rest}", prefix = prefix, rest = rest);
                        lines.push(line);
                        continue 'per_line;
                    }
                }
            }
            format!("{lines}", lines = lines.iter().format("\n"))
        } else {
            "".to_string()
        }
    }
}

impl Reindentable for Option<String> {
    fn reindent(&self, prefix: &str) -> String {
        match *self {
            None => "".to_string(),
            Some(ref string) => string.reindent(prefix),
        }
    }
    fn fit(&self, prefix: &str, columns: usize) -> String {
        match *self {
            None => "".to_string(),
            Some(ref string) => string.fit(prefix, columns),
        }
    }
}

pub mod name_sorter {
    use std;
    use std::collections::HashMap;

    /// A type used to sort names by length, then prefixes, to speed
    /// up lookups.
    pub struct NameSorter<T> {
        per_length: HashMap<usize, Node<T>>,
        len: usize,
    }
    impl<T> NameSorter<T> {
        pub fn new() -> Self {
            NameSorter {
                per_length: HashMap::new(),
                len: 0,
            }
        }

        /// Return the number of items in the sorter.
        pub fn len(&self) -> usize {
            debug_assert!({
                // Let's check that the length is always the sum of sublengths.
                let len = self
                    .per_length
                    .values()
                    .map(|v| match v {
                        &Node::Leaf(Some(_)) => 1,
                        &Node::Leaf(_) => panic!("Invariant error: empty leaf!"),
                        &Node::Internal { ref len, .. } => *len,
                    })
                    .fold(0, |x, y| (x + y));
                len == self.len
            });
            self.len
        }

        /// Insert a value in a sorter.
        ///
        /// ```
        /// let mut sorter = binjs_meta::util::name_sorter::NameSorter::new();
        /// assert_eq!(sorter.len(), 0);
        ///
        /// assert!(sorter.insert("abcd", 0).is_none());
        /// assert_eq!(sorter.len(), 1);
        /// assert_eq!(*sorter.get("abcd").unwrap(), 0);
        /// assert!(sorter.get("dbca").is_none());
        /// assert!(sorter.get("").is_none());
        ///
        /// assert!(sorter.insert("dcba", 1).is_none());
        /// assert_eq!(sorter.len(), 2);
        /// assert_eq!(*sorter.get("abcd").unwrap(), 0);
        /// assert_eq!(*sorter.get("dcba").unwrap(), 1);
        /// assert!(sorter.get("").is_none());
        ///
        /// assert_eq!(sorter.insert("abcd", 3).unwrap(), 0);
        /// assert_eq!(sorter.len(), 2);
        /// assert_eq!(*sorter.get("abcd").unwrap(), 3);
        /// assert_eq!(*sorter.get("dcba").unwrap(), 1);
        /// assert!(sorter.get("").is_none());
        ///
        /// assert!(sorter.insert("", 4).is_none());
        /// assert_eq!(sorter.len(), 3);
        /// assert_eq!(*sorter.get("abcd").unwrap(), 3);
        /// assert_eq!(*sorter.get("dcba").unwrap(), 1);
        /// assert_eq!(*sorter.get("").unwrap(), 4);
        ///
        /// assert_eq!(sorter.insert("", 5).unwrap(), 4);
        /// assert_eq!(sorter.len(), 3);
        /// assert_eq!(*sorter.get("abcd").unwrap(), 3);
        /// assert_eq!(*sorter.get("dcba").unwrap(), 1);
        /// assert_eq!(*sorter.get("").unwrap(), 5);
        /// ```
        pub fn insert(&mut self, key: &str, value: T) -> Option<T> {
            if let Some(node) = self.per_length.get_mut(&key.len()) {
                let result = node.insert(key, value);
                if result.is_none() {
                    self.len += 1;
                }
                return result;
            }
            let node = Node::new(key, value);
            self.per_length.insert(key.len(), node);
            self.len += 1;
            None
        }

        pub fn iter(&self) -> impl Iterator<Item = (usize, &Node<T>)> {
            self.per_length.iter().map(|(&len, node)| (len, node))
        }

        pub fn get(&self, key: &str) -> Option<&T> {
            self.per_length
                .get(&key.len())
                .and_then(|node| node.get(key))
        }
    }

    pub enum Node<T> {
        Leaf(Option<T>),
        Internal {
            /// The children of this node.
            ///
            /// Invariant: May only be empty during a call to `insert()`.
            children: HashMap<char, Node<T>>,

            /// Number of leaves in this subtree.
            len: usize,
        },
    }
    impl<T> Node<T> {
        fn get(&self, key: &str) -> Option<&T> {
            match (self, key.chars().next()) {
                (&Node::Leaf(Some(ref result)), None) => Some(result),
                (&Node::Internal { ref children, .. }, Some(c)) => {
                    debug_assert!(children.len() != 0);
                    children.get(&c).and_then(|node| node.get(&key[1..]))
                }
                _ => panic!("Invariant error: length"),
            }
        }

        fn insert(&mut self, key: &str, value: T) -> Option<T> {
            match (self, key.chars().next()) {
                (&mut Node::Leaf(ref mut old), None) => {
                    // We have reached the end of `name`.
                    let mut data = Some(value);
                    std::mem::swap(&mut data, old);
                    data
                }
                (
                    &mut Node::Internal {
                        ref mut children,
                        ref mut len,
                    },
                    Some(c),
                ) => {
                    let result = {
                        let entry = if key.len() == 1 {
                            children.entry(c).or_insert_with(|| Node::Leaf(None))
                        } else {
                            children.entry(c).or_insert_with(|| Node::Internal {
                                children: HashMap::new(),
                                len: 0,
                            })
                        };
                        entry.insert(&key[1..], value)
                    };
                    if result.is_none() {
                        *len += 1;
                    }
                    debug_assert!(*len > 0);
                    debug_assert!(children.len() != 0);
                    result
                }
                _ => panic!("Invariant error: length"),
            }
        }
        fn new(key: &str, value: T) -> Self {
            if key.len() == 0 {
                Node::Leaf(Some(value))
            } else {
                let mut node = Node::Internal {
                    children: HashMap::new(),
                    len: 0,
                };
                assert!(node.insert(key, value).is_none());
                node
            }
        }
    }
}