Source code

Revision control

Copy as Markdown

Other Tools

// Globals, to make testing and debugging easier.
let context;
let filter;
let signal;
let renderedBuffer;
let renderedData;
// Use a power of two to eliminate round-off in converting frame to time
let sampleRate = 32768;
let pulseLengthFrames = .1 * sampleRate;
// Maximum allowed error for the test to succeed. Experimentally determined.
let maxAllowedError = 5.9e-8;
// This must be large enough so that the filtered result is essentially zero.
// See comments for createTestAndRun. This must be a whole number of frames.
let timeStep = Math.ceil(.1 * sampleRate) / sampleRate;
// Maximum number of filters we can process (mostly for setting the
// render length correctly.)
let maxFilters = 5;
// How long to render. Must be long enough for all of the filters we
// want to test.
let renderLengthSeconds = timeStep * (maxFilters + 1);
let renderLengthSamples = Math.round(renderLengthSeconds * sampleRate);
// Number of filters that will be processed.
let nFilters;
function createImpulseBuffer(context, length) {
let impulse = context.createBuffer(1, length, context.sampleRate);
let data = impulse.getChannelData(0);
for (let k = 1; k < data.length; ++k) {
data[k] = 0;
}
data[0] = 1;
return impulse;
}
function createTestAndRun(context, filterType, testParameters) {
// To test the filters, we apply a signal (an impulse) to each of
// the specified filters, with each signal starting at a different
// time. The output of the filters is summed together at the
// output. Thus for filter k, the signal input to the filter
// starts at time k * timeStep. For this to work well, timeStep
// must be large enough for the output of each filter to have
// decayed to zero with timeStep seconds. That way the filter
// outputs don't interfere with each other.
let filterParameters = testParameters.filterParameters;
nFilters = Math.min(filterParameters.length, maxFilters);
signal = new Array(nFilters);
filter = new Array(nFilters);
impulse = createImpulseBuffer(context, pulseLengthFrames);
// Create all of the signal sources and filters that we need.
for (let k = 0; k < nFilters; ++k) {
signal[k] = context.createBufferSource();
signal[k].buffer = impulse;
filter[k] = context.createBiquadFilter();
filter[k].type = filterType;
filter[k].frequency.value =
context.sampleRate / 2 * filterParameters[k].cutoff;
filter[k].detune.value = (filterParameters[k].detune === undefined) ?
0 :
filterParameters[k].detune;
filter[k].Q.value = filterParameters[k].q;
filter[k].gain.value = filterParameters[k].gain;
signal[k].connect(filter[k]);
filter[k].connect(context.destination);
signal[k].start(timeStep * k);
}
return context.startRendering().then(buffer => {
checkFilterResponse(buffer, filterType, testParameters);
});
}
function addSignal(dest, src, destOffset) {
// Add src to dest at the given dest offset.
for (let k = destOffset, j = 0; k < dest.length, j < src.length; ++k, ++j) {
dest[k] += src[j];
}
}
function generateReference(filterType, filterParameters) {
let result = new Array(renderLengthSamples);
let data = new Array(renderLengthSamples);
// Initialize the result array and data.
for (let k = 0; k < result.length; ++k) {
result[k] = 0;
data[k] = 0;
}
// Make data an impulse.
data[0] = 1;
for (let k = 0; k < nFilters; ++k) {
// Filter an impulse
let detune = (filterParameters[k].detune === undefined) ?
0 :
filterParameters[k].detune;
let frequency = filterParameters[k].cutoff *
Math.pow(2, detune / 1200); // Apply detune, converting from Cents.
let filterCoef = createFilter(
filterType, frequency, filterParameters[k].q, filterParameters[k].gain);
let y = filterData(filterCoef, data, renderLengthSamples);
// Accumulate this filtered data into the final output at the desired
// offset.
addSignal(result, y, timeToSampleFrame(timeStep * k, sampleRate));
}
return result;
}
function checkFilterResponse(renderedBuffer, filterType, testParameters) {
let filterParameters = testParameters.filterParameters;
let maxAllowedError = testParameters.threshold;
let should = testParameters.should;
renderedData = renderedBuffer.getChannelData(0);
reference = generateReference(filterType, filterParameters);
let len = Math.min(renderedData.length, reference.length);
let success = true;
// Maximum error between rendered data and expected data
let maxError = 0;
// Sample offset where the maximum error occurred.
let maxPosition = 0;
// Number of infinities or NaNs that occurred in the rendered data.
let invalidNumberCount = 0;
should(nFilters, 'Number of filters tested')
.beEqualTo(filterParameters.length);
// Compare the rendered signal with our reference, keeping
// track of the maximum difference (and the offset of the max
// difference.) Check for bad numbers in the rendered output
// too. There shouldn't be any.
for (let k = 0; k < len; ++k) {
let err = Math.abs(renderedData[k] - reference[k]);
if (err > maxError) {
maxError = err;
maxPosition = k;
}
if (!isValidNumber(renderedData[k])) {
++invalidNumberCount;
}
}
should(
invalidNumberCount, 'Number of non-finite values in the rendered output')
.beEqualTo(0);
should(maxError, 'Max error in ' + filterTypeName[filterType] + ' response')
.beLessThanOrEqualTo(maxAllowedError);
}