DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Header

Mercurial (c68fe15a81fc)

VCS Links

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323
/* This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */

#ifdef FREEBL_NO_DEPEND
#include "stubs.h"
#endif

#include "rijndael.h"
#include "blapi.h"
#include "cmac.h"
#include "secerr.h"
#include "nspr.h"

struct CMACContextStr {
    /* Information about the block cipher to use internally. The cipher should
     * be placed in ECB mode so that we can use it to directly encrypt blocks.
     *
     *
     * To add a new cipher, add an entry to CMACCipher, update CMAC_Init,
     * cmac_Encrypt, and CMAC_Destroy methods to handle the new cipher, and
     * add a new Context pointer to the cipher union with the correct type. */
    CMACCipher cipherType;
    union {
        AESContext *aes;
    } cipher;
    unsigned int blockSize;

    /* Internal keys which are conditionally used by the algorithm. Derived
     * from encrypting the NULL block. We leave the storing of (and the
     * cleanup of) the CMAC key to the underlying block cipher. */
    unsigned char k1[MAX_BLOCK_SIZE];
    unsigned char k2[MAX_BLOCK_SIZE];

    /* When Update is called with data which isn't a multiple of the block
     * size, we need a place to put it. HMAC handles this by passing it to
     * the underlying hash function right away; we can't do that as the
     * contract on the cipher object is different. */
    unsigned int partialIndex;
    unsigned char partialBlock[MAX_BLOCK_SIZE];

    /* Last encrypted block. This gets xor-ed with partialBlock prior to
     * encrypting it. NIST defines this to be the empty string to begin. */
    unsigned char lastBlock[MAX_BLOCK_SIZE];
};

static void
cmac_ShiftLeftOne(unsigned char *out, const unsigned char *in, int length)
{
    int i = 0;
    for (; i < length - 1; i++) {
        out[i] = in[i] << 1;
        out[i] |= in[i + 1] >> 7;
    }
    out[i] = in[i] << 1;
}

static SECStatus
cmac_Encrypt(CMACContext *ctx, unsigned char *output,
             const unsigned char *input,
             unsigned int inputLen)
{
    if (ctx->cipherType == CMAC_AES) {
        unsigned int tmpOutputLen;
        SECStatus rv = AES_Encrypt(ctx->cipher.aes, output, &tmpOutputLen,
                                   ctx->blockSize, input, inputLen);

        /* Assumption: AES_Encrypt (when in ECB mode) always returns an
         * output of length equal to blockSize (what was pass as the value
         * of the maxOutputLen parameter). */
        PORT_Assert(tmpOutputLen == ctx->blockSize);
        return rv;
    }

    return SECFailure;
}

/* NIST SP.800-38B, 6.1 Subkey Generation */
static SECStatus
cmac_GenerateSubkeys(CMACContext *ctx)
{
    unsigned char null_block[MAX_BLOCK_SIZE] = { 0 };
    unsigned char L[MAX_BLOCK_SIZE];
    unsigned char v;
    unsigned char i;

    /* Step 1: L = AES(key, null_block) */
    if (cmac_Encrypt(ctx, L, null_block, ctx->blockSize) != SECSuccess) {
        return SECFailure;
    }

    /* In the following, some effort has been made to be constant time. Rather
     * than conditioning on the value of the MSB (of L or K1), we use the loop
     * to build a mask for the conditional constant. */

    /* Step 2: If MSB(L) = 0, K1 = L << 1. Else, K1 = (L << 1) ^ R_b. */
    cmac_ShiftLeftOne(ctx->k1, L, ctx->blockSize);
    v = L[0] >> 7;
    for (i = 1; i <= 7; i <<= 1) {
        v |= (v << i);
    }
    ctx->k1[ctx->blockSize - 1] ^= (0x87 & v);

    /* Step 3: If MSB(K1) = 0, K2 = K1 << 1. Else, K2 = (K1 <, 1) ^ R_b. */
    cmac_ShiftLeftOne(ctx->k2, ctx->k1, ctx->blockSize);
    v = ctx->k1[0] >> 7;
    for (i = 1; i <= 7; i <<= 1) {
        v |= (v << i);
    }
    ctx->k2[ctx->blockSize - 1] ^= (0x87 & v);

    /* Any intermediate value in the computation of the subkey shall be
     * secret. */
    PORT_Memset(null_block, 0, MAX_BLOCK_SIZE);
    PORT_Memset(L, 0, MAX_BLOCK_SIZE);

    /* Step 4: Return the values. */
    return SECSuccess;
}

/* NIST SP.800-38B, 6.2 MAC Generation step 6 */
static SECStatus
cmac_UpdateState(CMACContext *ctx)
{
    if (ctx == NULL || ctx->partialIndex != ctx->blockSize) {
        PORT_SetError(SEC_ERROR_INVALID_ARGS);
        return SECFailure;
    }

    /* Step 6: C_i = CIPHER(key, C_{i-1} ^ M_i)  for 1 <= i <= n, and
     *         C_0 is defined as the empty string. */

    for (unsigned int index = 0; index < ctx->blockSize; index++) {
        ctx->partialBlock[index] ^= ctx->lastBlock[index];
    }

    return cmac_Encrypt(ctx, ctx->lastBlock, ctx->partialBlock, ctx->blockSize);
}

SECStatus
CMAC_Init(CMACContext *ctx, CMACCipher type,
          const unsigned char *key, unsigned int key_len)
{
    if (ctx == NULL) {
        PORT_SetError(SEC_ERROR_NO_MEMORY);
        return SECFailure;
    }

    /* We only currently support AES-CMAC. */
    if (type != CMAC_AES) {
        PORT_SetError(SEC_ERROR_INVALID_ARGS);
        return SECFailure;
    }

    PORT_Memset(ctx, 0, sizeof(*ctx));

    ctx->blockSize = AES_BLOCK_SIZE;
    ctx->cipherType = CMAC_AES;
    ctx->cipher.aes = AES_CreateContext(key, NULL, NSS_AES, 1, key_len,
                                        ctx->blockSize);
    if (ctx->cipher.aes == NULL) {
        return SECFailure;
    }

    return CMAC_Begin(ctx);
}

CMACContext *
CMAC_Create(CMACCipher type, const unsigned char *key,
            unsigned int key_len)
{
    CMACContext *result = PORT_New(CMACContext);

    if (CMAC_Init(result, type, key, key_len) != SECSuccess) {
        CMAC_Destroy(result, PR_TRUE);
        return NULL;
    }

    return result;
}

SECStatus
CMAC_Begin(CMACContext *ctx)
{
    if (ctx == NULL) {
        return SECFailure;
    }

    /* Ensure that our blockSize is less than the maximum. When this fails,
     * a cipher with a larger block size was added and MAX_BLOCK_SIZE needs
     * to be updated accordingly. */
    PORT_Assert(ctx->blockSize <= MAX_BLOCK_SIZE);

    if (cmac_GenerateSubkeys(ctx) != SECSuccess) {
        return SECFailure;
    }

    /* Set the index to write partial blocks at to zero. This saves us from
     * having to clear ctx->partialBlock. */
    ctx->partialIndex = 0;

    /* Step 5: Let C_0 = 0^b. */
    PORT_Memset(ctx->lastBlock, 0, ctx->blockSize);

    return SECSuccess;
}

/* NIST SP.800-38B, 6.2 MAC Generation */
SECStatus
CMAC_Update(CMACContext *ctx, const unsigned char *data,
            unsigned int data_len)
{
    unsigned int data_index = 0;
    if (ctx == NULL) {
        PORT_SetError(SEC_ERROR_INVALID_ARGS);
        return SECFailure;
    }

    if (data == NULL || data_len == 0) {
        return SECSuccess;
    }

    /* Copy as many bytes from data into ctx->partialBlock as we can, up to
     * the maximum of the remaining data and the remaining space in
     * ctx->partialBlock.
     *
     * Note that we swap the order (encrypt *then* copy) because the last
     * block is different from the rest. If we end on an even multiple of
     * the block size, we have to be able to XOR it with K1. But we won't know
     * that it is the last until CMAC_Finish is called (and by then, CMAC_Update
     * has already returned). */
    while (data_index < data_len) {
        if (ctx->partialIndex == ctx->blockSize) {
            if (cmac_UpdateState(ctx) != SECSuccess) {
                return SECFailure;
            }

            ctx->partialIndex = 0;
        }

        unsigned int copy_len = data_len - data_index;
        if (copy_len > (ctx->blockSize - ctx->partialIndex)) {
            copy_len = ctx->blockSize - ctx->partialIndex;
        }

        PORT_Memcpy(ctx->partialBlock + ctx->partialIndex, data + data_index, copy_len);
        data_index += copy_len;
        ctx->partialIndex += copy_len;
    }

    return SECSuccess;
}

/* NIST SP.800-38B, 6.2 MAC Generation */
SECStatus
CMAC_Finish(CMACContext *ctx, unsigned char *result,
            unsigned int *result_len,
            unsigned int max_result_len)
{
    if (ctx == NULL || result == NULL || max_result_len == 0) {
        PORT_SetError(SEC_ERROR_INVALID_ARGS);
        return SECFailure;
    }

    if (max_result_len > ctx->blockSize) {
        /* This is a weird situation. The PKCS #11 soft tokencode passes
         * sizeof(result) here, which is hard-coded as SFTK_MAX_MAC_LENGTH.
         * This later gets truncated to min(SFTK_MAX_MAC_LENGTH, requested). */
        max_result_len = ctx->blockSize;
    }

    /* Step 4: If M_n* is a complete block, M_n = K1 ^ M_n*. Else,
     * M_n = K2 ^ (M_n* || 10^j). */
    if (ctx->partialIndex == ctx->blockSize) {
        /* XOR in K1. */
        for (unsigned int index = 0; index < ctx->blockSize; index++) {
            ctx->partialBlock[index] ^= ctx->k1[index];
        }
    } else {
        /* Use 10* padding on the partial block. */
        ctx->partialBlock[ctx->partialIndex++] = 0x80;
        PORT_Memset(ctx->partialBlock + ctx->partialIndex, 0,
                    ctx->blockSize - ctx->partialIndex);
        ctx->partialIndex = ctx->blockSize;

        /* XOR in K2. */
        for (unsigned int index = 0; index < ctx->blockSize; index++) {
            ctx->partialBlock[index] ^= ctx->k2[index];
        }
    }

    /* Encrypt the block. */
    if (cmac_UpdateState(ctx) != SECSuccess) {
        return SECFailure;
    }

    /* Step 7 & 8: T = MSB_tlen(C_n); return T. */
    PORT_Memcpy(result, ctx->lastBlock, max_result_len);
    if (result_len != NULL) {
        *result_len = max_result_len;
    }
    return SECSuccess;
}

void
CMAC_Destroy(CMACContext *ctx, PRBool free_it)
{
    if (ctx == NULL) {
        return;
    }

    if (ctx->cipherType == CMAC_AES && ctx->cipher.aes != NULL) {
        AES_DestroyContext(ctx->cipher.aes, PR_TRUE);
    }

    /* Destroy everything in the context. This includes sensitive data in
     * K1, K2, and lastBlock. */
    PORT_Memset(ctx, 0, sizeof(*ctx));

    if (free_it == PR_TRUE) {
        PORT_Free(ctx);
    }
}