DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Implementation

Mercurial (c68fe15a81fc)

VCS Links

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*-
 * vim: set sw=2 ts=8 et tw=80 :
 */
/* This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */

#ifndef mozilla_net_ChannelEventQueue_h
#define mozilla_net_ChannelEventQueue_h

#include "nsTArray.h"
#include "nsIEventTarget.h"
#include "nsThreadUtils.h"
#include "nsXULAppAPI.h"
#include "mozilla/DebugOnly.h"
#include "mozilla/Mutex.h"
#include "mozilla/RecursiveMutex.h"
#include "mozilla/UniquePtr.h"
#include "mozilla/Unused.h"

class nsISupports;

namespace mozilla {
namespace net {

class ChannelEvent {
 public:
  MOZ_COUNTED_DEFAULT_CTOR(ChannelEvent)
  MOZ_COUNTED_DTOR_VIRTUAL(ChannelEvent) virtual void Run() = 0;
  virtual already_AddRefed<nsIEventTarget> GetEventTarget() = 0;
};

// Note that MainThreadChannelEvent should not be used in child process since
// GetEventTarget() directly returns an unlabeled event target.
class MainThreadChannelEvent : public ChannelEvent {
 public:
  MOZ_COUNTED_DEFAULT_CTOR(MainThreadChannelEvent)
  MOZ_COUNTED_DTOR_OVERRIDE(MainThreadChannelEvent)

  already_AddRefed<nsIEventTarget> GetEventTarget() override {
    MOZ_ASSERT(XRE_IsParentProcess());

    return do_AddRef(GetMainThreadEventTarget());
  }
};

// This event is designed to be only used for e10s child channels.
// The goal is to force the child channel to implement GetNeckoTarget()
// which should return a labeled main thread event target so that this
// channel event can be dispatched correctly.
template <typename T>
class NeckoTargetChannelEvent : public ChannelEvent {
 public:
  explicit NeckoTargetChannelEvent(T* aChild) : mChild(aChild) {
    MOZ_COUNT_CTOR(NeckoTargetChannelEvent);
  }
  virtual ~NeckoTargetChannelEvent() {
    MOZ_COUNT_DTOR(NeckoTargetChannelEvent);
  }

  already_AddRefed<nsIEventTarget> GetEventTarget() override {
    MOZ_ASSERT(mChild);

    return mChild->GetNeckoTarget();
  }

 protected:
  T* mChild;
};

class ChannelFunctionEvent : public ChannelEvent {
 public:
  ChannelFunctionEvent(
      std::function<already_AddRefed<nsIEventTarget>()>&& aGetEventTarget,
      std::function<void()>&& aCallback)
      : mGetEventTarget(std::move(aGetEventTarget)),
        mCallback(std::move(aCallback)) {}

  void Run() override { mCallback(); }
  already_AddRefed<nsIEventTarget> GetEventTarget() override {
    return mGetEventTarget();
  }

 private:
  const std::function<already_AddRefed<nsIEventTarget>()> mGetEventTarget;
  const std::function<void()> mCallback;
};

// UnsafePtr is a work-around our static analyzer that requires all
// ref-counted objects to be captured in lambda via a RefPtr
// The ChannelEventQueue makes it safe to capture "this" by pointer only.
// This is required as work-around to prevent cycles until bug 1596295
// is resolved.
template <typename T>
class UnsafePtr {
 public:
  explicit UnsafePtr(T* aPtr) : mPtr(aPtr) {}

  T& operator*() const { return *mPtr; }
  T* operator->() const {
    MOZ_ASSERT(mPtr, "dereferencing a null pointer");
    return mPtr;
  }
  operator T*() const& { return mPtr; }
  explicit operator bool() const { return mPtr != nullptr; }

 private:
  T* const mPtr;
};

class NeckoTargetChannelFunctionEvent : public ChannelFunctionEvent {
 public:
  template <typename T>
  NeckoTargetChannelFunctionEvent(T* aChild, std::function<void()>&& aCallback)
      : ChannelFunctionEvent(
            [child = UnsafePtr<T>(aChild)]() {
              MOZ_ASSERT(child);
              return child->GetNeckoTarget();
            },
            std::move(aCallback)) {}
};

// Workaround for Necko re-entrancy dangers. We buffer IPDL messages in a
// queue if still dispatching previous one(s) to listeners/observers.
// Otherwise synchronous XMLHttpRequests and/or other code that spins the
// event loop (ex: IPDL rpc) could cause listener->OnDataAvailable (for
// instance) to be dispatched and called before mListener->OnStartRequest has
// completed.

class ChannelEventQueue final {
  NS_INLINE_DECL_THREADSAFE_REFCOUNTING(ChannelEventQueue)

 public:
  explicit ChannelEventQueue(nsISupports* owner)
      : mSuspendCount(0),
        mSuspended(false),
        mForcedCount(0),
        mFlushing(false),
        mHasCheckedForXMLHttpRequest(false),
        mForXMLHttpRequest(false),
        mOwner(owner),
        mMutex("ChannelEventQueue::mMutex"),
        mRunningMutex("ChannelEventQueue::mRunningMutex") {}

  // Puts IPDL-generated channel event into queue, to be run later
  // automatically when EndForcedQueueing and/or Resume is called.
  //
  // @param aCallback - the ChannelEvent
  // @param aAssertionWhenNotQueued - this optional param will be used in an
  //   assertion when the event is executed directly.
  inline void RunOrEnqueue(ChannelEvent* aCallback,
                           bool aAssertionWhenNotQueued = false);

  // Append ChannelEvent in front of the event queue.
  inline void PrependEvent(UniquePtr<ChannelEvent>&& aEvent);
  inline void PrependEvents(nsTArray<UniquePtr<ChannelEvent>>& aEvents);

  // After StartForcedQueueing is called, RunOrEnqueue() will start enqueuing
  // events that will be run/flushed when EndForcedQueueing is called.
  // - Note: queueing may still be required after EndForcedQueueing() (if the
  //   queue is suspended, etc):  always call RunOrEnqueue() to avoid race
  //   conditions.
  inline void StartForcedQueueing();
  inline void EndForcedQueueing();

  // Suspend/resume event queue.  RunOrEnqueue() will start enqueuing
  // events and they will be run/flushed when resume is called.  These should be
  // called when the channel owning the event queue is suspended/resumed.
  void Suspend();
  // Resume flushes the queue asynchronously, i.e. items in queue will be
  // dispatched in a new event on the current thread.
  void Resume();

#ifdef MOZ_DIAGNOSTIC_ASSERT_ENABLED
  bool IsEmpty() const { return mEventQueue.IsEmpty(); }
#endif

 private:
  // Private destructor, to discourage deletion outside of Release():
  ~ChannelEventQueue() = default;

  void SuspendInternal();
  void ResumeInternal();

  bool MaybeSuspendIfEventsAreSuppressed();

  inline void MaybeFlushQueue();
  void FlushQueue();
  inline void CompleteResume();

  ChannelEvent* TakeEvent();

  nsTArray<UniquePtr<ChannelEvent>> mEventQueue;

  uint32_t mSuspendCount;
  bool mSuspended;
  uint32_t mForcedCount;  // Support ForcedQueueing on multiple thread.
  bool mFlushing;

  // Whether the queue is associated with an XHR. This is lazily instantiated
  // the first time it is needed.
  bool mHasCheckedForXMLHttpRequest;
  bool mForXMLHttpRequest;

  // Keep ptr to avoid refcount cycle: only grab ref during flushing.
  nsISupports* mOwner;

  // For atomic mEventQueue operation and state update
  Mutex mMutex;

  // To guarantee event execution order among threads
  RecursiveMutex mRunningMutex;

  friend class AutoEventEnqueuer;
};

inline void ChannelEventQueue::RunOrEnqueue(ChannelEvent* aCallback,
                                            bool aAssertionWhenNotQueued) {
  MOZ_ASSERT(aCallback);

  // Events execution could be a destruction of the channel (and our own
  // destructor) unless we make sure its refcount doesn't drop to 0 while this
  // method is running.
  nsCOMPtr<nsISupports> kungFuDeathGrip(mOwner);
  Unused << kungFuDeathGrip;  // Not used in this function

  // To avoid leaks.
  UniquePtr<ChannelEvent> event(aCallback);

  // To guarantee that the running event and all the events generated within
  // it will be finished before events on other threads.
  RecursiveMutexAutoLock lock(mRunningMutex);

  {
    MutexAutoLock lock(mMutex);

    bool enqueue = !!mForcedCount || mSuspended || mFlushing ||
                   !mEventQueue.IsEmpty() ||
                   MaybeSuspendIfEventsAreSuppressed();

    if (enqueue) {
      mEventQueue.AppendElement(std::move(event));
      return;
    }

    nsCOMPtr<nsIEventTarget> target = event->GetEventTarget();
    MOZ_ASSERT(target);

    bool isCurrentThread = false;
    DebugOnly<nsresult> rv = target->IsOnCurrentThread(&isCurrentThread);
    MOZ_ASSERT(NS_SUCCEEDED(rv));

    if (!isCurrentThread) {
      // Leverage Suspend/Resume mechanism to trigger flush procedure without
      // creating a new one.
      SuspendInternal();
      mEventQueue.AppendElement(std::move(event));
      ResumeInternal();
      return;
    }
  }

  MOZ_RELEASE_ASSERT(!aAssertionWhenNotQueued);
  event->Run();
}

inline void ChannelEventQueue::StartForcedQueueing() {
  MutexAutoLock lock(mMutex);
  ++mForcedCount;
}

inline void ChannelEventQueue::EndForcedQueueing() {
  bool tryFlush = false;
  {
    MutexAutoLock lock(mMutex);
    MOZ_ASSERT(mForcedCount > 0);
    if (!--mForcedCount) {
      tryFlush = true;
    }
  }

  if (tryFlush) {
    MaybeFlushQueue();
  }
}

inline void ChannelEventQueue::PrependEvent(UniquePtr<ChannelEvent>&& aEvent) {
  MutexAutoLock lock(mMutex);

  // Prepending event while no queue flush foreseen might cause the following
  // channel events not run. This assertion here guarantee there must be a
  // queue flush, either triggered by Resume or EndForcedQueueing, to execute
  // the added event.
  MOZ_ASSERT(mSuspended || !!mForcedCount);

  mEventQueue.InsertElementAt(0, std::move(aEvent));
}

inline void ChannelEventQueue::PrependEvents(
    nsTArray<UniquePtr<ChannelEvent>>& aEvents) {
  MutexAutoLock lock(mMutex);

  // Prepending event while no queue flush foreseen might cause the following
  // channel events not run. This assertion here guarantee there must be a
  // queue flush, either triggered by Resume or EndForcedQueueing, to execute
  // the added events.
  MOZ_ASSERT(mSuspended || !!mForcedCount);

  mEventQueue.InsertElementsAt(0, aEvents.Length());

  for (uint32_t i = 0; i < aEvents.Length(); i++) {
    mEventQueue[i] = std::move(aEvents[i]);
  }
}

inline void ChannelEventQueue::CompleteResume() {
  bool tryFlush = false;
  {
    MutexAutoLock lock(mMutex);

    // channel may have been suspended again since Resume fired event to call
    // this.
    if (!mSuspendCount) {
      // we need to remain logically suspended (for purposes of queuing incoming
      // messages) until this point, else new incoming messages could run before
      // queued ones.
      mSuspended = false;
      tryFlush = true;
    }
  }

  if (tryFlush) {
    MaybeFlushQueue();
  }
}

inline void ChannelEventQueue::MaybeFlushQueue() {
  // Don't flush if forced queuing on, we're already being flushed, or
  // suspended, or there's nothing to flush
  bool flushQueue = false;

  {
    MutexAutoLock lock(mMutex);
    flushQueue = !mForcedCount && !mFlushing && !mSuspended &&
                 !mEventQueue.IsEmpty() && !MaybeSuspendIfEventsAreSuppressed();

    // Only one thread is allowed to run FlushQueue at a time.
    if (flushQueue) {
      mFlushing = true;
    }
  }

  if (flushQueue) {
    FlushQueue();
  }
}

// Ensures that RunOrEnqueue() will be collecting events during its lifetime
// (letting caller know incoming IPDL msgs should be queued). Flushes the queue
// when it goes out of scope.
class MOZ_STACK_CLASS AutoEventEnqueuer {
 public:
  explicit AutoEventEnqueuer(ChannelEventQueue* queue)
      : mEventQueue(queue), mOwner(queue->mOwner) {
    mEventQueue->StartForcedQueueing();
  }
  ~AutoEventEnqueuer() { mEventQueue->EndForcedQueueing(); }

 private:
  RefPtr<ChannelEventQueue> mEventQueue;
  // Ensure channel object lives longer than ChannelEventQueue.
  nsCOMPtr<nsISupports> mOwner;
};

}  // namespace net
}  // namespace mozilla

#endif