DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Implementation

Mercurial (6663d3dc883b)

VCS Links

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */

#ifndef mozilla_TimeStamp_h
#define mozilla_TimeStamp_h

#include <stdint.h>
#include <algorithm>  // for std::min, std::max
#include <ostream>
#include <type_traits>
#include "mozilla/Assertions.h"
#include "mozilla/Attributes.h"
#include "mozilla/FloatingPoint.h"
#include "mozilla/Types.h"

namespace IPC {
template <typename T>
struct ParamTraits;
}  // namespace IPC

#ifdef XP_WIN
// defines TimeStampValue as a complex value keeping both
// GetTickCount and QueryPerformanceCounter values
#  include "TimeStamp_windows.h"
#endif

namespace mozilla {

#ifndef XP_WIN
struct TimeStamp63Bit {
  uint64_t mUsedCanonicalNow : 1;
  uint64_t mTimeStamp : 63;

  constexpr TimeStamp63Bit() : mUsedCanonicalNow(0), mTimeStamp(0) {}

  MOZ_IMPLICIT constexpr TimeStamp63Bit(const uint64_t aValue)
      : mUsedCanonicalNow(0), mTimeStamp(aValue) {}

  constexpr TimeStamp63Bit(const bool aUsedCanonicalNow,
                           const int64_t aTimeStamp)
      : mUsedCanonicalNow(aUsedCanonicalNow ? 1 : 0), mTimeStamp(aTimeStamp) {}

  bool operator==(const TimeStamp63Bit aOther) const {
    uint64_t here, there;
    memcpy(&here, this, sizeof(TimeStamp63Bit));
    memcpy(&there, &aOther, sizeof(TimeStamp63Bit));
    return here == there;
  }

  operator uint64_t() const { return mTimeStamp; }

  bool IsNull() const { return mTimeStamp == 0; }

  bool UsedCanonicalNow() const { return mUsedCanonicalNow; }

  void SetCanonicalNow() { mUsedCanonicalNow = 1; }
};

typedef TimeStamp63Bit TimeStampValue;
#endif

class TimeStamp;

/**
 * Platform-specific implementation details of BaseTimeDuration.
 */
class BaseTimeDurationPlatformUtils {
 public:
  static MFBT_API double ToSeconds(int64_t aTicks);
  static MFBT_API double ToSecondsSigDigits(int64_t aTicks);
  static MFBT_API int64_t TicksFromMilliseconds(double aMilliseconds);
  static MFBT_API int64_t ResolutionInTicks();
};

/**
 * Instances of this class represent the length of an interval of time.
 * Negative durations are allowed, meaning the end is before the start.
 *
 * Internally the duration is stored as a int64_t in units of
 * PR_TicksPerSecond() when building with NSPR interval timers, or a
 * system-dependent unit when building with system clocks.  The
 * system-dependent unit must be constant, otherwise the semantics of
 * this class would be broken.
 *
 * The ValueCalculator template parameter determines how arithmetic
 * operations are performed on the integer count of ticks (mValue).
 */
template <typename ValueCalculator>
class BaseTimeDuration {
 public:
  // The default duration is 0.
  constexpr BaseTimeDuration() : mValue(0) {}
  // Allow construction using '0' as the initial value, for readability,
  // but no other numbers (so we don't have any implicit unit conversions).
  struct _SomethingVeryRandomHere;
  MOZ_IMPLICIT BaseTimeDuration(_SomethingVeryRandomHere* aZero) : mValue(0) {
    MOZ_ASSERT(!aZero, "Who's playing funny games here?");
  }
  // Default copy-constructor and assignment are OK

  // Converting copy-constructor and assignment operator
  template <typename E>
  explicit BaseTimeDuration(const BaseTimeDuration<E>& aOther)
      : mValue(aOther.mValue) {}

  template <typename E>
  BaseTimeDuration& operator=(const BaseTimeDuration<E>& aOther) {
    mValue = aOther.mValue;
    return *this;
  }

  double ToSeconds() const {
    if (mValue == INT64_MAX) {
      return PositiveInfinity<double>();
    }
    if (mValue == INT64_MIN) {
      return NegativeInfinity<double>();
    }
    return BaseTimeDurationPlatformUtils::ToSeconds(mValue);
  }
  // Return a duration value that includes digits of time we think to
  // be significant.  This method should be used when displaying a
  // time to humans.
  double ToSecondsSigDigits() const {
    if (mValue == INT64_MAX) {
      return PositiveInfinity<double>();
    }
    if (mValue == INT64_MIN) {
      return NegativeInfinity<double>();
    }
    return BaseTimeDurationPlatformUtils::ToSecondsSigDigits(mValue);
  }
  double ToMilliseconds() const { return ToSeconds() * 1000.0; }
  double ToMicroseconds() const { return ToMilliseconds() * 1000.0; }

  // Using a double here is safe enough; with 53 bits we can represent
  // durations up to over 280,000 years exactly.  If the units of
  // mValue do not allow us to represent durations of that length,
  // long durations are clamped to the max/min representable value
  // instead of overflowing.
  static inline BaseTimeDuration FromSeconds(double aSeconds) {
    return FromMilliseconds(aSeconds * 1000.0);
  }
  static BaseTimeDuration FromMilliseconds(double aMilliseconds) {
    if (aMilliseconds == PositiveInfinity<double>()) {
      return Forever();
    }
    if (aMilliseconds == NegativeInfinity<double>()) {
      return FromTicks(INT64_MIN);
    }
    return FromTicks(
        BaseTimeDurationPlatformUtils::TicksFromMilliseconds(aMilliseconds));
  }
  static inline BaseTimeDuration FromMicroseconds(double aMicroseconds) {
    return FromMilliseconds(aMicroseconds / 1000.0);
  }

  static constexpr BaseTimeDuration Forever() { return FromTicks(INT64_MAX); }

  BaseTimeDuration operator+(const BaseTimeDuration& aOther) const {
    return FromTicks(ValueCalculator::Add(mValue, aOther.mValue));
  }
  BaseTimeDuration operator-(const BaseTimeDuration& aOther) const {
    return FromTicks(ValueCalculator::Subtract(mValue, aOther.mValue));
  }
  BaseTimeDuration& operator+=(const BaseTimeDuration& aOther) {
    mValue = ValueCalculator::Add(mValue, aOther.mValue);
    return *this;
  }
  BaseTimeDuration& operator-=(const BaseTimeDuration& aOther) {
    mValue = ValueCalculator::Subtract(mValue, aOther.mValue);
    return *this;
  }
  BaseTimeDuration operator-() const {
    // We don't just use FromTicks(ValueCalculator::Subtract(0, mValue))
    // since that won't give the correct result for -TimeDuration::Forever().
    int64_t ticks;
    if (mValue == INT64_MAX) {
      ticks = INT64_MIN;
    } else if (mValue == INT64_MIN) {
      ticks = INT64_MAX;
    } else {
      ticks = -mValue;
    }

    return FromTicks(ticks);
  }

  static BaseTimeDuration Max(const BaseTimeDuration& aA,
                              const BaseTimeDuration& aB) {
    return FromTicks(std::max(aA.mValue, aB.mValue));
  }
  static BaseTimeDuration Min(const BaseTimeDuration& aA,
                              const BaseTimeDuration& aB) {
    return FromTicks(std::min(aA.mValue, aB.mValue));
  }

 private:
  // Block double multiplier (slower, imprecise if long duration) - Bug 853398.
  // If required, use MultDouble explicitly and with care.
  BaseTimeDuration operator*(const double aMultiplier) const = delete;

  // Block double divisor (for the same reason, and because dividing by
  // fractional values would otherwise invoke the int64_t variant, and rounding
  // the passed argument can then cause divide-by-zero) - Bug 1147491.
  BaseTimeDuration operator/(const double aDivisor) const = delete;

 public:
  BaseTimeDuration MultDouble(double aMultiplier) const {
    return FromTicks(ValueCalculator::Multiply(mValue, aMultiplier));
  }
  BaseTimeDuration operator*(const int32_t aMultiplier) const {
    return FromTicks(ValueCalculator::Multiply(mValue, aMultiplier));
  }
  BaseTimeDuration operator*(const uint32_t aMultiplier) const {
    return FromTicks(ValueCalculator::Multiply(mValue, aMultiplier));
  }
  BaseTimeDuration operator*(const int64_t aMultiplier) const {
    return FromTicks(ValueCalculator::Multiply(mValue, aMultiplier));
  }
  BaseTimeDuration operator*(const uint64_t aMultiplier) const {
    if (aMultiplier > INT64_MAX) {
      return Forever();
    }
    return FromTicks(ValueCalculator::Multiply(mValue, aMultiplier));
  }
  BaseTimeDuration operator/(const int64_t aDivisor) const {
    MOZ_ASSERT(aDivisor != 0, "Division by zero");
    return FromTicks(ValueCalculator::Divide(mValue, aDivisor));
  }
  double operator/(const BaseTimeDuration& aOther) const {
    MOZ_ASSERT(aOther.mValue != 0, "Division by zero");
    return ValueCalculator::DivideDouble(mValue, aOther.mValue);
  }
  BaseTimeDuration operator%(const BaseTimeDuration& aOther) const {
    MOZ_ASSERT(aOther.mValue != 0, "Division by zero");
    return FromTicks(ValueCalculator::Modulo(mValue, aOther.mValue));
  }

  template <typename E>
  bool operator<(const BaseTimeDuration<E>& aOther) const {
    return mValue < aOther.mValue;
  }
  template <typename E>
  bool operator<=(const BaseTimeDuration<E>& aOther) const {
    return mValue <= aOther.mValue;
  }
  template <typename E>
  bool operator>=(const BaseTimeDuration<E>& aOther) const {
    return mValue >= aOther.mValue;
  }
  template <typename E>
  bool operator>(const BaseTimeDuration<E>& aOther) const {
    return mValue > aOther.mValue;
  }
  template <typename E>
  bool operator==(const BaseTimeDuration<E>& aOther) const {
    return mValue == aOther.mValue;
  }
  template <typename E>
  bool operator!=(const BaseTimeDuration<E>& aOther) const {
    return mValue != aOther.mValue;
  }
  bool IsZero() const { return mValue == 0; }
  explicit operator bool() const { return mValue != 0; }

  friend std::ostream& operator<<(std::ostream& aStream,
                                  const BaseTimeDuration& aDuration) {
    return aStream << aDuration.ToMilliseconds() << " ms";
  }

  // Return a best guess at the system's current timing resolution,
  // which might be variable.  BaseTimeDurations below this order of
  // magnitude are meaningless, and those at the same order of
  // magnitude or just above are suspect.
  static BaseTimeDuration Resolution() {
    return FromTicks(BaseTimeDurationPlatformUtils::ResolutionInTicks());
  }

  // We could define additional operators here:
  // -- convert to/from other time units
  // -- scale duration by a float
  // but let's do that on demand.
  // Comparing durations for equality will only lead to bugs on
  // platforms with high-resolution timers.

 private:
  friend class TimeStamp;
  friend struct IPC::ParamTraits<mozilla::BaseTimeDuration<ValueCalculator>>;
  template <typename>
  friend class BaseTimeDuration;

  static BaseTimeDuration FromTicks(int64_t aTicks) {
    BaseTimeDuration t;
    t.mValue = aTicks;
    return t;
  }

  static BaseTimeDuration FromTicks(double aTicks) {
    // NOTE: this MUST be a >= test, because int64_t(double(INT64_MAX))
    // overflows and gives INT64_MIN.
    if (aTicks >= double(INT64_MAX)) {
      return FromTicks(INT64_MAX);
    }

    // This MUST be a <= test.
    if (aTicks <= double(INT64_MIN)) {
      return FromTicks(INT64_MIN);
    }

    return FromTicks(int64_t(aTicks));
  }

  // Duration, result is implementation-specific difference of two TimeStamps
  int64_t mValue;
};

/**
 * Perform arithmetic operations on the value of a BaseTimeDuration without
 * doing strict checks on the range of values.
 */
class TimeDurationValueCalculator {
 public:
  static int64_t Add(int64_t aA, int64_t aB) { return aA + aB; }
  static int64_t Subtract(int64_t aA, int64_t aB) { return aA - aB; }

  template <typename T>
  static int64_t Multiply(int64_t aA, T aB) {
    static_assert(std::is_integral_v<T>,
                  "Using integer multiplication routine with non-integer type."
                  " Further specialization required");
    return aA * static_cast<int64_t>(aB);
  }

  static int64_t Divide(int64_t aA, int64_t aB) { return aA / aB; }
  static double DivideDouble(int64_t aA, int64_t aB) {
    return static_cast<double>(aA) / aB;
  }
  static int64_t Modulo(int64_t aA, int64_t aB) { return aA % aB; }
};

template <>
inline int64_t TimeDurationValueCalculator::Multiply<double>(int64_t aA,
                                                             double aB) {
  return static_cast<int64_t>(aA * aB);
}

/**
 * Specialization of BaseTimeDuration that uses TimeDurationValueCalculator for
 * arithmetic on the mValue member.
 *
 * Use this class for time durations that are *not* expected to hold values of
 * Forever (or the negative equivalent) or when such time duration are *not*
 * expected to be used in arithmetic operations.
 */
typedef BaseTimeDuration<TimeDurationValueCalculator> TimeDuration;

/**
 * Instances of this class represent moments in time, or a special
 * "null" moment. We do not use the non-monotonic system clock or
 * local time, since they can be reset, causing apparent backward
 * travel in time, which can confuse algorithms. Instead we measure
 * elapsed time according to the system.  This time can never go
 * backwards (i.e. it never wraps around, at least not in less than
 * five million years of system elapsed time). It might not advance
 * while the system is sleeping. If TimeStamp::SetNow() is not called
 * at all for hours or days, we might not notice the passage of some
 * of that time.
 *
 * We deliberately do not expose a way to convert TimeStamps to some
 * particular unit. All you can do is compute a difference between two
 * TimeStamps to get a TimeDuration. You can also add a TimeDuration
 * to a TimeStamp to get a new TimeStamp. You can't do something
 * meaningless like add two TimeStamps.
 *
 * Internally this is implemented as either a wrapper around
 *   - high-resolution, monotonic, system clocks if they exist on this
 *     platform
 *   - PRIntervalTime otherwise.  We detect wraparounds of
 *     PRIntervalTime and work around them.
 *
 * This class is similar to C++11's time_point, however it is
 * explicitly nullable and provides an IsNull() method. time_point
 * is initialized to the clock's epoch and provides a
 * time_since_epoch() method that functions similiarly. i.e.
 * t.IsNull() is equivalent to t.time_since_epoch() ==
 * decltype(t)::duration::zero();
 *
 * Note that, since TimeStamp objects are small, prefer to pass them by value
 * unless there is a specific reason not to do so.
 */
class TimeStamp {
 public:
  /**
   * Initialize to the "null" moment
   */
  constexpr TimeStamp() : mValue() {}
  // Default copy-constructor and assignment are OK

  /**
   * The system timestamps are the same as the TimeStamp
   * retrieved by mozilla::TimeStamp. Since we need this for
   * vsync timestamps, we enable the creation of mozilla::TimeStamps
   * on platforms that support vsync aligned refresh drivers / compositors
   * Verified true as of Jan 31, 2015: B2G and OS X
   * False on Windows 7
   * Android's event time uses CLOCK_MONOTONIC via SystemClock.uptimeMilles.
   * So it is same value of TimeStamp posix implementation.
   * Wayland/GTK event time also uses CLOCK_MONOTONIC on Weston/Mutter
   * compositors.
   * UNTESTED ON OTHER PLATFORMS
   */
#if defined(XP_DARWIN) || defined(MOZ_WIDGET_ANDROID) || defined(MOZ_WIDGET_GTK)
  static TimeStamp FromSystemTime(int64_t aSystemTime) {
    static_assert(sizeof(aSystemTime) == sizeof(TimeStampValue),
                  "System timestamp should be same units as TimeStampValue");
    return TimeStamp(TimeStampValue(false, aSystemTime));
  }
#endif

  /**
   * Return true if this is the "null" moment
   */
  bool IsNull() const { return mValue.IsNull(); }

  /**
   * Return true if this is not the "null" moment, may be used in tests, e.g.:
   * |if (timestamp) { ... }|
   */
  explicit operator bool() const { return !IsNull(); }

  bool UsedCanonicalNow() const { return mValue.UsedCanonicalNow(); }
  static MFBT_API bool GetFuzzyfoxEnabled();
  static MFBT_API void SetFuzzyfoxEnabled(bool aValue);

  /**
   * Return a timestamp reflecting the current elapsed system time. This
   * is monotonically increasing (i.e., does not decrease) over the
   * lifetime of this process' XPCOM session.
   *
   * Now() is trying to ensure the best possible precision on each platform,
   * at least one millisecond.
   *
   * NowLoRes() has been introduced to workaround performance problems of
   * QueryPerformanceCounter on the Windows platform.  NowLoRes() is giving
   * lower precision, usually 15.6 ms, but with very good performance benefit.
   * Use it for measurements of longer times, like >200ms timeouts.
   */
  static TimeStamp Now() { return Now(true); }
  static TimeStamp NowLoRes() { return Now(false); }
  static TimeStamp NowUnfuzzed() { return NowUnfuzzed(true); }

  static MFBT_API int64_t NowFuzzyTime();
  /**
   * Return a timestamp representing the time when the current process was
   * created which will be comparable with other timestamps taken with this
   * class. If the actual process creation time is detected to be inconsistent
   * the @a aIsInconsistent parameter will be set to true, the returned
   * timestamp however will still be valid though inaccurate.
   *
   * @param aIsInconsistent If non-null, set to true if an inconsistency was
   * detected in the process creation time
   * @returns A timestamp representing the time when the process was created,
   * this timestamp is always valid even when errors are reported
   */
  static MFBT_API TimeStamp ProcessCreation(bool* aIsInconsistent = nullptr);

  /**
   * Records a process restart. After this call ProcessCreation() will return
   * the time when the browser was restarted instead of the actual time when
   * the process was created.
   */
  static MFBT_API void RecordProcessRestart();

  /**
   * Compute the difference between two timestamps. Both must be non-null.
   */
  TimeDuration operator-(const TimeStamp& aOther) const {
    MOZ_ASSERT(!IsNull(), "Cannot compute with a null value");
    MOZ_ASSERT(!aOther.IsNull(), "Cannot compute with aOther null value");
    static_assert(-INT64_MAX > INT64_MIN, "int64_t sanity check");
    int64_t ticks = int64_t(mValue - aOther.mValue);
    // Check for overflow.
    if (mValue > aOther.mValue) {
      if (ticks < 0) {
        ticks = INT64_MAX;
      }
    } else {
      if (ticks > 0) {
        ticks = INT64_MIN;
      }
    }
    return TimeDuration::FromTicks(ticks);
  }

  TimeStamp operator+(const TimeDuration& aOther) const {
    TimeStamp result = *this;
    result += aOther;
    return result;
  }
  TimeStamp operator-(const TimeDuration& aOther) const {
    TimeStamp result = *this;
    result -= aOther;
    return result;
  }
  TimeStamp& operator+=(const TimeDuration& aOther) {
    MOZ_ASSERT(!IsNull(), "Cannot compute with a null value");
    TimeStampValue value = mValue + aOther.mValue;
    // Check for underflow.
    // (We don't check for overflow because it's not obvious what the error
    //  behavior should be in that case.)
    if (aOther.mValue < 0 && value > mValue) {
      value = TimeStampValue();
    }
    if (mValue.UsedCanonicalNow()) {
      value.SetCanonicalNow();
    }
    mValue = value;
    return *this;
  }
  TimeStamp& operator-=(const TimeDuration& aOther) {
    MOZ_ASSERT(!IsNull(), "Cannot compute with a null value");
    TimeStampValue value = mValue - aOther.mValue;
    // Check for underflow.
    // (We don't check for overflow because it's not obvious what the error
    //  behavior should be in that case.)
    if (aOther.mValue > 0 && value > mValue) {
      value = TimeStampValue();
    }
    if (mValue.UsedCanonicalNow()) {
      value.SetCanonicalNow();
    }
    mValue = value;
    return *this;
  }

  bool operator<(const TimeStamp& aOther) const {
    MOZ_ASSERT(!IsNull(), "Cannot compute with a null value");
    MOZ_ASSERT(!aOther.IsNull(), "Cannot compute with aOther null value");
    return mValue < aOther.mValue;
  }
  bool operator<=(const TimeStamp& aOther) const {
    MOZ_ASSERT(!IsNull(), "Cannot compute with a null value");
    MOZ_ASSERT(!aOther.IsNull(), "Cannot compute with aOther null value");
    return mValue <= aOther.mValue;
  }
  bool operator>=(const TimeStamp& aOther) const {
    MOZ_ASSERT(!IsNull(), "Cannot compute with a null value");
    MOZ_ASSERT(!aOther.IsNull(), "Cannot compute with aOther null value");
    return mValue >= aOther.mValue;
  }
  bool operator>(const TimeStamp& aOther) const {
    MOZ_ASSERT(!IsNull(), "Cannot compute with a null value");
    MOZ_ASSERT(!aOther.IsNull(), "Cannot compute with aOther null value");
    return mValue > aOther.mValue;
  }
  bool operator==(const TimeStamp& aOther) const {
    return IsNull() ? aOther.IsNull()
                    : !aOther.IsNull() && mValue == aOther.mValue;
  }
  bool operator!=(const TimeStamp& aOther) const { return !(*this == aOther); }

  // Comparing TimeStamps for equality should be discouraged. Adding
  // two TimeStamps, or scaling TimeStamps, is nonsense and must never
  // be allowed.

  static MFBT_API void Startup();
  static MFBT_API void Shutdown();

 private:
  friend struct IPC::ParamTraits<mozilla::TimeStamp>;

  MOZ_IMPLICIT TimeStamp(TimeStampValue aValue) : mValue(aValue) {}

  static MFBT_API TimeStamp Now(bool aHighResolution);
  static MFBT_API TimeStamp NowUnfuzzed(bool aHighResolution);
  static MFBT_API TimeStamp NowFuzzy(TimeStampValue aValue);

  static MFBT_API void UpdateFuzzyTime(int64_t aValue);
  static MFBT_API void UpdateFuzzyTimeStamp(TimeStamp aValue);

  /**
   * Computes the uptime of the current process in microseconds. The result
   * is platform-dependent and needs to be checked against existing timestamps
   * for consistency.
   *
   * @returns The number of microseconds since the calling process was started
   *          or 0 if an error was encountered while computing the uptime
   */
  static MFBT_API uint64_t ComputeProcessUptime();

  /**
   * When built with PRIntervalTime, a value of 0 means this instance
   * is "null". Otherwise, the low 32 bits represent a PRIntervalTime,
   * and the high 32 bits represent a counter of the number of
   * rollovers of PRIntervalTime that we've seen. This counter starts
   * at 1 to avoid a real time colliding with the "null" value.
   *
   * PR_INTERVAL_MAX is set at 100,000 ticks per second. So the minimum
   * time to wrap around is about 2^64/100000 seconds, i.e. about
   * 5,849,424 years.
   *
   * When using a system clock, a value is system dependent.
   */
  TimeStampValue mValue;

  friend class Fuzzyfox;
};

}  // namespace mozilla

#endif /* mozilla_TimeStamp_h */