DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Mercurial (4e56a2f51ad7)

VCS Links

DefaultDelete

DefaultDelete

HasPointerType

HasPointerTypeHelper

PointerType

PointerTypeImpl

PointerTypeImpl

UniquePtr

UniquePtr

UniqueSelector

UniqueSelector

UniqueSelector

Macros

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */

/* Smart pointer managing sole ownership of a resource. */

#ifndef mozilla_UniquePtr_h
#define mozilla_UniquePtr_h

#include "mozilla/Assertions.h"
#include "mozilla/Attributes.h"
#include "mozilla/Compiler.h"
#include "mozilla/Move.h"
#include "mozilla/Pair.h"
#include "mozilla/TypeTraits.h"

namespace mozilla {

template<typename T> class DefaultDelete;
template<typename T, class D = DefaultDelete<T>> class UniquePtr;

} // namespace mozilla

namespace mozilla {

namespace detail {

struct HasPointerTypeHelper
{
  template <class U> static double Test(...);
  template <class U> static char Test(typename U::pointer* = 0);
};

template <class T>
class HasPointerType : public IntegralConstant<bool, sizeof(HasPointerTypeHelper::Test<T>(0)) == 1>
{
};

template <class T, class D, bool = HasPointerType<D>::value>
struct PointerTypeImpl
{
  typedef typename D::pointer Type;
};

template <class T, class D>
struct PointerTypeImpl<T, D, false>
{
  typedef T* Type;
};

template <class T, class D>
struct PointerType
{
  typedef typename PointerTypeImpl<T, typename RemoveReference<D>::Type>::Type Type;
};

} // namespace detail

/**
 * UniquePtr is a smart pointer that wholly owns a resource.  Ownership may be
 * transferred out of a UniquePtr through explicit action, but otherwise the
 * resource is destroyed when the UniquePtr is destroyed.
 *
 * UniquePtr is similar to C++98's std::auto_ptr, but it improves upon auto_ptr
 * in one crucial way: it's impossible to copy a UniquePtr.  Copying an auto_ptr
 * obviously *can't* copy ownership of its singly-owned resource.  So what
 * happens if you try to copy one?  Bizarrely, ownership is implicitly
 * *transferred*, preserving single ownership but breaking code that assumes a
 * copy of an object is identical to the original.  (This is why auto_ptr is
 * prohibited in STL containers.)
 *
 * UniquePtr solves this problem by being *movable* rather than copyable.
 * Instead of passing a |UniquePtr u| directly to the constructor or assignment
 * operator, you pass |Move(u)|.  In doing so you indicate that you're *moving*
 * ownership out of |u|, into the target of the construction/assignment.  After
 * the transfer completes, |u| contains |nullptr| and may be safely destroyed.
 * This preserves single ownership but also allows UniquePtr to be moved by
 * algorithms that have been made move-safe.  (Note: if |u| is instead a
 * temporary expression, don't use |Move()|: just pass the expression, because
 * it's already move-ready.  For more information see Move.h.)
 *
 * UniquePtr is also better than std::auto_ptr in that the deletion operation is
 * customizable.  An optional second template parameter specifies a class that
 * (through its operator()(T*)) implements the desired deletion policy.  If no
 * policy is specified, mozilla::DefaultDelete<T> is used -- which will either
 * |delete| or |delete[]| the resource, depending whether the resource is an
 * array.  Custom deletion policies ideally should be empty classes (no member
 * fields, no member fields in base classes, no virtual methods/inheritance),
 * because then UniquePtr can be just as efficient as a raw pointer.
 *
 * Use of UniquePtr proceeds like so:
 *
 *   UniquePtr<int> g1; // initializes to nullptr
 *   g1.reset(new int); // switch resources using reset()
 *   g1 = nullptr; // clears g1, deletes the int
 *
 *   UniquePtr<int> g2(new int); // owns that int
 *   int* p = g2.release(); // g2 leaks its int -- still requires deletion
 *   delete p; // now freed
 *
 *   struct S { int x; S(int x) : x(x) {} };
 *   UniquePtr<S> g3, g4(new S(5));
 *   g3 = std::move(g4); // g3 owns the S, g4 cleared
 *   S* p = g3.get(); // g3 still owns |p|
 *   assert(g3->x == 5); // operator-> works (if .get() != nullptr)
 *   assert((*g3).x == 5); // also operator* (again, if not cleared)
 *   Swap(g3, g4); // g4 now owns the S, g3 cleared
 *   g3.swap(g4);  // g3 now owns the S, g4 cleared
 *   UniquePtr<S> g5(std::move(g3)); // g5 owns the S, g3 cleared
 *   g5.reset(); // deletes the S, g5 cleared
 *
 *   struct FreePolicy { void operator()(void* p) { free(p); } };
 *   UniquePtr<int, FreePolicy> g6(static_cast<int*>(malloc(sizeof(int))));
 *   int* ptr = g6.get();
 *   g6 = nullptr; // calls free(ptr)
 *
 * Now, carefully note a few things you *can't* do:
 *
 *   UniquePtr<int> b1;
 *   b1 = new int; // BAD: can only assign another UniquePtr
 *   int* ptr = b1; // BAD: no auto-conversion to pointer, use get()
 *
 *   UniquePtr<int> b2(b1); // BAD: can't copy a UniquePtr
 *   UniquePtr<int> b3 = b1; // BAD: can't copy-assign a UniquePtr
 *
 * (Note that changing a UniquePtr to store a direct |new| expression is
 * permitted, but usually you should use MakeUnique, defined at the end of this
 * header.)
 *
 * A few miscellaneous notes:
 *
 * UniquePtr, when not instantiated for an array type, can be move-constructed
 * and move-assigned, not only from itself but from "derived" UniquePtr<U, E>
 * instantiations where U converts to T and E converts to D.  If you want to use
 * this, you're going to have to specify a deletion policy for both UniquePtr
 * instantations, and T pretty much has to have a virtual destructor.  In other
 * words, this doesn't work:
 *
 *   struct Base { virtual ~Base() {} };
 *   struct Derived : Base {};
 *
 *   UniquePtr<Base> b1;
 *   // BAD: DefaultDelete<Base> and DefaultDelete<Derived> don't interconvert
 *   UniquePtr<Derived> d1(std::move(b));
 *
 *   UniquePtr<Base> b2;
 *   UniquePtr<Derived, DefaultDelete<Base>> d2(std::move(b2)); // okay
 *
 * UniquePtr is specialized for array types.  Specializing with an array type
 * creates a smart-pointer version of that array -- not a pointer to such an
 * array.
 *
 *   UniquePtr<int[]> arr(new int[5]);
 *   arr[0] = 4;
 *
 * What else is different?  Deletion of course uses |delete[]|.  An operator[]
 * is provided.  Functionality that doesn't make sense for arrays is removed.
 * The constructors and mutating methods only accept array pointers (not T*, U*
 * that converts to T*, or UniquePtr<U[]> or UniquePtr<U>) or |nullptr|.
 *
 * It's perfectly okay for a function to return a UniquePtr. This transfers
 * the UniquePtr's sole ownership of the data, to the fresh UniquePtr created
 * in the calling function, that will then solely own that data. Such functions
 * can return a local variable UniquePtr, |nullptr|, |UniquePtr(ptr)| where
 * |ptr| is a |T*|, or a UniquePtr |Move()|'d from elsewhere.
 *
 * UniquePtr will commonly be a member of a class, with lifetime equivalent to
 * that of that class.  If you want to expose the related resource, you could
 * expose a raw pointer via |get()|, but ownership of a raw pointer is
 * inherently unclear.  So it's better to expose a |const UniquePtr&| instead.
 * This prohibits mutation but still allows use of |get()| when needed (but
 * operator-> is preferred).  Of course, you can only use this smart pointer as
 * long as the enclosing class instance remains live -- no different than if you
 * exposed the |get()| raw pointer.
 *
 * To pass a UniquePtr-managed resource as a pointer, use a |const UniquePtr&|
 * argument.  To specify an inout parameter (where the method may or may not
 * take ownership of the resource, or reset it), or to specify an out parameter
 * (where simply returning a |UniquePtr| isn't possible), use a |UniquePtr&|
 * argument.  To unconditionally transfer ownership of a UniquePtr
 * into a method, use a |UniquePtr| argument.  To conditionally transfer
 * ownership of a resource into a method, should the method want it, use a
 * |UniquePtr&&| argument.
 */
template<typename T, class D>
class UniquePtr
{
public:
  typedef T ElementType;
  typedef D DeleterType;
  typedef typename detail::PointerType<T, DeleterType>::Type Pointer;

private:
  Pair<Pointer, DeleterType> mTuple;

  Pointer& ptr() { return mTuple.first(); }
  const Pointer& ptr() const { return mTuple.first(); }

  DeleterType& del() { return mTuple.second(); }
  const DeleterType& del() const { return mTuple.second(); }

public:
  /**
   * Construct a UniquePtr containing |nullptr|.
   */
  constexpr UniquePtr()
    : mTuple(static_cast<Pointer>(nullptr), DeleterType())
  {
    static_assert(!IsPointer<D>::value, "must provide a deleter instance");
    static_assert(!IsReference<D>::value, "must provide a deleter instance");
  }

  /**
   * Construct a UniquePtr containing |aPtr|.
   */
  explicit UniquePtr(Pointer aPtr)
    : mTuple(aPtr, DeleterType())
  {
    static_assert(!IsPointer<D>::value, "must provide a deleter instance");
    static_assert(!IsReference<D>::value, "must provide a deleter instance");
  }

  UniquePtr(Pointer aPtr,
            typename Conditional<IsReference<D>::value,
                                 D,
                                 const D&>::Type aD1)
    : mTuple(aPtr, aD1)
  {}

  // If you encounter an error with MSVC10 about RemoveReference below, along
  // the lines that "more than one partial specialization matches the template
  // argument list": don't use UniquePtr<T, reference to function>!  Ideally
  // you should make deletion use the same function every time, using a
  // deleter policy:
  //
  //   // BAD, won't compile with MSVC10, deleter doesn't need to be a
  //   // variable at all
  //   typedef void (&FreeSignature)(void*);
  //   UniquePtr<int, FreeSignature> ptr((int*) malloc(sizeof(int)), free);
  //
  //   // GOOD, compiles with MSVC10, deletion behavior statically known and
  //   // optimizable
  //   struct DeleteByFreeing
  //   {
  //     void operator()(void* aPtr) { free(aPtr); }
  //   };
  //
  // If deletion really, truly, must be a variable: you might be able to work
  // around this with a deleter class that contains the function reference.
  // But this workaround is untried and untested, because variable deletion
  // behavior really isn't something you should use.
  UniquePtr(Pointer aPtr,
            typename RemoveReference<D>::Type&& aD2)
    : mTuple(aPtr, std::move(aD2))
  {
    static_assert(!IsReference<D>::value,
                  "rvalue deleter can't be stored by reference");
  }

  UniquePtr(UniquePtr&& aOther)
    : mTuple(aOther.release(), std::forward<DeleterType>(aOther.get_deleter()))
  {}

  MOZ_IMPLICIT
  UniquePtr(decltype(nullptr))
    : mTuple(nullptr, DeleterType())
  {
    static_assert(!IsPointer<D>::value, "must provide a deleter instance");
    static_assert(!IsReference<D>::value, "must provide a deleter instance");
  }

  template<typename U, class E>
  MOZ_IMPLICIT
  UniquePtr(UniquePtr<U, E>&& aOther,
            typename EnableIf<IsConvertible<typename UniquePtr<U, E>::Pointer,
                                            Pointer>::value &&
                              !IsArray<U>::value &&
                              (IsReference<D>::value
                               ? IsSame<D, E>::value
                               : IsConvertible<E, D>::value),
                              int>::Type aDummy = 0)
    : mTuple(aOther.release(), std::forward<E>(aOther.get_deleter()))
  {
  }

  ~UniquePtr() { reset(nullptr); }

  UniquePtr& operator=(UniquePtr&& aOther)
  {
    reset(aOther.release());
    get_deleter() = std::forward<DeleterType>(aOther.get_deleter());
    return *this;
  }

  template<typename U, typename E>
  UniquePtr& operator=(UniquePtr<U, E>&& aOther)
  {
    static_assert(IsConvertible<typename UniquePtr<U, E>::Pointer,
                                Pointer>::value,
                  "incompatible UniquePtr pointees");
    static_assert(!IsArray<U>::value,
                  "can't assign from UniquePtr holding an array");

    reset(aOther.release());
    get_deleter() = std::forward<E>(aOther.get_deleter());
    return *this;
  }

  UniquePtr& operator=(decltype(nullptr))
  {
    reset(nullptr);
    return *this;
  }

  typename AddLvalueReference<T>::Type operator*() const { return *get(); }
  Pointer operator->() const
  {
    MOZ_ASSERT(get(), "dereferencing a UniquePtr containing nullptr");
    return get();
  }

  explicit operator bool() const { return get() != nullptr; }

  Pointer get() const { return ptr(); }

  DeleterType& get_deleter() { return del(); }
  const DeleterType& get_deleter() const { return del(); }

  MOZ_MUST_USE Pointer release()
  {
    Pointer p = ptr();
    ptr() = nullptr;
    return p;
  }

  void reset(Pointer aPtr = Pointer())
  {
    Pointer old = ptr();
    ptr() = aPtr;
    if (old != nullptr) {
      get_deleter()(old);
    }
  }

  void swap(UniquePtr& aOther)
  {
    mTuple.swap(aOther.mTuple);
  }

  UniquePtr(const UniquePtr& aOther) = delete; // construct using std::move()!
  void operator=(const UniquePtr& aOther) = delete; // assign using std::move()!
};

// In case you didn't read the comment by the main definition (you should!): the
// UniquePtr<T[]> specialization exists to manage array pointers.  It deletes
// such pointers using delete[], it will reject construction and modification
// attempts using U* or U[].  Otherwise it works like the normal UniquePtr.
template<typename T, class D>
class UniquePtr<T[], D>
{
public:
  typedef T* Pointer;
  typedef T ElementType;
  typedef D DeleterType;

private:
  Pair<Pointer, DeleterType> mTuple;

public:
  /**
   * Construct a UniquePtr containing nullptr.
   */
  constexpr UniquePtr()
    : mTuple(static_cast<Pointer>(nullptr), DeleterType())
  {
    static_assert(!IsPointer<D>::value, "must provide a deleter instance");
    static_assert(!IsReference<D>::value, "must provide a deleter instance");
  }

  /**
   * Construct a UniquePtr containing |aPtr|.
   */
  explicit UniquePtr(Pointer aPtr)
    : mTuple(aPtr, DeleterType())
  {
    static_assert(!IsPointer<D>::value, "must provide a deleter instance");
    static_assert(!IsReference<D>::value, "must provide a deleter instance");
  }

  // delete[] knows how to handle *only* an array of a single class type.  For
  // delete[] to work correctly, it must know the size of each element, the
  // fields and base classes of each element requiring destruction, and so on.
  // So forbid all overloads which would end up invoking delete[] on a pointer
  // of the wrong type.
  template<typename U>
  UniquePtr(U&& aU,
            typename EnableIf<IsPointer<U>::value &&
                              IsConvertible<U, Pointer>::value,
                              int>::Type aDummy = 0)
  = delete;

  UniquePtr(Pointer aPtr,
            typename Conditional<IsReference<D>::value,
                                 D,
                                 const D&>::Type aD1)
    : mTuple(aPtr, aD1)
  {}

  // If you encounter an error with MSVC10 about RemoveReference below, along
  // the lines that "more than one partial specialization matches the template
  // argument list": don't use UniquePtr<T[], reference to function>!  See the
  // comment by this constructor in the non-T[] specialization above.
  UniquePtr(Pointer aPtr,
            typename RemoveReference<D>::Type&& aD2)
    : mTuple(aPtr, std::move(aD2))
  {
    static_assert(!IsReference<D>::value,
                  "rvalue deleter can't be stored by reference");
  }

  // Forbidden for the same reasons as stated above.
  template<typename U, typename V>
  UniquePtr(U&& aU, V&& aV,
            typename EnableIf<IsPointer<U>::value &&
                              IsConvertible<U, Pointer>::value,
                              int>::Type aDummy = 0)
  = delete;

  UniquePtr(UniquePtr&& aOther)
    : mTuple(aOther.release(), std::forward<DeleterType>(aOther.get_deleter()))
  {}

  MOZ_IMPLICIT
  UniquePtr(decltype(nullptr))
    : mTuple(nullptr, DeleterType())
  {
    static_assert(!IsPointer<D>::value, "must provide a deleter instance");
    static_assert(!IsReference<D>::value, "must provide a deleter instance");
  }

  ~UniquePtr() { reset(nullptr); }

  UniquePtr& operator=(UniquePtr&& aOther)
  {
    reset(aOther.release());
    get_deleter() = std::forward<DeleterType>(aOther.get_deleter());
    return *this;
  }

  UniquePtr& operator=(decltype(nullptr))
  {
    reset();
    return *this;
  }

  explicit operator bool() const { return get() != nullptr; }

  T& operator[](decltype(sizeof(int)) aIndex) const { return get()[aIndex]; }
  Pointer get() const { return mTuple.first(); }

  DeleterType& get_deleter() { return mTuple.second(); }
  const DeleterType& get_deleter() const { return mTuple.second(); }

  MOZ_MUST_USE Pointer release()
  {
    Pointer p = mTuple.first();
    mTuple.first() = nullptr;
    return p;
  }

  void reset(Pointer aPtr = Pointer())
  {
    Pointer old = mTuple.first();
    mTuple.first() = aPtr;
    if (old != nullptr) {
      mTuple.second()(old);
    }
  }

  void reset(decltype(nullptr))
  {
    Pointer old = mTuple.first();
    mTuple.first() = nullptr;
    if (old != nullptr) {
      mTuple.second()(old);
    }
  }

  template<typename U>
  void reset(U) = delete;

  void swap(UniquePtr& aOther) { mTuple.swap(aOther.mTuple); }

  UniquePtr(const UniquePtr& aOther) = delete; // construct using std::move()!
  void operator=(const UniquePtr& aOther) = delete; // assign using std::move()!
};

/**
 * A default deletion policy using plain old operator delete.
 *
 * Note that this type can be specialized, but authors should beware of the risk
 * that the specialization may at some point cease to match (either because it
 * gets moved to a different compilation unit or the signature changes). If the
 * non-specialized (|delete|-based) version compiles for that type but does the
 * wrong thing, bad things could happen.
 *
 * This is a non-issue for types which are always incomplete (i.e. opaque handle
 * types), since |delete|-ing such a type will always trigger a compilation
 * error.
 */
template<typename T>
class DefaultDelete
{
public:
  constexpr DefaultDelete() {}

  template<typename U>
  MOZ_IMPLICIT DefaultDelete(const DefaultDelete<U>& aOther,
                             typename EnableIf<mozilla::IsConvertible<U*, T*>::value,
                                               int>::Type aDummy = 0)
  {}

  void operator()(T* aPtr) const
  {
    static_assert(sizeof(T) > 0, "T must be complete");
    delete aPtr;
  }
};

/** A default deletion policy using operator delete[]. */
template<typename T>
class DefaultDelete<T[]>
{
public:
  constexpr DefaultDelete() {}

  void operator()(T* aPtr) const
  {
    static_assert(sizeof(T) > 0, "T must be complete");
    delete[] aPtr;
  }

  template<typename U>
  void operator()(U* aPtr) const = delete;
};

template<typename T, class D>
void
Swap(UniquePtr<T, D>& aX, UniquePtr<T, D>& aY)
{
  aX.swap(aY);
}

template<typename T, class D, typename U, class E>
bool
operator==(const UniquePtr<T, D>& aX, const UniquePtr<U, E>& aY)
{
  return aX.get() == aY.get();
}

template<typename T, class D, typename U, class E>
bool
operator!=(const UniquePtr<T, D>& aX, const UniquePtr<U, E>& aY)
{
  return aX.get() != aY.get();
}

template<typename T, class D>
bool
operator==(const UniquePtr<T, D>& aX, decltype(nullptr))
{
  return !aX;
}

template<typename T, class D>
bool
operator==(decltype(nullptr), const UniquePtr<T, D>& aX)
{
  return !aX;
}

template<typename T, class D>
bool
operator!=(const UniquePtr<T, D>& aX, decltype(nullptr))
{
  return bool(aX);
}

template<typename T, class D>
bool
operator!=(decltype(nullptr), const UniquePtr<T, D>& aX)
{
  return bool(aX);
}

// No operator<, operator>, operator<=, operator>= for now because simplicity.

namespace detail {

template<typename T>
struct UniqueSelector
{
  typedef UniquePtr<T> SingleObject;
};

template<typename T>
struct UniqueSelector<T[]>
{
  typedef UniquePtr<T[]> UnknownBound;
};

template<typename T, decltype(sizeof(int)) N>
struct UniqueSelector<T[N]>
{
  typedef UniquePtr<T[N]> KnownBound;
};

} // namespace detail

/**
 * MakeUnique is a helper function for allocating new'd objects and arrays,
 * returning a UniquePtr containing the resulting pointer.  The semantics of
 * MakeUnique<Type>(...) are as follows.
 *
 *   If Type is an array T[n]:
 *     Disallowed, deleted, no overload for you!
 *   If Type is an array T[]:
 *     MakeUnique<T[]>(size_t) is the only valid overload.  The pointer returned
 *     is as if by |new T[n]()|, which value-initializes each element.  (If T
 *     isn't a class type, this will zero each element.  If T is a class type,
 *     then roughly speaking, each element will be constructed using its default
 *     constructor.  See C++11 [dcl.init]p7 for the full gory details.)
 *   If Type is non-array T:
 *     The arguments passed to MakeUnique<T>(...) are forwarded into a
 *     |new T(...)| call, initializing the T as would happen if executing
 *     |T(...)|.
 *
 * There are various benefits to using MakeUnique instead of |new| expressions.
 *
 * First, MakeUnique eliminates use of |new| from code entirely.  If objects are
 * only created through UniquePtr, then (assuming all explicit release() calls
 * are safe, including transitively, and no type-safety casting funniness)
 * correctly maintained ownership of the UniquePtr guarantees no leaks are
 * possible.  (This pays off best if a class is only ever created through a
 * factory method on the class, using a private constructor.)
 *
 * Second, initializing a UniquePtr using a |new| expression requires repeating
 * the name of the new'd type, whereas MakeUnique in concert with the |auto|
 * keyword names it only once:
 *
 *   UniquePtr<char> ptr1(new char()); // repetitive
 *   auto ptr2 = MakeUnique<char>();   // shorter
 *
 * Of course this assumes the reader understands the operation MakeUnique
 * performs.  In the long run this is probably a reasonable assumption.  In the
 * short run you'll have to use your judgment about what readers can be expected
 * to know, or to quickly look up.
 *
 * Third, a call to MakeUnique can be assigned directly to a UniquePtr.  In
 * contrast you can't assign a pointer into a UniquePtr without using the
 * cumbersome reset().
 *
 *   UniquePtr<char> p;
 *   p = new char;           // ERROR
 *   p.reset(new char);      // works, but fugly
 *   p = MakeUnique<char>(); // preferred
 *
 * (And third, although not relevant to Mozilla: MakeUnique is exception-safe.
 * An exception thrown after |new T| succeeds will leak that memory, unless the
 * pointer is assigned to an object that will manage its ownership.  UniquePtr
 * ably serves this function.)
 */

template<typename T, typename... Args>
typename detail::UniqueSelector<T>::SingleObject
MakeUnique(Args&&... aArgs)
{
  return UniquePtr<T>(new T(std::forward<Args>(aArgs)...));
}

template<typename T>
typename detail::UniqueSelector<T>::UnknownBound
MakeUnique(decltype(sizeof(int)) aN)
{
  typedef typename RemoveExtent<T>::Type ArrayType;
  return UniquePtr<T>(new ArrayType[aN]());
}

template<typename T, typename... Args>
typename detail::UniqueSelector<T>::KnownBound
MakeUnique(Args&&... aArgs) = delete;

} // namespace mozilla

#endif /* mozilla_UniquePtr_h */