DXR will be turned off on Tuesday, December 29th. It will redirect to Searchfox.
See the announcement on Discourse.

DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Mercurial (c68fe15a81fc)

VCS Links

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
/* This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */

// A simple segmented vector class.
//
//
// This class should be used in preference to mozilla::Vector or nsTArray when
// you are simply gathering items in order to later iterate over them.
//
// - In the case where you don't know the final size in advance, using
//   SegmentedVector avoids the need to repeatedly allocate increasingly large
//   SegmentedVector avoids the need to repeatedly allocate increasingly large
//   buffers and copy the data into them.
//
// - In the case where you know the final size in advance and so can set the
//   capacity appropriately, using SegmentedVector still avoids the need for
//   large allocations (which can trigger OOMs).
//   large allocations (which can trigger OOMs).

#ifndef mozilla_SegmentedVector_h
#define mozilla_SegmentedVector_h

#include <new>  // for placement new
#include <new>  // for placement new
#include <utility>

#include "mozilla/AllocPolicy.h"
#include "mozilla/Array.h"
#include "mozilla/Attributes.h"
#include "mozilla/LinkedList.h"
#include "mozilla/LinkedList.h"
#include "mozilla/MemoryReporting.h"
#include "mozilla/MemoryReporting.h"
#include "mozilla/OperatorNewExtensions.h"

#ifdef IMPL_LIBXUL
#ifdef IMPL_LIBXUL
#  include "mozilla/Likely.h"
#  include "mozilla/mozalloc_oom.h"
#endif  // IMPL_LIBXUL

namespace mozilla {
namespace mozilla {

// |IdealSegmentSize| specifies how big each segment will be in bytes (or as
// close as is possible). Use the following guidelines to choose a size.
//
// - It should be a power-of-two, to avoid slop.
// - It should be a power-of-two, to avoid slop.
//
// - It should not be too small, so that segment allocations are infrequent,
//   and so that per-segment bookkeeping overhead is low. Typically each
//   segment should be able to hold hundreds of elements, at least.
//
//
// - It should not be too large, so that OOMs are unlikely when allocating
//   segments, and so that not too much space is wasted when the final segment
//   is not full.
//
// The ideal size depends on how the SegmentedVector is used and the size of
// The ideal size depends on how the SegmentedVector is used and the size of
// |T|, but reasonable sizes include 1024, 4096 (the default), 8192, and 16384.
//
template <typename T, size_t IdealSegmentSize = 4096,
          typename AllocPolicy = MallocAllocPolicy>
          typename AllocPolicy = MallocAllocPolicy>
class SegmentedVector : private AllocPolicy {
  template <size_t SegmentCapacity>
  struct SegmentImpl
      : public mozilla::LinkedListElement<SegmentImpl<SegmentCapacity>> {
   private:
   private:
    uint32_t mLength;
    alignas(T) MOZ_INIT_OUTSIDE_CTOR
        unsigned char mData[sizeof(T) * SegmentCapacity];

    // Some versions of GCC treat it as a -Wstrict-aliasing violation (ergo a
    // Some versions of GCC treat it as a -Wstrict-aliasing violation (ergo a
    // -Werror compile error) to reinterpret_cast<> |mData| to |T*|, even
    // through |void*|.  Placing the latter cast in these separate functions
    // breaks the chain such that affected GCC versions no longer warn/error.
    void* RawData() { return mData; }


   public:
    SegmentImpl() : mLength(0) {}

    ~SegmentImpl() {
      for (uint32_t i = 0; i < mLength; i++) {
      for (uint32_t i = 0; i < mLength; i++) {
        (*this)[i].~T();
      }
    }

    uint32_t Length() const { return mLength; }
    uint32_t Length() const { return mLength; }

    T* Elems() { return reinterpret_cast<T*>(RawData()); }

    T& operator[](size_t aIndex) {
      MOZ_ASSERT(aIndex < mLength);
      MOZ_ASSERT(aIndex < mLength);
      return Elems()[aIndex];
    }

    const T& operator[](size_t aIndex) const {
      MOZ_ASSERT(aIndex < mLength);
      return Elems()[aIndex];
    }

    template <typename U>
    template <typename U>
    void Append(U&& aU) {
      MOZ_ASSERT(mLength < SegmentCapacity);
      // Pre-increment mLength so that the bounds-check in operator[] passes.
      mLength++;
      T* elem = &(*this)[mLength - 1];
      T* elem = &(*this)[mLength - 1];
      new (KnownNotNull, elem) T(std::forward<U>(aU));
    }

    void PopLast() {
      MOZ_ASSERT(mLength > 0);
      MOZ_ASSERT(mLength > 0);
      (*this)[mLength - 1].~T();
      mLength--;
    }
  };


  // See how many we elements we can fit in a segment of IdealSegmentSize. If
  // IdealSegmentSize is too small, it'll be just one. The +1 is because
  // kSingleElementSegmentSize already accounts for one element.
  static const size_t kSingleElementSegmentSize = sizeof(SegmentImpl<1>);
  static const size_t kSegmentCapacity =
  static const size_t kSegmentCapacity =
      kSingleElementSegmentSize <= IdealSegmentSize
          ? (IdealSegmentSize - kSingleElementSegmentSize) / sizeof(T) + 1
          : 1;

 public:
  typedef SegmentImpl<kSegmentCapacity> Segment;

  // The |aIdealSegmentSize| is only for sanity checking. If it's specified, we
  // check that the actual segment size is as close as possible to it. This
  // check that the actual segment size is as close as possible to it. This
  // serves as a sanity check for SegmentedVectorCapacity's capacity
  // computation.
  explicit SegmentedVector(size_t aIdealSegmentSize = 0) {
    // The difference between the actual segment size and the ideal segment
    // size should be less than the size of a single element... unless the
    // size should be less than the size of a single element... unless the
    // ideal size was too small, in which case the capacity should be one.
    MOZ_ASSERT_IF(
        aIdealSegmentSize != 0,
        (sizeof(Segment) > aIdealSegmentSize && kSegmentCapacity == 1) ||
            aIdealSegmentSize - sizeof(Segment) < sizeof(T));
            aIdealSegmentSize - sizeof(Segment) < sizeof(T));
  }

  SegmentedVector(SegmentedVector&& aOther)
      : mSegments(std::move(aOther.mSegments)) {}


  ~SegmentedVector() { Clear(); }

  bool IsEmpty() const { return !mSegments.getFirst(); }

  // Note that this is O(n) rather than O(1), but the constant factor is very
  // Note that this is O(n) rather than O(1), but the constant factor is very
  // small because it only has to do one addition per segment.
  size_t Length() const {
    size_t n = 0;
    for (auto segment = mSegments.getFirst(); segment;
         segment = segment->getNext()) {
         segment = segment->getNext()) {
      n += segment->Length();
    }
    return n;
  }


  // Returns false if the allocation failed. (If you are using an infallible
  // allocation policy, use InfallibleAppend() instead.)
  template <typename U>
  MOZ_MUST_USE bool Append(U&& aU) {
    Segment* last = mSegments.getLast();
    Segment* last = mSegments.getLast();
    if (!last || last->Length() == kSegmentCapacity) {
      last = this->template pod_malloc<Segment>(1);
      if (!last) {
        return false;
      }
      }
      new (KnownNotNull, last) Segment();
      mSegments.insertBack(last);
    }
    last->Append(std::forward<U>(aU));
    return true;
    return true;
  }

  // You should probably only use this instead of Append() if you are using an
  // infallible allocation policy. It will crash if the allocation fails.
  template <typename U>
  template <typename U>
  void InfallibleAppend(U&& aU) {
    bool ok = Append(std::forward<U>(aU));

#ifdef IMPL_LIBXUL
    if (MOZ_UNLIKELY(!ok)) {
    if (MOZ_UNLIKELY(!ok)) {
      mozalloc_handle_oom(sizeof(Segment));
    }
#else
    MOZ_RELEASE_ASSERT(ok);
#endif  // MOZ_INTERNAL_API
  }

  void Clear() {
    Segment* segment;
    Segment* segment;
    while ((segment = mSegments.popFirst())) {
      segment->~Segment();
      this->free_(segment, 1);
    }
  }

  T& GetLast() {
    MOZ_ASSERT(!IsEmpty());
    MOZ_ASSERT(!IsEmpty());
    Segment* last = mSegments.getLast();
    return (*last)[last->Length() - 1];
  }

  const T& GetLast() const {
  const T& GetLast() const {
    MOZ_ASSERT(!IsEmpty());
    Segment* last = mSegments.getLast();
    return (*last)[last->Length() - 1];
  }


  void PopLast() {
    MOZ_ASSERT(!IsEmpty());
    Segment* last = mSegments.getLast();
    last->PopLast();
    if (!last->Length()) {
    if (!last->Length()) {
      mSegments.popLast();
      last->~Segment();
      this->free_(last, 1);
    }
  }
  }

  // Equivalent to calling |PopLast| |aNumElements| times, but potentially
  // more efficient.
  void PopLastN(uint32_t aNumElements) {
    MOZ_ASSERT(aNumElements <= Length());

    Segment* last;
    Segment* last;

    // Pop full segments for as long as we can.  Note that this loop
    // cleanly handles the case when the initial last segment is not
    // full and we are popping more elements than said segment contains.
    do {
    do {
      last = mSegments.getLast();

      // The list is empty.  We're all done.
      if (!last) {
        return;
      }
      }

      // Check to see if the list contains too many elements.  Handle
      // that in the epilogue.
      uint32_t segmentLen = last->Length();
      if (segmentLen > aNumElements) {
      if (segmentLen > aNumElements) {
        break;
      }

      // Destroying the segment destroys all elements contained therein.
      mSegments.popLast();
      mSegments.popLast();
      last->~Segment();
      this->free_(last, 1);

      MOZ_ASSERT(aNumElements >= segmentLen);
      MOZ_ASSERT(aNumElements >= segmentLen);
      aNumElements -= segmentLen;
      if (aNumElements == 0) {
        return;
      }
    } while (true);
    } while (true);

    // Handle the case where the last segment contains more elements
    // than we want to pop.
    MOZ_ASSERT(last);
    MOZ_ASSERT(last == mSegments.getLast());
    MOZ_ASSERT(last == mSegments.getLast());
    MOZ_ASSERT(aNumElements < last->Length());
    for (uint32_t i = 0; i < aNumElements; ++i) {
      last->PopLast();
    }
    MOZ_ASSERT(last->Length() != 0);
    MOZ_ASSERT(last->Length() != 0);
  }

  // Use this class to iterate over a SegmentedVector, like so:
  //
  //  for (auto iter = v.Iter(); !iter.Done(); iter.Next()) {
  //  for (auto iter = v.Iter(); !iter.Done(); iter.Next()) {
  //    MyElem& elem = iter.Get();
  //    f(elem);
  //  }
  //
  // Note, adding new entries to the SegmentedVector while using iterators
  // Note, adding new entries to the SegmentedVector while using iterators
  // is supported, but removing is not!
  // If an iterator has entered Done() state, adding more entries to the
  // vector doesn't affect it.
  class IterImpl {
    friend class SegmentedVector;
    friend class SegmentedVector;

    Segment* mSegment;
    size_t mIndex;

    explicit IterImpl(SegmentedVector* aVector, bool aFromFirst)
    explicit IterImpl(SegmentedVector* aVector, bool aFromFirst)
        : mSegment(aFromFirst ? aVector->mSegments.getFirst()
                              : aVector->mSegments.getLast()),
          mIndex(aFromFirst ? 0 : (mSegment ? mSegment->Length() - 1 : 0)) {
      MOZ_ASSERT_IF(mSegment, mSegment->Length() > 0);
    }

   public:
   public:
    bool Done() const { return !mSegment; }

    T& Get() {
      MOZ_ASSERT(!Done());
      return (*mSegment)[mIndex];
      return (*mSegment)[mIndex];
    }

    const T& Get() const {
      MOZ_ASSERT(!Done());
      return (*mSegment)[mIndex];
      return (*mSegment)[mIndex];
    }

    void Next() {
      MOZ_ASSERT(!Done());
      MOZ_ASSERT(!Done());
      mIndex++;
      if (mIndex == mSegment->Length()) {
        mSegment = mSegment->getNext();
        mIndex = 0;
      }
      }
    }

    void Prev() {
      MOZ_ASSERT(!Done());
      MOZ_ASSERT(!Done());
      if (mIndex == 0) {
        mSegment = mSegment->getPrevious();
        if (mSegment) {
          mIndex = mSegment->Length() - 1;
        }
        }
      } else {
        --mIndex;
      }
    }
  };
  };

  IterImpl Iter() { return IterImpl(this, true); }
  IterImpl IterFromLast() { return IterImpl(this, false); }

  // Measure the memory consumption of the vector excluding |this|. Note that
  // Measure the memory consumption of the vector excluding |this|. Note that
  // it only measures the vector itself. If the vector elements contain
  // pointers to other memory blocks, those blocks must be measured separately
  // during a subsequent iteration over the vector.
  size_t SizeOfExcludingThis(mozilla::MallocSizeOf aMallocSizeOf) const {
    return mSegments.sizeOfExcludingThis(aMallocSizeOf);
    return mSegments.sizeOfExcludingThis(aMallocSizeOf);
  }

  // Like sizeOfExcludingThis(), but measures |this| as well.
  size_t SizeOfIncludingThis(mozilla::MallocSizeOf aMallocSizeOf) const {
    return aMallocSizeOf(this) + SizeOfExcludingThis(aMallocSizeOf);
  }

 private:
 private:
  mozilla::LinkedList<Segment> mSegments;
};

}  // namespace mozilla


#endif /* mozilla_SegmentedVector_h */