DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Mercurial (0ec836eceb96)

VCS Links

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */

/* A type-safe doubly-linked list class. */

/*
 * The classes LinkedList<T> and LinkedListElement<T> together form a
 * convenient, type-safe doubly-linked list implementation.
 *
 * The class T which will be inserted into the linked list must inherit from
 * LinkedListElement<T>.  A given object may be in only one linked list at a
 * time.
 *
 * A LinkedListElement automatically removes itself from the list upon
 * destruction, and a LinkedList will fatally assert in debug builds if it's
 * non-empty when it's destructed.
 *
 * For example, you might use LinkedList in a simple observer list class as
 * follows.
 *
 *   class Observer : public LinkedListElement<Observer>
 *   {
 *   public:
 *     void observe(char* aTopic) { ... }
 *   };
 *
 *   class ObserverContainer
 *   {
 *   private:
 *     LinkedList<Observer> list;
 *
 *   public:
 *     void addObserver(Observer* aObserver)
 *     {
 *       // Will assert if |aObserver| is part of another list.
 *       list.insertBack(aObserver);
 *     }
 *
 *     void removeObserver(Observer* aObserver)
 *     {
 *       // Will assert if |aObserver| is not part of some list.
 *       aObserver.remove();
 *       // Or, will assert if |aObserver| is not part of |list| specifically.
 *       // aObserver.removeFrom(list);
 *     }
 *
 *     void notifyObservers(char* aTopic)
 *     {
 *       for (Observer* o = list.getFirst(); o != nullptr; o = o->getNext()) {
 *         o->observe(aTopic);
 *       }
 *     }
 *   };
 *
 * Additionally, the class AutoCleanLinkedList<T> is a LinkedList<T> that will
 * remove and delete each element still within itself upon destruction. Note
 * that because each element is deleted, elements must have been allocated
 * using |new|.
 */

#ifndef mozilla_LinkedList_h
#define mozilla_LinkedList_h

#include "mozilla/Assertions.h"
#include "mozilla/Attributes.h"
#include "mozilla/MemoryReporting.h"
#include "mozilla/Move.h"
#include "mozilla/RefPtr.h"

#ifdef __cplusplus

namespace mozilla {

template <typename T>
class LinkedListElement;

namespace detail {

/**
 * LinkedList supports refcounted elements using this adapter class. Clients
 * using LinkedList<RefPtr<T>> will get a data structure that holds a strong
 * reference to T as long as T is in the list.
 */
template <typename T>
struct LinkedListElementTraits {
  typedef T* RawType;
  typedef const T* ConstRawType;
  typedef T* ClientType;
  typedef const T* ConstClientType;

  // These static methods are called when an element is added to or removed from
  // a linked list. It can be used to keep track ownership in lists that are
  // supposed to own their elements. If elements are transferred from one list
  // to another, no enter or exit calls happen since the elements still belong
  // to a list.
  static void enterList(LinkedListElement<T>* elt) {}
  static void exitList(LinkedListElement<T>* elt) {}

  // This method is called when AutoCleanLinkedList cleans itself
  // during destruction. It can be used to call delete on elements if
  // the list is the sole owner.
  static void cleanElement(LinkedListElement<T>* elt) { delete elt->asT(); }
};

template <typename T>
struct LinkedListElementTraits<RefPtr<T>> {
  typedef T* RawType;
  typedef const T* ConstRawType;
  typedef RefPtr<T> ClientType;
  typedef RefPtr<const T> ConstClientType;

  static void enterList(LinkedListElement<RefPtr<T>>* elt) {
    elt->asT()->AddRef();
  }
  static void exitList(LinkedListElement<RefPtr<T>>* elt) {
    elt->asT()->Release();
  }
  static void cleanElement(LinkedListElement<RefPtr<T>>* elt) {}
};

} /* namespace detail */

template <typename T>
class LinkedList;

template <typename T>
class LinkedListElement {
  typedef typename detail::LinkedListElementTraits<T> Traits;
  typedef typename Traits::RawType RawType;
  typedef typename Traits::ConstRawType ConstRawType;
  typedef typename Traits::ClientType ClientType;
  typedef typename Traits::ConstClientType ConstClientType;

  /*
   * It's convenient that we return nullptr when getNext() or getPrevious()
   * hits the end of the list, but doing so costs an extra word of storage in
   * each linked list node (to keep track of whether |this| is the sentinel
   * node) and a branch on this value in getNext/getPrevious.
   *
   * We could get rid of the extra word of storage by shoving the "is
   * sentinel" bit into one of the pointers, although this would, of course,
   * have performance implications of its own.
   *
   * But the goal here isn't to win an award for the fastest or slimmest
   * linked list; rather, we want a *convenient* linked list.  So we won't
   * waste time guessing which micro-optimization strategy is best.
   *
   *
   * Speaking of unnecessary work, it's worth addressing here why we wrote
   * mozilla::LinkedList in the first place, instead of using stl::list.
   *
   * The key difference between mozilla::LinkedList and stl::list is that
   * mozilla::LinkedList stores the mPrev/mNext pointers in the object itself,
   * while stl::list stores the mPrev/mNext pointers in a list element which
   * itself points to the object being stored.
   *
   * mozilla::LinkedList's approach makes it harder to store an object in more
   * than one list.  But the upside is that you can call next() / prev() /
   * remove() directly on the object.  With stl::list, you'd need to store a
   * pointer to its iterator in the object in order to accomplish this.  Not
   * only would this waste space, but you'd have to remember to update that
   * pointer every time you added or removed the object from a list.
   *
   * In-place, constant-time removal is a killer feature of doubly-linked
   * lists, and supporting this painlessly was a key design criterion.
   */

 private:
  LinkedListElement* mNext;
  LinkedListElement* mPrev;
  const bool mIsSentinel;

 public:
  LinkedListElement() : mNext(this), mPrev(this), mIsSentinel(false) {}

  /*
   * Moves |aOther| into |*this|. If |aOther| is already in a list, then
   * |aOther| is removed from the list and replaced by |*this|.
   */
  LinkedListElement(LinkedListElement<T>&& aOther)
      : mIsSentinel(aOther.mIsSentinel) {
    adjustLinkForMove(std::move(aOther));
  }

  LinkedListElement& operator=(LinkedListElement<T>&& aOther) {
    MOZ_ASSERT(mIsSentinel == aOther.mIsSentinel, "Mismatch NodeKind!");
    MOZ_ASSERT(!isInList(),
               "Assigning to an element in a list messes up that list!");
    adjustLinkForMove(std::move(aOther));
    return *this;
  }

  ~LinkedListElement() {
    if (!mIsSentinel && isInList()) {
      remove();
    }
  }

  /*
   * Get the next element in the list, or nullptr if this is the last element
   * in the list.
   */
  RawType getNext() { return mNext->asT(); }
  ConstRawType getNext() const { return mNext->asT(); }

  /*
   * Get the previous element in the list, or nullptr if this is the first
   * element in the list.
   */
  RawType getPrevious() { return mPrev->asT(); }
  ConstRawType getPrevious() const { return mPrev->asT(); }

  /*
   * Insert aElem after this element in the list.  |this| must be part of a
   * linked list when you call setNext(); otherwise, this method will assert.
   */
  void setNext(RawType aElem) {
    MOZ_ASSERT(isInList());
    setNextUnsafe(aElem);
  }

  /*
   * Insert aElem before this element in the list.  |this| must be part of a
   * linked list when you call setPrevious(); otherwise, this method will
   * assert.
   */
  void setPrevious(RawType aElem) {
    MOZ_ASSERT(isInList());
    setPreviousUnsafe(aElem);
  }

  /*
   * Remove this element from the list which contains it.  If this element is
   * not currently part of a linked list, this method asserts.
   */
  void remove() {
    MOZ_ASSERT(isInList());

    mPrev->mNext = mNext;
    mNext->mPrev = mPrev;
    mNext = this;
    mPrev = this;

    Traits::exitList(this);
  }

  /*
   * Remove this element from the list containing it.  Returns a pointer to the
   * element that follows this element (before it was removed).  This method
   * asserts if the element does not belong to a list. Note: In a refcounted
   * list, |this| may be destroyed.
   */
  RawType removeAndGetNext() {
    RawType r = getNext();
    remove();
    return r;
  }

  /*
   * Remove this element from the list containing it.  Returns a pointer to the
   * previous element in the containing list (before the removal).  This method
   * asserts if the element does not belong to a list. Note: In a refcounted
   * list, |this| may be destroyed.
   */
  RawType removeAndGetPrevious() {
    RawType r = getPrevious();
    remove();
    return r;
  }

  /*
   * Identical to remove(), but also asserts in debug builds that this element
   * is in aList.
   */
  void removeFrom(const LinkedList<T>& aList) {
    aList.assertContains(asT());
    remove();
  }

  /*
   * Return true if |this| part is of a linked list, and false otherwise.
   */
  bool isInList() const {
    MOZ_ASSERT((mNext == this) == (mPrev == this));
    return mNext != this;
  }

 private:
  friend class LinkedList<T>;
  friend struct detail::LinkedListElementTraits<T>;

  enum class NodeKind { Normal, Sentinel };

  explicit LinkedListElement(NodeKind nodeKind)
      : mNext(this), mPrev(this), mIsSentinel(nodeKind == NodeKind::Sentinel) {}

  /*
   * Return |this| cast to T* if we're a normal node, or return nullptr if
   * we're a sentinel node.
   */
  RawType asT() { return mIsSentinel ? nullptr : static_cast<RawType>(this); }
  ConstRawType asT() const {
    return mIsSentinel ? nullptr : static_cast<ConstRawType>(this);
  }

  /*
   * Insert aElem after this element, but don't check that this element is in
   * the list.  This is called by LinkedList::insertFront().
   */
  void setNextUnsafe(RawType aElem) {
    LinkedListElement* listElem = static_cast<LinkedListElement*>(aElem);
    MOZ_ASSERT(!listElem->isInList());

    listElem->mNext = this->mNext;
    listElem->mPrev = this;
    this->mNext->mPrev = listElem;
    this->mNext = listElem;

    Traits::enterList(aElem);
  }

  /*
   * Insert aElem before this element, but don't check that this element is in
   * the list.  This is called by LinkedList::insertBack().
   */
  void setPreviousUnsafe(RawType aElem) {
    LinkedListElement<T>* listElem = static_cast<LinkedListElement<T>*>(aElem);
    MOZ_ASSERT(!listElem->isInList());

    listElem->mNext = this;
    listElem->mPrev = this->mPrev;
    this->mPrev->mNext = listElem;
    this->mPrev = listElem;

    Traits::enterList(aElem);
  }

  /*
   * Adjust mNext and mPrev for implementing move constructor and move
   * assignment.
   */
  void adjustLinkForMove(LinkedListElement<T>&& aOther) {
    if (!aOther.isInList()) {
      mNext = this;
      mPrev = this;
      return;
    }

    if (!mIsSentinel) {
      Traits::enterList(this);
    }

    MOZ_ASSERT(aOther.mNext->mPrev == &aOther);
    MOZ_ASSERT(aOther.mPrev->mNext == &aOther);

    /*
     * Initialize |this| with |aOther|'s mPrev/mNext pointers, and adjust those
     * element to point to this one.
     */
    mNext = aOther.mNext;
    mPrev = aOther.mPrev;

    mNext->mPrev = this;
    mPrev->mNext = this;

    /*
     * Adjust |aOther| so it doesn't think it's in a list.  This makes it
     * safely destructable.
     */
    aOther.mNext = &aOther;
    aOther.mPrev = &aOther;

    if (!mIsSentinel) {
      Traits::exitList(&aOther);
    }
  }

  LinkedListElement& operator=(const LinkedListElement<T>& aOther) = delete;
  LinkedListElement(const LinkedListElement<T>& aOther) = delete;
};

template <typename T>
class LinkedList {
 private:
  typedef typename detail::LinkedListElementTraits<T> Traits;
  typedef typename Traits::RawType RawType;
  typedef typename Traits::ConstRawType ConstRawType;
  typedef typename Traits::ClientType ClientType;
  typedef typename Traits::ConstClientType ConstClientType;
  typedef LinkedListElement<T>* ElementType;
  typedef const LinkedListElement<T>* ConstElementType;

  LinkedListElement<T> sentinel;

 public:
  template <typename Type, typename Element>
  class Iterator {
    Type mCurrent;

   public:
    explicit Iterator(Type aCurrent) : mCurrent(aCurrent) {}

    Type operator*() const { return mCurrent; }

    const Iterator& operator++() {
      mCurrent = static_cast<Element>(mCurrent)->getNext();
      return *this;
    }

    bool operator!=(const Iterator& aOther) const {
      return mCurrent != aOther.mCurrent;
    }
  };

  LinkedList() : sentinel(LinkedListElement<T>::NodeKind::Sentinel) {}

  LinkedList(LinkedList<T>&& aOther) : sentinel(std::move(aOther.sentinel)) {}

  LinkedList& operator=(LinkedList<T>&& aOther) {
    MOZ_ASSERT(isEmpty(),
               "Assigning to a non-empty list leaks elements in that list!");
    sentinel = std::move(aOther.sentinel);
    return *this;
  }

  ~LinkedList() {
    MOZ_ASSERT(isEmpty(),
               "failing this assertion means this LinkedList's creator is "
               "buggy: it should have removed all this list's elements before "
               "the list's destruction");
  }

  /*
   * Add aElem to the front of the list.
   */
  void insertFront(RawType aElem) {
    /* Bypass setNext()'s this->isInList() assertion. */
    sentinel.setNextUnsafe(aElem);
  }

  /*
   * Add aElem to the back of the list.
   */
  void insertBack(RawType aElem) { sentinel.setPreviousUnsafe(aElem); }

  /*
   * Get the first element of the list, or nullptr if the list is empty.
   */
  RawType getFirst() { return sentinel.getNext(); }
  ConstRawType getFirst() const { return sentinel.getNext(); }

  /*
   * Get the last element of the list, or nullptr if the list is empty.
   */
  RawType getLast() { return sentinel.getPrevious(); }
  ConstRawType getLast() const { return sentinel.getPrevious(); }

  /*
   * Get and remove the first element of the list.  If the list is empty,
   * return nullptr.
   */
  ClientType popFirst() {
    ClientType ret = sentinel.getNext();
    if (ret) {
      static_cast<LinkedListElement<T>*>(RawType(ret))->remove();
    }
    return ret;
  }

  /*
   * Get and remove the last element of the list.  If the list is empty,
   * return nullptr.
   */
  ClientType popLast() {
    ClientType ret = sentinel.getPrevious();
    if (ret) {
      static_cast<LinkedListElement<T>*>(RawType(ret))->remove();
    }
    return ret;
  }

  /*
   * Return true if the list is empty, or false otherwise.
   */
  bool isEmpty() const { return !sentinel.isInList(); }

  /*
   * Remove all the elements from the list.
   *
   * This runs in time linear to the list's length, because we have to mark
   * each element as not in the list.
   */
  void clear() {
    while (popFirst()) {
    }
  }

  /*
   * Allow range-based iteration:
   *
   *     for (MyElementType* elt : myList) { ... }
   */
  Iterator<RawType, ElementType> begin() {
    return Iterator<RawType, ElementType>(getFirst());
  }
  Iterator<ConstRawType, ConstElementType> begin() const {
    return Iterator<ConstRawType, ConstElementType>(getFirst());
  }
  Iterator<RawType, ElementType> end() {
    return Iterator<RawType, ElementType>(nullptr);
  }
  Iterator<ConstRawType, ConstElementType> end() const {
    return Iterator<ConstRawType, ConstElementType>(nullptr);
  }

  /*
   * Measures the memory consumption of the list excluding |this|.  Note that
   * it only measures the list elements themselves.  If the list elements
   * contain pointers to other memory blocks, those blocks must be measured
   * separately during a subsequent iteration over the list.
   */
  size_t sizeOfExcludingThis(MallocSizeOf aMallocSizeOf) const {
    size_t n = 0;
    ConstRawType t = getFirst();
    while (t) {
      n += aMallocSizeOf(t);
      t = static_cast<const LinkedListElement<T>*>(t)->getNext();
    }
    return n;
  }

  /*
   * Like sizeOfExcludingThis(), but measures |this| as well.
   */
  size_t sizeOfIncludingThis(MallocSizeOf aMallocSizeOf) const {
    return aMallocSizeOf(this) + sizeOfExcludingThis(aMallocSizeOf);
  }

  /*
   * In a debug build, make sure that the list is sane (no cycles, consistent
   * mNext/mPrev pointers, only one sentinel).  Has no effect in release builds.
   */
  void debugAssertIsSane() const {
#  ifdef DEBUG
    const LinkedListElement<T>* slow;
    const LinkedListElement<T>* fast1;
    const LinkedListElement<T>* fast2;

    /*
     * Check for cycles in the forward singly-linked list using the
     * tortoise/hare algorithm.
     */
    for (slow = sentinel.mNext, fast1 = sentinel.mNext->mNext,
        fast2 = sentinel.mNext->mNext->mNext;
         slow != &sentinel && fast1 != &sentinel && fast2 != &sentinel;
         slow = slow->mNext, fast1 = fast2->mNext, fast2 = fast1->mNext) {
      MOZ_ASSERT(slow != fast1);
      MOZ_ASSERT(slow != fast2);
    }

    /* Check for cycles in the backward singly-linked list. */
    for (slow = sentinel.mPrev, fast1 = sentinel.mPrev->mPrev,
        fast2 = sentinel.mPrev->mPrev->mPrev;
         slow != &sentinel && fast1 != &sentinel && fast2 != &sentinel;
         slow = slow->mPrev, fast1 = fast2->mPrev, fast2 = fast1->mPrev) {
      MOZ_ASSERT(slow != fast1);
      MOZ_ASSERT(slow != fast2);
    }

    /*
     * Check that |sentinel| is the only node in the list with
     * mIsSentinel == true.
     */
    for (const LinkedListElement<T>* elem = sentinel.mNext; elem != &sentinel;
         elem = elem->mNext) {
      MOZ_ASSERT(!elem->mIsSentinel);
    }

    /* Check that the mNext/mPrev pointers match up. */
    const LinkedListElement<T>* prev = &sentinel;
    const LinkedListElement<T>* cur = sentinel.mNext;
    do {
      MOZ_ASSERT(cur->mPrev == prev);
      MOZ_ASSERT(prev->mNext == cur);

      prev = cur;
      cur = cur->mNext;
    } while (cur != &sentinel);
#  endif /* ifdef DEBUG */
  }

 private:
  friend class LinkedListElement<T>;

  void assertContains(const RawType aValue) const {
#  ifdef DEBUG
    for (ConstRawType elem = getFirst(); elem; elem = elem->getNext()) {
      if (elem == aValue) {
        return;
      }
    }
    MOZ_CRASH("element wasn't found in this list!");
#  endif
  }

  LinkedList& operator=(const LinkedList<T>& aOther) = delete;
  LinkedList(const LinkedList<T>& aOther) = delete;
};

template <typename T>
class AutoCleanLinkedList : public LinkedList<T> {
 private:
  using Traits = detail::LinkedListElementTraits<T>;
  using ClientType = typename detail::LinkedListElementTraits<T>::ClientType;

 public:
  ~AutoCleanLinkedList() { clear(); }

  AutoCleanLinkedList& operator=(AutoCleanLinkedList&& aOther) {
    LinkedList<T>::operator=(std::forward<LinkedList<T>>(aOther));
    return *this;
  }

  void clear() {
    while (ClientType element = this->popFirst()) {
      Traits::cleanElement(element);
    }
  }
};

} /* namespace mozilla */

#endif /* __cplusplus */

#endif /* mozilla_LinkedList_h */