DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Implementation

Mercurial (40c99f4752f9)

VCS Links

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */

/* Utilities for hashing. */

/*
 * This file exports functions for hashing data down to a uint32_t (a.k.a.
 * mozilla::HashNumber), including:
 *
 *  - HashString    Hash a char* or char16_t/wchar_t* of known or unknown
 *                  length.
 *
 *  - HashBytes     Hash a byte array of known length.
 *
 *  - HashGeneric   Hash one or more values.  Currently, we support uint32_t,
 *                  types which can be implicitly cast to uint32_t, data
 *                  pointers, and function pointers.
 *
 *  - AddToHash     Add one or more values to the given hash.  This supports the
 *                  same list of types as HashGeneric.
 *
 *
 * You can chain these functions together to hash complex objects.  For example:
 *
 *  class ComplexObject
 *  {
 *    char* mStr;
 *    uint32_t mUint1, mUint2;
 *    void (*mCallbackFn)();
 *
 *  public:
 *    HashNumber hash()
 *    {
 *      HashNumber hash = HashString(mStr);
 *      hash = AddToHash(hash, mUint1, mUint2);
 *      return AddToHash(hash, mCallbackFn);
 *    }
 *  };
 *
 * If you want to hash an nsAString or nsACString, use the HashString functions
 * in nsHashKeys.h.
 */

#ifndef mozilla_HashFunctions_h
#define mozilla_HashFunctions_h

#include "mozilla/Assertions.h"
#include "mozilla/Attributes.h"
#include "mozilla/Char16.h"
#include "mozilla/MathAlgorithms.h"
#include "mozilla/Types.h"
#include "mozilla/WrappingOperations.h"

#include <stdint.h>
#include <type_traits>

namespace mozilla {

using HashNumber = uint32_t;
static const uint32_t kHashNumberBits = 32;

/**
 * The golden ratio as a 32-bit fixed-point value.
 */
static const HashNumber kGoldenRatioU32 = 0x9E3779B9U;

/*
 * Given a raw hash code, h, return a number that can be used to select a hash
 * bucket.
 *
 * This function aims to produce as uniform an output distribution as possible,
 * especially in the most significant (leftmost) bits, even though the input
 * distribution may be highly nonrandom, given the constraints that this must
 * be deterministic and quick to compute.
 *
 * Since the leftmost bits of the result are best, the hash bucket index is
 * computed by doing ScrambleHashCode(h) / (2^32/N) or the equivalent
 * right-shift, not ScrambleHashCode(h) % N or the equivalent bit-mask.
 *
 * FIXME: OrderedHashTable uses a bit-mask; see bug 775896.
 */
constexpr HashNumber ScrambleHashCode(HashNumber h) {
  /*
   * Simply returning h would not cause any hash tables to produce wrong
   * answers. But it can produce pathologically bad performance: The caller
   * right-shifts the result, keeping only the highest bits. The high bits of
   * hash codes are very often completely entropy-free. (So are the lowest
   * bits.)
   *
   * So we use Fibonacci hashing, as described in Knuth, The Art of Computer
   * Programming, 6.4. This mixes all the bits of the input hash code h.
   *
   * The value of goldenRatio is taken from the hex expansion of the golden
   * ratio, which starts 1.9E3779B9.... This value is especially good if
   * values with consecutive hash codes are stored in a hash table; see Knuth
   * for details.
   */
  return mozilla::WrappingMultiply(h, kGoldenRatioU32);
}

namespace detail {

MOZ_NO_SANITIZE_UNSIGNED_OVERFLOW
constexpr HashNumber RotateLeft5(HashNumber aValue) {
  return (aValue << 5) | (aValue >> 27);
}

constexpr HashNumber AddU32ToHash(HashNumber aHash, uint32_t aValue) {
  /*
   * This is the meat of all our hash routines.  This hash function is not
   * particularly sophisticated, but it seems to work well for our mostly
   * plain-text inputs.  Implementation notes follow.
   *
   * Our use of the golden ratio here is arbitrary; we could pick almost any
   * number which:
   *
   *  * is odd (because otherwise, all our hash values will be even)
   *
   *  * has a reasonably-even mix of 1's and 0's (consider the extreme case
   *    where we multiply by 0x3 or 0xeffffff -- this will not produce good
   *    mixing across all bits of the hash).
   *
   * The rotation length of 5 is also arbitrary, although an odd number is again
   * preferable so our hash explores the whole universe of possible rotations.
   *
   * Finally, we multiply by the golden ratio *after* xor'ing, not before.
   * Otherwise, if |aHash| is 0 (as it often is for the beginning of a
   * message), the expression
   *
   *   mozilla::WrappingMultiply(kGoldenRatioU32, RotateLeft5(aHash))
   *   |xor|
   *   aValue
   *
   * evaluates to |aValue|.
   *
   * (Number-theoretic aside: Because any odd number |m| is relatively prime to
   * our modulus (2**32), the list
   *
   *    [x * m (mod 2**32) for 0 <= x < 2**32]
   *
   * has no duplicate elements.  This means that multiplying by |m| does not
   * cause us to skip any possible hash values.
   *
   * It's also nice if |m| has large-ish order mod 2**32 -- that is, if the
   * smallest k such that m**k == 1 (mod 2**32) is large -- so we can safely
   * multiply our hash value by |m| a few times without negating the
   * multiplicative effect.  Our golden ratio constant has order 2**29, which is
   * more than enough for our purposes.)
   */
  return mozilla::WrappingMultiply(kGoldenRatioU32,
                                   RotateLeft5(aHash) ^ aValue);
}

/**
 * AddUintptrToHash takes sizeof(uintptr_t) as a template parameter.
 */
template <size_t PtrSize>
constexpr HashNumber AddUintptrToHash(HashNumber aHash, uintptr_t aValue) {
  return AddU32ToHash(aHash, static_cast<uint32_t>(aValue));
}

template <>
inline HashNumber AddUintptrToHash<8>(HashNumber aHash, uintptr_t aValue) {
  uint32_t v1 = static_cast<uint32_t>(aValue);
  uint32_t v2 = static_cast<uint32_t>(static_cast<uint64_t>(aValue) >> 32);
  return AddU32ToHash(AddU32ToHash(aHash, v1), v2);
}

} /* namespace detail */

/**
 * AddToHash takes a hash and some values and returns a new hash based on the
 * inputs.
 *
 * Currently, we support hashing uint32_t's, values which we can implicitly
 * convert to uint32_t, data pointers, and function pointers.
 */
template <typename T, bool TypeIsNotIntegral = !mozilla::IsIntegral<T>::value,
          typename U = typename mozilla::EnableIf<TypeIsNotIntegral>::Type>
MOZ_MUST_USE inline HashNumber AddToHash(HashNumber aHash, T aA) {
  /*
   * Try to convert |A| to uint32_t implicitly.  If this works, great.  If not,
   * we'll error out.
   */
  return detail::AddU32ToHash(aHash, aA);
}

template <typename A>
MOZ_MUST_USE inline HashNumber AddToHash(HashNumber aHash, A* aA) {
  /*
   * You might think this function should just take a void*.  But then we'd only
   * catch data pointers and couldn't handle function pointers.
   */

  static_assert(sizeof(aA) == sizeof(uintptr_t), "Strange pointer!");

  return detail::AddUintptrToHash<sizeof(uintptr_t)>(aHash, uintptr_t(aA));
}

// We use AddUintptrToHash() for hashing all integral types.  8-byte integral
// types are treated the same as 64-bit pointers, and smaller integral types are
// first implicitly converted to 32 bits and then passed to AddUintptrToHash()
// to be hashed.
template <typename T, typename U = typename mozilla::EnableIf<
                          mozilla::IsIntegral<T>::value>::Type>
MOZ_MUST_USE constexpr HashNumber AddToHash(HashNumber aHash, T aA) {
  return detail::AddUintptrToHash<sizeof(T)>(aHash, aA);
}

template <typename A, typename... Args>
MOZ_MUST_USE HashNumber AddToHash(HashNumber aHash, A aArg, Args... aArgs) {
  return AddToHash(AddToHash(aHash, aArg), aArgs...);
}

/**
 * The HashGeneric class of functions let you hash one or more values.
 *
 * If you want to hash together two values x and y, calling HashGeneric(x, y) is
 * much better than calling AddToHash(x, y), because AddToHash(x, y) assumes
 * that x has already been hashed.
 */
template <typename... Args>
MOZ_MUST_USE inline HashNumber HashGeneric(Args... aArgs) {
  return AddToHash(0, aArgs...);
}

/**
 * Hash successive |*aIter| until |!*aIter|, i.e. til null-termination.
 *
 * This function is *not* named HashString like the non-template overloads
 * below.  Some users define HashString overloads and pass inexactly-matching
 * values to them -- but an inexactly-matching value would match this overload
 * instead!  We follow the general rule and don't mix and match template and
 * regular overloads to avoid this.
 *
 * If you have the string's length, call HashStringKnownLength: it may be
 * marginally faster.
 */
template <typename Iterator>
MOZ_MUST_USE constexpr HashNumber HashStringUntilZero(Iterator aIter) {
  HashNumber hash = 0;
  for (; auto c = *aIter; ++aIter) {
    hash = AddToHash(hash, c);
  }
  return hash;
}

/**
 * Hash successive |aIter[i]| up to |i == aLength|.
 */
template <typename Iterator>
MOZ_MUST_USE constexpr HashNumber HashStringKnownLength(Iterator aIter,
                                                        size_t aLength) {
  HashNumber hash = 0;
  for (size_t i = 0; i < aLength; i++) {
    hash = AddToHash(hash, aIter[i]);
  }
  return hash;
}

/**
 * The HashString overloads below do just what you'd expect.
 *
 * These functions are non-template functions so that users can 1) overload them
 * with their own types 2) in a way that allows implicit conversions to happen.
 */
MOZ_MUST_USE inline HashNumber HashString(const char* aStr) {
  // Use the |const unsigned char*| version of the above so that all ordinary
  // character data hashes identically.
  return HashStringUntilZero(reinterpret_cast<const unsigned char*>(aStr));
}

MOZ_MUST_USE inline HashNumber HashString(const char* aStr, size_t aLength) {
  // Delegate to the |const unsigned char*| version of the above to share
  // template instantiations.
  return HashStringKnownLength(reinterpret_cast<const unsigned char*>(aStr),
                               aLength);
}

MOZ_MUST_USE
inline HashNumber HashString(const unsigned char* aStr, size_t aLength) {
  return HashStringKnownLength(aStr, aLength);
}

// You may need to use the
// MOZ_{PUSH,POP}_DISABLE_INTEGRAL_CONSTANT_OVERFLOW_WARNING macros if you use
// this function. See the comment on those macros' definitions for more detail.
MOZ_MUST_USE constexpr HashNumber HashString(const char16_t* aStr) {
  return HashStringUntilZero(aStr);
}

MOZ_MUST_USE inline HashNumber HashString(const char16_t* aStr,
                                          size_t aLength) {
  return HashStringKnownLength(aStr, aLength);
}

/**
 * HashString overloads for |wchar_t| on platforms where it isn't |char16_t|.
 */
template <typename WCharT, typename = typename std::enable_if<
                               std::is_same<WCharT, wchar_t>::value &&
                               !std::is_same<wchar_t, char16_t>::value>::type>
MOZ_MUST_USE inline HashNumber HashString(const WCharT* aStr) {
  return HashStringUntilZero(aStr);
}

template <typename WCharT, typename = typename std::enable_if<
                               std::is_same<WCharT, wchar_t>::value &&
                               !std::is_same<wchar_t, char16_t>::value>::type>
MOZ_MUST_USE inline HashNumber HashString(const WCharT* aStr, size_t aLength) {
  return HashStringKnownLength(aStr, aLength);
}

/**
 * Hash some number of bytes.
 *
 * This hash walks word-by-word, rather than byte-by-byte, so you won't get the
 * same result out of HashBytes as you would out of HashString.
 */
MOZ_MUST_USE extern MFBT_API HashNumber HashBytes(const void* bytes,
                                                  size_t aLength);

/**
 * A pseudorandom function mapping 32-bit integers to 32-bit integers.
 *
 * This is for when you're feeding private data (like pointer values or credit
 * card numbers) to a non-crypto hash function (like HashBytes) and then using
 * the hash code for something that untrusted parties could observe (like a JS
 * Map). Plug in a HashCodeScrambler before that last step to avoid leaking the
 * private data.
 *
 * By itself, this does not prevent hash-flooding DoS attacks, because an
 * attacker can still generate many values with exactly equal hash codes by
 * attacking the non-crypto hash function alone. Equal hash codes will, of
 * course, still be equal however much you scramble them.
 *
 * The algorithm is SipHash-1-3. See <https://131002.net/siphash/>.
 */
class HashCodeScrambler {
  struct SipHasher;

  uint64_t mK0, mK1;

 public:
  /** Creates a new scrambler with the given 128-bit key. */
  constexpr HashCodeScrambler(uint64_t aK0, uint64_t aK1)
      : mK0(aK0), mK1(aK1) {}

  /**
   * Scramble a hash code. Always produces the same result for the same
   * combination of key and hash code.
   */
  HashNumber scramble(HashNumber aHashCode) const {
    SipHasher hasher(mK0, mK1);
    return HashNumber(hasher.sipHash(aHashCode));
  }

 private:
  struct SipHasher {
    SipHasher(uint64_t aK0, uint64_t aK1) {
      // 1. Initialization.
      mV0 = aK0 ^ UINT64_C(0x736f6d6570736575);
      mV1 = aK1 ^ UINT64_C(0x646f72616e646f6d);
      mV2 = aK0 ^ UINT64_C(0x6c7967656e657261);
      mV3 = aK1 ^ UINT64_C(0x7465646279746573);
    }

    uint64_t sipHash(uint64_t aM) {
      // 2. Compression.
      mV3 ^= aM;
      sipRound();
      mV0 ^= aM;

      // 3. Finalization.
      mV2 ^= 0xff;
      for (int i = 0; i < 3; i++) sipRound();
      return mV0 ^ mV1 ^ mV2 ^ mV3;
    }

    void sipRound() {
      mV0 = WrappingAdd(mV0, mV1);
      mV1 = RotateLeft(mV1, 13);
      mV1 ^= mV0;
      mV0 = RotateLeft(mV0, 32);
      mV2 = WrappingAdd(mV2, mV3);
      mV3 = RotateLeft(mV3, 16);
      mV3 ^= mV2;
      mV0 = WrappingAdd(mV0, mV3);
      mV3 = RotateLeft(mV3, 21);
      mV3 ^= mV0;
      mV2 = WrappingAdd(mV2, mV1);
      mV1 = RotateLeft(mV1, 17);
      mV1 ^= mV2;
      mV2 = RotateLeft(mV2, 32);
    }

    uint64_t mV0, mV1, mV2, mV3;
  };
};

} /* namespace mozilla */

#endif /* mozilla_HashFunctions_h */