DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Header

Mercurial (c68fe15a81fc)

VCS Links

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559
/*
/*
 *  Copyright (c) 2016 The WebRTC project authors. All Rights Reserved.
 *
 *  Use of this source code is governed by a BSD-style license
 *  that can be found in the LICENSE file in the root of the source
 *  tree. An additional intellectual property rights grant can be found
 *  tree. An additional intellectual property rights grant can be found
 *  in the file PATENTS.  All contributing project authors may
 *  be found in the AUTHORS file in the root of the source tree.
 */

#include "video/stats_counter.h"
#include "video/stats_counter.h"

#include <algorithm>
#include <limits>
#include <map>


#include "rtc_base/checks.h"
#include "system_wrappers/include/clock.h"

namespace webrtc {


namespace {
// Default periodic time interval for processing samples.
const int64_t kDefaultProcessIntervalMs = 2000;
const uint32_t kStreamId0 = 0;
const uint32_t kStreamId0 = 0;
}  // namespace

std::string AggregatedStats::ToString() const {
  return ToStringWithMultiplier(1);
}
}

std::string AggregatedStats::ToStringWithMultiplier(int multiplier) const {
  std::stringstream ss;
  ss << "periodic_samples:" << num_samples << ", {";
  ss << "periodic_samples:" << num_samples << ", {";
  ss << "min:" << (min * multiplier) << ", ";
  ss << "avg:" << (average * multiplier) << ", ";
  ss << "max:" << (max * multiplier) << "}";
  return ss.str();
}
}

// Class holding periodically computed metrics.
class AggregatedCounter {
 public:
  AggregatedCounter() : last_sample_(0), sum_samples_(0) {}
  AggregatedCounter() : last_sample_(0), sum_samples_(0) {}
  ~AggregatedCounter() {}

  void Add(int sample) {
    last_sample_ = sample;
    sum_samples_ += sample;
    sum_samples_ += sample;
    ++stats_.num_samples;
    if (stats_.num_samples == 1) {
      stats_.min = sample;
      stats_.max = sample;
    }
    }
    stats_.min = std::min(sample, stats_.min);
    stats_.max = std::max(sample, stats_.max);
  }

  AggregatedStats ComputeStats() {
  AggregatedStats ComputeStats() {
    Compute();
    return stats_;
  }

  bool Empty() const { return stats_.num_samples == 0; }
  bool Empty() const { return stats_.num_samples == 0; }

  int last_sample() const { return last_sample_; }
  int last_sample() const { return last_sample_; }

 private:
  void Compute() {
    if (stats_.num_samples == 0)
      return;
      return;

    stats_.average =
        (sum_samples_ + stats_.num_samples / 2) / stats_.num_samples;
  }
  int last_sample_;
  int last_sample_;
  int64_t sum_samples_;
  AggregatedStats stats_;
};
};


// Class holding gathered samples within a process interval.
class Samples {
 public:
 public:
  Samples() : total_count_(0) {}
  ~Samples() {}

  void Add(int sample, uint32_t stream_id) {
    samples_[stream_id].Add(sample);
    samples_[stream_id].Add(sample);
    ++total_count_;
  }
  void Set(int64_t sample, uint32_t stream_id) {
    samples_[stream_id].Set(sample);
    ++total_count_;
    ++total_count_;
  }
  void SetLast(int64_t sample, uint32_t stream_id) {
    samples_[stream_id].SetLast(sample);
  }
  int64_t GetLast(uint32_t stream_id) { return samples_[stream_id].GetLast(); }
  int64_t GetLast(uint32_t stream_id) { return samples_[stream_id].GetLast(); }

  int64_t Count() const { return total_count_; }
  bool Empty() const { return total_count_ == 0; }

  int64_t Sum() const {
  int64_t Sum() const {
    int64_t sum = 0;
    for (const auto& it : samples_)
      sum += it.second.sum_;
    return sum;
  }
  }

  int Max() const {
    int max = std::numeric_limits<int>::min();
    int max = std::numeric_limits<int>::min();
    for (const auto& it : samples_)
    for (const auto& it : samples_)
      max = std::max(it.second.max_, max);
    return max;
  }
  }

  void Reset() {
    for (auto& it : samples_)
      it.second.Reset();
    total_count_ = 0;
    total_count_ = 0;
  }

  int64_t Diff() const {
    int64_t sum_diff = 0;
    int count = 0;
    int count = 0;
    for (const auto& it : samples_) {
      if (it.second.count_ > 0) {
        int64_t diff = it.second.sum_ - it.second.last_sum_;
        if (diff >= 0) {
          sum_diff += diff;
          sum_diff += diff;
          ++count;
        }
      }
    }
    return (count > 0) ? sum_diff : -1;
    return (count > 0) ? sum_diff : -1;
  }

 private:
  struct Stats {
  struct Stats {
    void Add(int sample) {
      sum_ += sample;
      sum_ += sample;
      ++count_;
      max_ = std::max(sample, max_);
    }
    void Set(int64_t sample) {
      sum_ = sample;
      sum_ = sample;
      ++count_;
    }
    void SetLast(int64_t sample) { last_sum_ = sample; }
    int64_t GetLast() const { return last_sum_; }
    int64_t GetLast() const { return last_sum_; }
    void Reset() {
      if (count_ > 0)
        last_sum_ = sum_;
      sum_ = 0;
      count_ = 0;
      count_ = 0;
      max_ = std::numeric_limits<int>::min();
    }

    int max_ = std::numeric_limits<int>::min();
    int64_t count_ = 0;
    int64_t count_ = 0;
    int64_t sum_ = 0;
    int64_t last_sum_ = 0;
  };

  int64_t total_count_;
  int64_t total_count_;
  std::map<uint32_t, Stats> samples_;  // Gathered samples mapped by stream id.
};

// StatsCounter class.
StatsCounter::StatsCounter(Clock* clock,
StatsCounter::StatsCounter(Clock* clock,
                           int64_t process_intervals_ms,
                           bool include_empty_intervals,
                           StatsCounterObserver* observer)
    : include_empty_intervals_(include_empty_intervals),
      process_intervals_ms_(process_intervals_ms),
      process_intervals_ms_(process_intervals_ms),
      aggregated_counter_(new AggregatedCounter()),
      samples_(new Samples()),
      clock_(clock),
      observer_(observer),
      last_process_time_ms_(-1),
      paused_(false),
      paused_(false),
      pause_time_ms_(-1),
      min_pause_time_ms_(0) {
  RTC_DCHECK_GT(process_intervals_ms_, 0);
}

StatsCounter::~StatsCounter() {}


AggregatedStats StatsCounter::GetStats() {
  return aggregated_counter_->ComputeStats();
}

AggregatedStats StatsCounter::ProcessAndGetStats() {
AggregatedStats StatsCounter::ProcessAndGetStats() {
  if (HasSample())
    TryProcess();
  return aggregated_counter_->ComputeStats();
}


void StatsCounter::ProcessAndPauseForDuration(int64_t min_pause_time_ms) {
  ProcessAndPause();
  min_pause_time_ms_ = min_pause_time_ms;
}


void StatsCounter::ProcessAndPause() {
  if (HasSample())
    TryProcess();
  paused_ = true;
  pause_time_ms_ = clock_->TimeInMilliseconds();
  pause_time_ms_ = clock_->TimeInMilliseconds();
}

void StatsCounter::ProcessAndStopPause() {
  if (HasSample())
    TryProcess();
    TryProcess();
  Resume();
}

bool StatsCounter::HasSample() const {
bool StatsCounter::HasSample() const {
  return last_process_time_ms_ != -1;
}
}

bool StatsCounter::TimeToProcess(int* elapsed_intervals) {
  int64_t now = clock_->TimeInMilliseconds();
  if (last_process_time_ms_ == -1)
    last_process_time_ms_ = now;
    last_process_time_ms_ = now;

  int64_t diff_ms = now - last_process_time_ms_;
  if (diff_ms < process_intervals_ms_)
    return false;


  // Advance number of complete |process_intervals_ms_| that have passed.
  int64_t num_intervals = diff_ms / process_intervals_ms_;
  last_process_time_ms_ += num_intervals * process_intervals_ms_;

  *elapsed_intervals = num_intervals;
  *elapsed_intervals = num_intervals;
  return true;
}

void StatsCounter::Add(int sample) {
  TryProcess();
  TryProcess();
  samples_->Add(sample, kStreamId0);
  ResumeIfMinTimePassed();
}

void StatsCounter::Set(int64_t sample, uint32_t stream_id) {
void StatsCounter::Set(int64_t sample, uint32_t stream_id) {
  if (paused_ && sample == samples_->GetLast(stream_id)) {
    // Do not add same sample while paused (will reset pause).
    return;
  }
  TryProcess();
  TryProcess();
  samples_->Set(sample, stream_id);
  ResumeIfMinTimePassed();
}

void StatsCounter::SetLast(int64_t sample, uint32_t stream_id) {
  RTC_DCHECK(!HasSample()) << "Should be set before first sample is added.";
  RTC_DCHECK(!HasSample()) << "Should be set before first sample is added.";
  samples_->SetLast(sample, stream_id);
}

// Reports periodically computed metric.
void StatsCounter::ReportMetricToAggregatedCounter(
void StatsCounter::ReportMetricToAggregatedCounter(
    int value,
    int num_values_to_add) const {
  for (int i = 0; i < num_values_to_add; ++i) {
    aggregated_counter_->Add(value);
    if (observer_)
      observer_->OnMetricUpdated(value);
  }
  }
}

void StatsCounter::TryProcess() {
  int elapsed_intervals;
  if (!TimeToProcess(&elapsed_intervals))
  if (!TimeToProcess(&elapsed_intervals))
    return;

  // Get and report periodically computed metric.
  int metric;
  if (GetMetric(&metric))
  if (GetMetric(&metric))
    ReportMetricToAggregatedCounter(metric, 1);

  // Report value for elapsed intervals without samples.
  if (IncludeEmptyIntervals()) {
    // If there are no samples, all elapsed intervals are empty (otherwise one
    // If there are no samples, all elapsed intervals are empty (otherwise one
    // interval contains sample(s), discard this interval).
    int empty_intervals =
        samples_->Empty() ? elapsed_intervals : (elapsed_intervals - 1);
    ReportMetricToAggregatedCounter(GetValueForEmptyInterval(),
                                    empty_intervals);
                                    empty_intervals);
  }

  // Reset samples for elapsed interval.
  samples_->Reset();
  samples_->Reset();
}
}

bool StatsCounter::IncludeEmptyIntervals() const {
  return include_empty_intervals_ && !paused_ && !aggregated_counter_->Empty();
}
void StatsCounter::ResumeIfMinTimePassed() {
void StatsCounter::ResumeIfMinTimePassed() {
  if (paused_ &&
      (clock_->TimeInMilliseconds() - pause_time_ms_) >= min_pause_time_ms_) {
    Resume();
  }
}

void StatsCounter::Resume() {
  paused_ = false;
  min_pause_time_ms_ = 0;
  min_pause_time_ms_ = 0;
}

// StatsCounter sub-classes.
AvgCounter::AvgCounter(Clock* clock,
                       StatsCounterObserver* observer,
                       StatsCounterObserver* observer,
                       bool include_empty_intervals)
    : StatsCounter(clock,
                   kDefaultProcessIntervalMs,
                   include_empty_intervals,
                   observer) {}
                   observer) {}

void AvgCounter::Add(int sample) {
  StatsCounter::Add(sample);
}


bool AvgCounter::GetMetric(int* metric) const {
  int64_t count = samples_->Count();
  if (count == 0)
    return false;


  *metric = (samples_->Sum() + count / 2) / count;
  return true;
}

int AvgCounter::GetValueForEmptyInterval() const {
  return aggregated_counter_->last_sample();
}


MaxCounter::MaxCounter(Clock* clock,
                       StatsCounterObserver* observer,
                       int64_t process_intervals_ms)
    : StatsCounter(clock,
                   process_intervals_ms,
                   process_intervals_ms,
                   false,  // |include_empty_intervals|
                   observer) {}

void MaxCounter::Add(int sample) {
  StatsCounter::Add(sample);
  StatsCounter::Add(sample);
}

bool MaxCounter::GetMetric(int* metric) const {
  if (samples_->Empty())
    return false;
    return false;

  *metric = samples_->Max();
  return true;
}


int MaxCounter::GetValueForEmptyInterval() const {
  RTC_NOTREACHED();
  return 0;
}


PercentCounter::PercentCounter(Clock* clock, StatsCounterObserver* observer)
    : StatsCounter(clock,
                   kDefaultProcessIntervalMs,
                   false,  // |include_empty_intervals|
                   observer) {}
                   observer) {}

void PercentCounter::Add(bool sample) {
  StatsCounter::Add(sample ? 1 : 0);
}

bool PercentCounter::GetMetric(int* metric) const {
bool PercentCounter::GetMetric(int* metric) const {
  int64_t count = samples_->Count();
  if (count == 0)
    return false;

  *metric = (samples_->Sum() * 100 + count / 2) / count;
  return true;
}
}

int PercentCounter::GetValueForEmptyInterval() const {
  RTC_NOTREACHED();
  return 0;
}
}

PermilleCounter::PermilleCounter(Clock* clock, StatsCounterObserver* observer)
    : StatsCounter(clock,
                   kDefaultProcessIntervalMs,
                   false,  // |include_empty_intervals|
                   false,  // |include_empty_intervals|
                   observer) {}

void PermilleCounter::Add(bool sample) {
  StatsCounter::Add(sample ? 1 : 0);
}
}

bool PermilleCounter::GetMetric(int* metric) const {
  int64_t count = samples_->Count();
  if (count == 0)
    return false;
    return false;

  *metric = (samples_->Sum() * 1000 + count / 2) / count;
  return true;
}


int PermilleCounter::GetValueForEmptyInterval() const {
  RTC_NOTREACHED();
  return 0;
}
}

RateCounter::RateCounter(Clock* clock,
                         StatsCounterObserver* observer,
                         bool include_empty_intervals)
    : StatsCounter(clock,
    : StatsCounter(clock,
                   kDefaultProcessIntervalMs,
                   include_empty_intervals,
                   observer) {}

void RateCounter::Add(int sample) {
void RateCounter::Add(int sample) {
  StatsCounter::Add(sample);
}

bool RateCounter::GetMetric(int* metric) const {
  if (samples_->Empty())
  if (samples_->Empty())
    return false;

  *metric = (samples_->Sum() * 1000 + process_intervals_ms_ / 2) /
            process_intervals_ms_;
  return true;
  return true;
}

int RateCounter::GetValueForEmptyInterval() const {
  return 0;
}
}

RateAccCounter::RateAccCounter(Clock* clock,
                               StatsCounterObserver* observer,
                               bool include_empty_intervals)
                               bool include_empty_intervals)
    : StatsCounter(clock,
                   kDefaultProcessIntervalMs,
                   include_empty_intervals,
                   observer) {}


void RateAccCounter::Set(int64_t sample, uint32_t stream_id) {
  StatsCounter::Set(sample, stream_id);
}

void RateAccCounter::SetLast(int64_t sample, uint32_t stream_id) {
void RateAccCounter::SetLast(int64_t sample, uint32_t stream_id) {
  StatsCounter::SetLast(sample, stream_id);
}


bool RateAccCounter::GetMetric(int* metric) const {
  int64_t diff = samples_->Diff();
  if (diff < 0 || (!include_empty_intervals_ && diff == 0))
    return false;


  *metric = (diff * 1000 + process_intervals_ms_ / 2) / process_intervals_ms_;
  return true;
}

int RateAccCounter::GetValueForEmptyInterval() const {
int RateAccCounter::GetValueForEmptyInterval() const {
  return 0;
}

}  // namespace webrtc