DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Mercurial (882de07e4cbe)

VCS Links

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585
/*
 *  Copyright (c) 2013 The WebRTC project authors. All Rights Reserved.
 *
 *  Use of this source code is governed by a BSD-style license
 *  that can be found in the LICENSE file in the root of the source
 *  that can be found in the LICENSE file in the root of the source
 *  tree. An additional intellectual property rights grant can be found
 *  in the file PATENTS.  All contributing project authors may
 *  be found in the AUTHORS file in the root of the source tree.
 */


#include <memory>

#include "api/video/i420_buffer.h"
#include "common_video/include/video_frame.h"
#include "modules/video_coding/utility/quality_scaler.h"
#include "modules/video_coding/utility/quality_scaler.h"
#include "rtc_base/event.h"
#include "rtc_base/fakeclock.h"
#include "test/gmock.h"
#include "test/gtest.h"
#include "test/gtest.h"
#include "video/overuse_frame_detector.h"

namespace webrtc {

using ::testing::InvokeWithoutArgs;
using ::testing::InvokeWithoutArgs;

namespace {
  const int kWidth = 640;
  const int kWidth = 640;
  const int kHeight = 480;
  const int kFrameIntervalUs = 33 * rtc::kNumMicrosecsPerMillisec;
  const int kProcessTimeUs = 5 * rtc::kNumMicrosecsPerMillisec;
}  // namespace
}  // namespace

class MockCpuOveruseObserver : public AdaptationObserverInterface {
 public:
  MockCpuOveruseObserver() {}
  virtual ~MockCpuOveruseObserver() {}
  virtual ~MockCpuOveruseObserver() {}

  MOCK_METHOD1(AdaptUp, void(AdaptReason));
  MOCK_METHOD1(AdaptDown, void(AdaptReason));
};


class CpuOveruseObserverImpl : public AdaptationObserverInterface {
 public:
  CpuOveruseObserverImpl() :
    overuse_(0),
    normaluse_(0) {}
    normaluse_(0) {}
  virtual ~CpuOveruseObserverImpl() {}

  void AdaptDown(AdaptReason) { ++overuse_; }
  void AdaptUp(AdaptReason) { ++normaluse_; }


  int overuse_;
  int normaluse_;
};

class OveruseFrameDetectorUnderTest : public OveruseFrameDetector {
class OveruseFrameDetectorUnderTest : public OveruseFrameDetector {
 public:
  OveruseFrameDetectorUnderTest(const CpuOveruseOptions& options,
                                AdaptationObserverInterface* overuse_observer,
                                AdaptationObserverInterface* overuse_observer,
                                EncodedFrameObserver* encoder_timing,
                                CpuOveruseMetricsObserver* metrics_observer)
      : OveruseFrameDetector(options,
                             overuse_observer,
                             encoder_timing,
                             encoder_timing,
                             metrics_observer) {}
  ~OveruseFrameDetectorUnderTest() {}

  using OveruseFrameDetector::CheckForOveruse;
};
};

class OveruseFrameDetectorTest : public ::testing::Test,
                                 public CpuOveruseMetricsObserver {
 protected:
  void SetUp() override {
  void SetUp() override {
    observer_.reset(new MockCpuOveruseObserver());
    options_.min_process_count = 0;
    ReinitializeOveruseDetector();
  }


  void ReinitializeOveruseDetector() {
    overuse_detector_.reset(new OveruseFrameDetectorUnderTest(
        options_, observer_.get(), nullptr, this));
  }


  void OnEncodedFrameTimeMeasured(int encode_time_ms,
                                  const CpuOveruseMetrics& metrics) override {
    metrics_ = metrics;
  }


  int InitialUsage() {
    return ((options_.low_encode_usage_threshold_percent +
             options_.high_encode_usage_threshold_percent) / 2.0f) + 0.5;
  }

  void InsertAndSendFramesWithInterval(int num_frames,
                                       int interval_us,
                                       int width,
                                       int width,
                                       int height,
                                       int delay_us) {
    VideoFrame frame(I420Buffer::Create(width, height),
                     webrtc::kVideoRotation_0, 0);
    uint32_t timestamp = 0;
    uint32_t timestamp = 0;
    while (num_frames-- > 0) {
      frame.set_timestamp(timestamp);
      overuse_detector_->FrameCaptured(frame, rtc::TimeMicros());
      clock_.AdvanceTimeMicros(delay_us);
      overuse_detector_->FrameSent(timestamp, rtc::TimeMicros());
      overuse_detector_->FrameSent(timestamp, rtc::TimeMicros());
      clock_.AdvanceTimeMicros(interval_us - delay_us);
      timestamp += interval_us * 90 / 1000;
    }
  }


  void ForceUpdate(int width, int height) {
    // Insert one frame, wait a second and then put in another to force update
    // the usage. From the tests where these are used, adding another sample
    // doesn't affect the expected outcome (this is mainly to check initial
    // values and whether the overuse detector has been reset or not).
    // values and whether the overuse detector has been reset or not).
    InsertAndSendFramesWithInterval(2, rtc::kNumMicrosecsPerSec,
                                    width, height, kFrameIntervalUs);
  }
  void TriggerOveruse(int num_times) {
    const int kDelayUs = 32 * rtc::kNumMicrosecsPerMillisec;
    const int kDelayUs = 32 * rtc::kNumMicrosecsPerMillisec;
    for (int i = 0; i < num_times; ++i) {
      InsertAndSendFramesWithInterval(
      InsertAndSendFramesWithInterval(
          1000, kFrameIntervalUs, kWidth, kHeight, kDelayUs);
      overuse_detector_->CheckForOveruse();
    }
  }


  void TriggerUnderuse() {
    const int kDelayUs1 = 5000;
    const int kDelayUs2 = 6000;
    InsertAndSendFramesWithInterval(
    InsertAndSendFramesWithInterval(
        1300, kFrameIntervalUs, kWidth, kHeight, kDelayUs1);
    InsertAndSendFramesWithInterval(
        1, kFrameIntervalUs, kWidth, kHeight, kDelayUs2);
    overuse_detector_->CheckForOveruse();
  }
  }

  int UsagePercent() { return metrics_.encode_usage_percent; }

  int64_t OveruseProcessingTimeLimitForFramerate(int fps) const {
    int64_t frame_interval = rtc::kNumMicrosecsPerSec / fps;
    int64_t frame_interval = rtc::kNumMicrosecsPerSec / fps;
    int64_t max_processing_time_us =
        (frame_interval * options_.high_encode_usage_threshold_percent) / 100;
    return max_processing_time_us;
  }


  int64_t UnderuseProcessingTimeLimitForFramerate(int fps) const {
    int64_t frame_interval = rtc::kNumMicrosecsPerSec / fps;
    int64_t max_processing_time_us =
        (frame_interval * options_.low_encode_usage_threshold_percent) / 100;
    return max_processing_time_us;
    return max_processing_time_us;
  }

  CpuOveruseOptions options_;
  CpuOveruseOptions options_;
  rtc::ScopedFakeClock clock_;
  std::unique_ptr<MockCpuOveruseObserver> observer_;
  std::unique_ptr<OveruseFrameDetectorUnderTest> overuse_detector_;
  CpuOveruseMetrics metrics_;


  static const auto reason_ = AdaptationObserverInterface::AdaptReason::kCpu;
};


// UsagePercent() > high_encode_usage_threshold_percent => overuse.
// UsagePercent() > high_encode_usage_threshold_percent => overuse.
// UsagePercent() < low_encode_usage_threshold_percent => underuse.
TEST_F(OveruseFrameDetectorTest, TriggerOveruse) {
  // usage > high => overuse
  EXPECT_CALL(*(observer_.get()), AdaptDown(reason_)).Times(1);
  TriggerOveruse(options_.high_threshold_consecutive_count);
  TriggerOveruse(options_.high_threshold_consecutive_count);
}

TEST_F(OveruseFrameDetectorTest, OveruseAndRecover) {
  // usage > high => overuse
  EXPECT_CALL(*(observer_.get()), AdaptDown(reason_)).Times(1);
  TriggerOveruse(options_.high_threshold_consecutive_count);
  // usage < low => underuse
  // usage < low => underuse
  EXPECT_CALL(*(observer_.get()), AdaptUp(reason_)).Times(testing::AtLeast(1));
  TriggerUnderuse();
}

TEST_F(OveruseFrameDetectorTest, OveruseAndRecoverWithNoObserver) {
TEST_F(OveruseFrameDetectorTest, OveruseAndRecoverWithNoObserver) {
  overuse_detector_.reset(new OveruseFrameDetectorUnderTest(
      options_, nullptr, nullptr, this));
  EXPECT_CALL(*(observer_.get()), AdaptDown(reason_)).Times(0);
  TriggerOveruse(options_.high_threshold_consecutive_count);
  EXPECT_CALL(*(observer_.get()), AdaptUp(reason_)).Times(0);
  EXPECT_CALL(*(observer_.get()), AdaptUp(reason_)).Times(0);
  TriggerUnderuse();
}
}

TEST_F(OveruseFrameDetectorTest, DoubleOveruseAndRecover) {
  EXPECT_CALL(*(observer_.get()), AdaptDown(reason_)).Times(2);
  TriggerOveruse(options_.high_threshold_consecutive_count);
  TriggerOveruse(options_.high_threshold_consecutive_count);
  TriggerOveruse(options_.high_threshold_consecutive_count);
  EXPECT_CALL(*(observer_.get()), AdaptUp(reason_)).Times(testing::AtLeast(1));
  TriggerUnderuse();
}


TEST_F(OveruseFrameDetectorTest, TriggerUnderuseWithMinProcessCount) {
  const int kProcessIntervalUs = 5 * rtc::kNumMicrosecsPerSec;
  options_.min_process_count = 1;
  CpuOveruseObserverImpl overuse_observer;
  overuse_detector_.reset(new OveruseFrameDetectorUnderTest(
  overuse_detector_.reset(new OveruseFrameDetectorUnderTest(
      options_, &overuse_observer, nullptr, this));
  InsertAndSendFramesWithInterval(
      1200, kFrameIntervalUs, kWidth, kHeight, kProcessTimeUs);
  overuse_detector_->CheckForOveruse();
  EXPECT_EQ(0, overuse_observer.normaluse_);
  EXPECT_EQ(0, overuse_observer.normaluse_);
  clock_.AdvanceTimeMicros(kProcessIntervalUs);
  overuse_detector_->CheckForOveruse();
  EXPECT_EQ(1, overuse_observer.normaluse_);
}


TEST_F(OveruseFrameDetectorTest, ConstantOveruseGivesNoNormalUsage) {
  EXPECT_CALL(*(observer_.get()), AdaptUp(reason_)).Times(0);
  EXPECT_CALL(*(observer_.get()), AdaptDown(reason_)).Times(64);
  for (size_t i = 0; i < 64; ++i) {
    TriggerOveruse(options_.high_threshold_consecutive_count);
    TriggerOveruse(options_.high_threshold_consecutive_count);
  }
}

TEST_F(OveruseFrameDetectorTest, ConsecutiveCountTriggersOveruse) {
  EXPECT_CALL(*(observer_.get()), AdaptDown(reason_)).Times(1);
  options_.high_threshold_consecutive_count = 2;
  options_.high_threshold_consecutive_count = 2;
  ReinitializeOveruseDetector();
  TriggerOveruse(2);
}

TEST_F(OveruseFrameDetectorTest, IncorrectConsecutiveCountTriggersNoOveruse) {
TEST_F(OveruseFrameDetectorTest, IncorrectConsecutiveCountTriggersNoOveruse) {
  EXPECT_CALL(*(observer_.get()), AdaptDown(reason_)).Times(0);
  options_.high_threshold_consecutive_count = 2;
  ReinitializeOveruseDetector();
  TriggerOveruse(1);
}
}

TEST_F(OveruseFrameDetectorTest, ProcessingUsage) {
  InsertAndSendFramesWithInterval(
      1000, kFrameIntervalUs, kWidth, kHeight, kProcessTimeUs);
      1000, kFrameIntervalUs, kWidth, kHeight, kProcessTimeUs);
  EXPECT_EQ(kProcessTimeUs * 100 / kFrameIntervalUs, UsagePercent());
}

TEST_F(OveruseFrameDetectorTest, ResetAfterResolutionChange) {
  ForceUpdate(kWidth, kHeight);
  ForceUpdate(kWidth, kHeight);
  EXPECT_EQ(InitialUsage(), UsagePercent());
  InsertAndSendFramesWithInterval(
      1000, kFrameIntervalUs, kWidth, kHeight, kProcessTimeUs);
  EXPECT_NE(InitialUsage(), UsagePercent());
  // Verify reset (with new width/height).
  // Verify reset (with new width/height).
  ForceUpdate(kWidth, kHeight + 1);
  EXPECT_EQ(InitialUsage(), UsagePercent());
}

TEST_F(OveruseFrameDetectorTest, ResetAfterFrameTimeout) {
TEST_F(OveruseFrameDetectorTest, ResetAfterFrameTimeout) {
  ForceUpdate(kWidth, kHeight);
  EXPECT_EQ(InitialUsage(), UsagePercent());
  InsertAndSendFramesWithInterval(
      1000, kFrameIntervalUs, kWidth, kHeight, kProcessTimeUs);
  EXPECT_NE(InitialUsage(), UsagePercent());
  EXPECT_NE(InitialUsage(), UsagePercent());
  InsertAndSendFramesWithInterval(
      2, options_.frame_timeout_interval_ms *
      2, options_.frame_timeout_interval_ms *
      rtc::kNumMicrosecsPerMillisec, kWidth, kHeight, kProcessTimeUs);
  EXPECT_NE(InitialUsage(), UsagePercent());
  // Verify reset.
  InsertAndSendFramesWithInterval(
      2, (options_.frame_timeout_interval_ms + 1) *
      2, (options_.frame_timeout_interval_ms + 1) *
      rtc::kNumMicrosecsPerMillisec, kWidth, kHeight, kProcessTimeUs);
  ForceUpdate(kWidth, kHeight);
  EXPECT_EQ(InitialUsage(), UsagePercent());
}


TEST_F(OveruseFrameDetectorTest, MinFrameSamplesBeforeUpdating) {
  options_.min_frame_samples = 40;
  ReinitializeOveruseDetector();
  InsertAndSendFramesWithInterval(
      40, kFrameIntervalUs, kWidth, kHeight, kProcessTimeUs);
      40, kFrameIntervalUs, kWidth, kHeight, kProcessTimeUs);
  EXPECT_EQ(InitialUsage(), UsagePercent());
  // Pass time far enough to digest all previous samples.
  clock_.AdvanceTimeMicros(rtc::kNumMicrosecsPerSec);
  InsertAndSendFramesWithInterval(1, kFrameIntervalUs, kWidth, kHeight,
                                  kProcessTimeUs);
                                  kProcessTimeUs);
  // The last sample has not been processed here.
  EXPECT_EQ(InitialUsage(), UsagePercent());

  // Pass time far enough to digest all previous samples, 41 in total.
  // Pass time far enough to digest all previous samples, 41 in total.
  clock_.AdvanceTimeMicros(rtc::kNumMicrosecsPerSec);
  InsertAndSendFramesWithInterval(
      1, kFrameIntervalUs, kWidth, kHeight, kProcessTimeUs);
  EXPECT_NE(InitialUsage(), UsagePercent());
}
}

TEST_F(OveruseFrameDetectorTest, InitialProcessingUsage) {
  ForceUpdate(kWidth, kHeight);
  EXPECT_EQ(InitialUsage(), UsagePercent());
}

TEST_F(OveruseFrameDetectorTest, MeasuresMultipleConcurrentSamples) {
  EXPECT_CALL(*(observer_.get()), AdaptDown(reason_))
  EXPECT_CALL(*(observer_.get()), AdaptDown(reason_))
      .Times(testing::AtLeast(1));
  static const int kIntervalUs = 33 * rtc::kNumMicrosecsPerMillisec;
  static const size_t kNumFramesEncodingDelay = 3;
  VideoFrame frame(I420Buffer::Create(kWidth, kHeight),
                   webrtc::kVideoRotation_0, 0);
                   webrtc::kVideoRotation_0, 0);
  for (size_t i = 0; i < 1000; ++i) {
    // Unique timestamps.
    frame.set_timestamp(static_cast<uint32_t>(i));
    overuse_detector_->FrameCaptured(frame, rtc::TimeMicros());
    clock_.AdvanceTimeMicros(kIntervalUs);
    clock_.AdvanceTimeMicros(kIntervalUs);
    if (i > kNumFramesEncodingDelay) {
      overuse_detector_->FrameSent(
          static_cast<uint32_t>(i - kNumFramesEncodingDelay),
          rtc::TimeMicros());
    }
    }
    overuse_detector_->CheckForOveruse();
  }
}

TEST_F(OveruseFrameDetectorTest, UpdatesExistingSamples) {
TEST_F(OveruseFrameDetectorTest, UpdatesExistingSamples) {
  // >85% encoding time should trigger overuse.
  EXPECT_CALL(*(observer_.get()), AdaptDown(reason_))
      .Times(testing::AtLeast(1));
  static const int kIntervalUs = 33 * rtc::kNumMicrosecsPerMillisec;
  static const int kDelayUs = 30 * rtc::kNumMicrosecsPerMillisec;
  static const int kDelayUs = 30 * rtc::kNumMicrosecsPerMillisec;
  VideoFrame frame(I420Buffer::Create(kWidth, kHeight),
                   webrtc::kVideoRotation_0, 0);
  uint32_t timestamp = 0;
  uint32_t timestamp = 0;
  for (size_t i = 0; i < 1000; ++i) {
    frame.set_timestamp(timestamp);
    overuse_detector_->FrameCaptured(frame, rtc::TimeMicros());
    // Encode and send first parts almost instantly.
    clock_.AdvanceTimeMicros(rtc::kNumMicrosecsPerMillisec);
    clock_.AdvanceTimeMicros(rtc::kNumMicrosecsPerMillisec);
    overuse_detector_->FrameSent(timestamp, rtc::TimeMicros());
    // Encode heavier part, resulting in >85% usage total.
    clock_.AdvanceTimeMicros(kDelayUs - rtc::kNumMicrosecsPerMillisec);
    overuse_detector_->FrameSent(timestamp, rtc::TimeMicros());
    clock_.AdvanceTimeMicros(kIntervalUs - kDelayUs);
    clock_.AdvanceTimeMicros(kIntervalUs - kDelayUs);
    timestamp += kIntervalUs * 90 / 1000;
    overuse_detector_->CheckForOveruse();
  }
}


TEST_F(OveruseFrameDetectorTest, RunOnTqNormalUsage) {
  rtc::TaskQueue queue("OveruseFrameDetectorTestQueue");


  rtc::Event event(false, false);
  rtc::Event event(false, false);
  queue.PostTask([this, &event] {
    overuse_detector_->StartCheckForOveruse();
    event.Set();
    event.Set();
  });
  event.Wait(rtc::Event::kForever);

  // Expect NormalUsage(). When called, stop the |overuse_detector_| and then
  // set |event| to end the test.
  // set |event| to end the test.
  EXPECT_CALL(*(observer_.get()), AdaptUp(reason_))
      .WillOnce(InvokeWithoutArgs([this, &event] {
        overuse_detector_->StopCheckForOveruse();
        event.Set();
      }));
      }));

  queue.PostTask([this] {
    const int kDelayUs1 = 5 * rtc::kNumMicrosecsPerMillisec;
    const int kDelayUs2 = 6 * rtc::kNumMicrosecsPerMillisec;
    InsertAndSendFramesWithInterval(1300, kFrameIntervalUs, kWidth, kHeight,
                                    kDelayUs1);
                                    kDelayUs1);
    InsertAndSendFramesWithInterval(1, kFrameIntervalUs, kWidth, kHeight,
                                    kDelayUs2);
  });

  EXPECT_TRUE(event.Wait(10000));
  EXPECT_TRUE(event.Wait(10000));
}

TEST_F(OveruseFrameDetectorTest, MaxIntervalScalesWithFramerate) {
  const int kCapturerMaxFrameRate = 30;
  const int kEncodeMaxFrameRate = 20;  // Maximum fps the encoder can sustain.

  // Trigger overuse.
  // Trigger overuse.
  int64_t frame_interval_us = rtc::kNumMicrosecsPerSec / kCapturerMaxFrameRate;
  // Processing time just below over use limit given kEncodeMaxFrameRate.
  int64_t processing_time_us =
      (98 * OveruseProcessingTimeLimitForFramerate(kEncodeMaxFrameRate)) / 100;
  EXPECT_CALL(*(observer_.get()), AdaptDown(reason_)).Times(1);
  EXPECT_CALL(*(observer_.get()), AdaptDown(reason_)).Times(1);
  for (int i = 0; i < options_.high_threshold_consecutive_count; ++i) {
    InsertAndSendFramesWithInterval(1200, frame_interval_us, kWidth, kHeight,
                                    processing_time_us);
    overuse_detector_->CheckForOveruse();
  }
  }

  // Simulate frame rate reduction and normal usage.
  frame_interval_us = rtc::kNumMicrosecsPerSec / kEncodeMaxFrameRate;
  overuse_detector_->OnTargetFramerateUpdated(kEncodeMaxFrameRate);
  EXPECT_CALL(*(observer_.get()), AdaptDown(reason_)).Times(0);
  EXPECT_CALL(*(observer_.get()), AdaptDown(reason_)).Times(0);
  for (int i = 0; i < options_.high_threshold_consecutive_count; ++i) {
    InsertAndSendFramesWithInterval(1200, frame_interval_us, kWidth, kHeight,
    InsertAndSendFramesWithInterval(1200, frame_interval_us, kWidth, kHeight,
                                    processing_time_us);
    overuse_detector_->CheckForOveruse();
  }

  // Reduce processing time to trigger underuse.
  // Reduce processing time to trigger underuse.
  processing_time_us =
      (98 * UnderuseProcessingTimeLimitForFramerate(kEncodeMaxFrameRate)) / 100;
  EXPECT_CALL(*(observer_.get()), AdaptUp(reason_)).Times(1);
  InsertAndSendFramesWithInterval(1200, frame_interval_us, kWidth, kHeight,
                                  processing_time_us);
                                  processing_time_us);
  overuse_detector_->CheckForOveruse();
}

TEST_F(OveruseFrameDetectorTest, RespectsMinFramerate) {
  const int kMinFrameRate = 7;  // Minimum fps allowed by current detector impl.
  const int kMinFrameRate = 7;  // Minimum fps allowed by current detector impl.
  overuse_detector_->OnTargetFramerateUpdated(kMinFrameRate);

  // Normal usage just at the limit.
  int64_t frame_interval_us = rtc::kNumMicrosecsPerSec / kMinFrameRate;
  // Processing time just below over use limit given kEncodeMaxFrameRate.
  // Processing time just below over use limit given kEncodeMaxFrameRate.
  int64_t processing_time_us =
      (98 * OveruseProcessingTimeLimitForFramerate(kMinFrameRate)) / 100;
  EXPECT_CALL(*(observer_.get()), AdaptDown(reason_)).Times(0);
  for (int i = 0; i < options_.high_threshold_consecutive_count; ++i) {
  for (int i = 0; i < options_.high_threshold_consecutive_count; ++i) {
    InsertAndSendFramesWithInterval(1200, frame_interval_us, kWidth, kHeight,
                                    processing_time_us);
    overuse_detector_->CheckForOveruse();
  }


  // Over the limit to overuse.
  processing_time_us =
      (102 * OveruseProcessingTimeLimitForFramerate(kMinFrameRate)) / 100;
  EXPECT_CALL(*(observer_.get()), AdaptDown(reason_)).Times(1);
  for (int i = 0; i < options_.high_threshold_consecutive_count; ++i) {
    InsertAndSendFramesWithInterval(1200, frame_interval_us, kWidth, kHeight,
    InsertAndSendFramesWithInterval(1200, frame_interval_us, kWidth, kHeight,
                                    processing_time_us);
                                    processing_time_us);
    overuse_detector_->CheckForOveruse();
  }


  // Reduce input frame rate. Should still trigger overuse.
  overuse_detector_->OnTargetFramerateUpdated(kMinFrameRate - 1);
  EXPECT_CALL(*(observer_.get()), AdaptDown(reason_)).Times(1);
  for (int i = 0; i < options_.high_threshold_consecutive_count; ++i) {
    InsertAndSendFramesWithInterval(1200, frame_interval_us, kWidth, kHeight,
    InsertAndSendFramesWithInterval(1200, frame_interval_us, kWidth, kHeight,
                                    processing_time_us);
    overuse_detector_->CheckForOveruse();
  }
}


TEST_F(OveruseFrameDetectorTest, LimitsMaxFrameInterval) {
  const int kMaxFrameRate = 20;
  overuse_detector_->OnTargetFramerateUpdated(kMaxFrameRate);
  int64_t frame_interval_us = rtc::kNumMicrosecsPerSec / kMaxFrameRate;
  // Maximum frame interval allowed is 35% above ideal.
  // Maximum frame interval allowed is 35% above ideal.
  int64_t max_frame_interval_us = (135 * frame_interval_us) / 100;
  // Maximum processing time, without triggering overuse, allowed with the above
  // frame interval.
  int64_t max_processing_time_us =
      (max_frame_interval_us * options_.high_encode_usage_threshold_percent) /
      (max_frame_interval_us * options_.high_encode_usage_threshold_percent) /
      100;

  // Processing time just below overuse limit given kMaxFrameRate.
  int64_t processing_time_us = (98 * max_processing_time_us) / 100;
  EXPECT_CALL(*(observer_.get()), AdaptDown(reason_)).Times(0);
  EXPECT_CALL(*(observer_.get()), AdaptDown(reason_)).Times(0);
  for (int i = 0; i < options_.high_threshold_consecutive_count; ++i) {
    InsertAndSendFramesWithInterval(1200, max_frame_interval_us, kWidth,
                                    kHeight, processing_time_us);
    overuse_detector_->CheckForOveruse();
  }
  }

  // Go above limit, trigger overuse.
  processing_time_us = (102 * max_processing_time_us) / 100;
  EXPECT_CALL(*(observer_.get()), AdaptDown(reason_)).Times(1);
  for (int i = 0; i < options_.high_threshold_consecutive_count; ++i) {
  for (int i = 0; i < options_.high_threshold_consecutive_count; ++i) {
    InsertAndSendFramesWithInterval(1200, max_frame_interval_us, kWidth,
                                    kHeight, processing_time_us);
    overuse_detector_->CheckForOveruse();
  }
  }

  // Increase frame interval, should still trigger overuse.
  max_frame_interval_us *= 2;
  EXPECT_CALL(*(observer_.get()), AdaptDown(reason_)).Times(1);
  for (int i = 0; i < options_.high_threshold_consecutive_count; ++i) {
  for (int i = 0; i < options_.high_threshold_consecutive_count; ++i) {
    InsertAndSendFramesWithInterval(1200, max_frame_interval_us, kWidth,
                                    kHeight, processing_time_us);
    overuse_detector_->CheckForOveruse();
  }
}
}

}  // namespace webrtc