DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Header

Mercurial (882de07e4cbe)

VCS Links

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677
/*
 *  Copyright (c) 2013 The WebRTC project authors. All Rights Reserved.
 *
 *  Use of this source code is governed by a BSD-style license
 *  that can be found in the LICENSE file in the root of the source
 *  that can be found in the LICENSE file in the root of the source
 *  tree. An additional intellectual property rights grant can be found
 *  in the file PATENTS.  All contributing project authors may
 *  be found in the AUTHORS file in the root of the source tree.
 */


#include "video/overuse_frame_detector.h"

#include <assert.h>
#include <math.h>
#include <math.h>

#include <algorithm>
#include <list>
#include <map>
#include <string>
#include <string>
#include <utility>

#include "api/video/video_frame.h"
#include "common_video/include/frame_callback.h"
#include "rtc_base/checks.h"
#include "rtc_base/checks.h"
#include "rtc_base/logging.h"
#include "rtc_base/numerics/exp_filter.h"
#include "rtc_base/timeutils.h"
#include "system_wrappers/include/field_trial.h"


#if defined(WEBRTC_MAC) && !defined(WEBRTC_IOS)
#include <mach/mach.h>
#endif  // defined(WEBRTC_MAC) && !defined(WEBRTC_IOS)

namespace webrtc {
namespace webrtc {

namespace {
const int64_t kCheckForOveruseIntervalMs = 5000;
const int64_t kTimeToFirstCheckForOveruseMs = 100;

// Delay between consecutive rampups. (Used for quick recovery.)
const int kQuickRampUpDelayMs = 10 * 1000;
const int kQuickRampUpDelayMs = 10 * 1000;
// Delay between rampup attempts. Initially uses standard, scales up to max.
const int kStandardRampUpDelayMs = 40 * 1000;
const int kMaxRampUpDelayMs = 240 * 1000;
// Expontential back-off factor, to prevent annoying up-down behaviour.
const double kRampUpBackoffFactor = 2.0;
const double kRampUpBackoffFactor = 2.0;

// Max number of overuses detected before always applying the rampup delay.
const int kMaxOverusesBeforeApplyRampupDelay = 4;

// The maximum exponent to use in VCMExpFilter.
// The maximum exponent to use in VCMExpFilter.
const float kMaxExp = 7.0f;
// Default value used before first reconfiguration.
const int kDefaultFrameRate = 30;
// Default sample diff, default frame rate.
const float kDefaultSampleDiffMs = 1000.0f / kDefaultFrameRate;
const float kDefaultSampleDiffMs = 1000.0f / kDefaultFrameRate;
// A factor applied to the sample diff on OnTargetFramerateUpdated to determine
// A factor applied to the sample diff on OnTargetFramerateUpdated to determine
// a max limit for the sample diff. For instance, with a framerate of 30fps,
// the sample diff is capped to (1000 / 30) * 1.35 = 45ms. This prevents
// triggering too soon if there are individual very large outliers.
const float kMaxSampleDiffMarginFactor = 1.35f;
// Minimum framerate allowed for usage calculation. This prevents crazy long
// Minimum framerate allowed for usage calculation. This prevents crazy long
// encode times from being accepted if the frame rate happens to be low.
const int kMinFramerate = 7;
const int kMaxFramerate = 30;

const auto kScaleReasonCpu = AdaptationObserverInterface::AdaptReason::kCpu;
const auto kScaleReasonCpu = AdaptationObserverInterface::AdaptReason::kCpu;
}  // namespace

CpuOveruseOptions::CpuOveruseOptions()
    : high_encode_usage_threshold_percent(85),
      frame_timeout_interval_ms(1500),
      frame_timeout_interval_ms(1500),
      min_frame_samples(120),
      min_process_count(3),
      high_threshold_consecutive_count(2) {
#if defined(WEBRTC_MAC) && !defined(WEBRTC_IOS)
  // This is proof-of-concept code for letting the physical core count affect
  // This is proof-of-concept code for letting the physical core count affect
  // the interval into which we attempt to scale. For now, the code is Mac OS
  // specific, since that's the platform were we saw most problems.
  // TODO(torbjorng): Enhance SystemInfo to return this metric.

  mach_port_t mach_host = mach_host_self();
  mach_port_t mach_host = mach_host_self();
  host_basic_info hbi = {};
  mach_msg_type_number_t info_count = HOST_BASIC_INFO_COUNT;
  kern_return_t kr =
      host_info(mach_host, HOST_BASIC_INFO, reinterpret_cast<host_info_t>(&hbi),
                &info_count);
                &info_count);
  mach_port_deallocate(mach_task_self(), mach_host);

  int n_physical_cores;
  int n_physical_cores;
  if (kr != KERN_SUCCESS) {
    // If we couldn't get # of physical CPUs, don't panic. Assume we have 1.
    n_physical_cores = 1;
    RTC_LOG(LS_ERROR)
        << "Failed to determine number of physical cores, assuming 1";
        << "Failed to determine number of physical cores, assuming 1";
  } else {
    n_physical_cores = hbi.physical_cpu;
    RTC_LOG(LS_INFO) << "Number of physical cores:" << n_physical_cores;
  }


  // Change init list default for few core systems. The assumption here is that
  // encoding, which we measure here, takes about 1/4 of the processing of a
  // two-way call. This is roughly true for x86 using both vp8 and vp9 without
  // hardware encoding. Since we don't affect the incoming stream here, we only
  // control about 1/2 of the total processing needs, but this is not taken into
  // account.
  if (n_physical_cores == 1)
    high_encode_usage_threshold_percent = 20;  // Roughly 1/4 of 100%.
  else if (n_physical_cores == 2)
  else if (n_physical_cores == 2)
    high_encode_usage_threshold_percent = 40;  // Roughly 1/4 of 200%.
#endif  // defined(WEBRTC_MAC) && !defined(WEBRTC_IOS)

  // Note that we make the interval 2x+epsilon wide, since libyuv scaling steps
  // are close to that (when squared). This wide interval makes sure that
  // are close to that (when squared). This wide interval makes sure that
  // scaling up or down does not jump all the way across the interval.
  low_encode_usage_threshold_percent =
      (high_encode_usage_threshold_percent - 1) / 2;
}


// Class for calculating the processing usage on the send-side (the average
// processing time of a frame divided by the average time difference between
// processing time of a frame divided by the average time difference between
// captured frames).
class OveruseFrameDetector::SendProcessingUsage {
 public:
  explicit SendProcessingUsage(const CpuOveruseOptions& options)
      : kWeightFactorFrameDiff(0.998f),
      : kWeightFactorFrameDiff(0.998f),
        kWeightFactorProcessing(0.995f),
        kInitialSampleDiffMs(40.0f),
        count_(0),
        options_(options),
        max_sample_diff_ms_(kDefaultSampleDiffMs * kMaxSampleDiffMarginFactor),
        max_sample_diff_ms_(kDefaultSampleDiffMs * kMaxSampleDiffMarginFactor),
        filtered_processing_ms_(new rtc::ExpFilter(kWeightFactorProcessing)),
        filtered_frame_diff_ms_(new rtc::ExpFilter(kWeightFactorFrameDiff)) {
    Reset();
  }
  virtual ~SendProcessingUsage() {}
  virtual ~SendProcessingUsage() {}

  void Reset() {
    count_ = 0;
    max_sample_diff_ms_ = kDefaultSampleDiffMs * kMaxSampleDiffMarginFactor;
    max_sample_diff_ms_ = kDefaultSampleDiffMs * kMaxSampleDiffMarginFactor;
    filtered_frame_diff_ms_->Reset(kWeightFactorFrameDiff);
    filtered_frame_diff_ms_->Apply(1.0f, kInitialSampleDiffMs);
    filtered_processing_ms_->Reset(kWeightFactorProcessing);
    filtered_processing_ms_->Apply(1.0f, InitialProcessingMs());
  }
  }

  void SetMaxSampleDiffMs(float diff_ms) { max_sample_diff_ms_ = diff_ms; }

  void AddCaptureSample(float sample_ms) {
    float exp = sample_ms / kDefaultSampleDiffMs;
    float exp = sample_ms / kDefaultSampleDiffMs;
    exp = std::min(exp, kMaxExp);
    filtered_frame_diff_ms_->Apply(exp, sample_ms);
  }

  void AddSample(float processing_ms, int64_t diff_last_sample_ms) {
  void AddSample(float processing_ms, int64_t diff_last_sample_ms) {
    ++count_;
    float exp = diff_last_sample_ms / kDefaultSampleDiffMs;
    exp = std::min(exp, kMaxExp);
    exp = std::min(exp, kMaxExp);
    filtered_processing_ms_->Apply(exp, processing_ms);
  }

  virtual int Value() {
    if (count_ < static_cast<uint32_t>(options_.min_frame_samples)) {
    if (count_ < static_cast<uint32_t>(options_.min_frame_samples)) {
      return static_cast<int>(InitialUsageInPercent() + 0.5f);
    }
    float frame_diff_ms = std::max(filtered_frame_diff_ms_->filtered(), 1.0f);
    frame_diff_ms = std::min(frame_diff_ms, max_sample_diff_ms_);
    float encode_usage_percent =
    float encode_usage_percent =
        100.0f * filtered_processing_ms_->filtered() / frame_diff_ms;
    return static_cast<int>(encode_usage_percent + 0.5);
  }

 private:
 private:
  float InitialUsageInPercent() const {
    // Start in between the underuse and overuse threshold.
    return (options_.low_encode_usage_threshold_percent +
            options_.high_encode_usage_threshold_percent) / 2.0f;
  }
  }

  float InitialProcessingMs() const {
    return InitialUsageInPercent() * kInitialSampleDiffMs / 100;
  }


  const float kWeightFactorFrameDiff;
  const float kWeightFactorProcessing;
  const float kInitialSampleDiffMs;
  uint64_t count_;
  const CpuOveruseOptions options_;
  float max_sample_diff_ms_;
  float max_sample_diff_ms_;
  std::unique_ptr<rtc::ExpFilter> filtered_processing_ms_;
  std::unique_ptr<rtc::ExpFilter> filtered_frame_diff_ms_;
};

// Class used for manual testing of overuse, enabled via field trial flag.
class OveruseFrameDetector::OverdoseInjector
    : public OveruseFrameDetector::SendProcessingUsage {
    : public OveruseFrameDetector::SendProcessingUsage {
 public:
  OverdoseInjector(const CpuOveruseOptions& options,
                   int64_t normal_period_ms,
                   int64_t overuse_period_ms,
                   int64_t underuse_period_ms)
                   int64_t underuse_period_ms)
      : OveruseFrameDetector::SendProcessingUsage(options),
        normal_period_ms_(normal_period_ms),
        overuse_period_ms_(overuse_period_ms),
        underuse_period_ms_(underuse_period_ms),
        state_(State::kNormal),
        state_(State::kNormal),
        last_toggling_ms_(-1) {
    RTC_DCHECK_GT(overuse_period_ms, 0);
    RTC_DCHECK_GT(normal_period_ms, 0);
    RTC_LOG(LS_INFO) << "Simulating overuse with intervals " << normal_period_ms
                     << "ms normal mode, " << overuse_period_ms
                     << "ms normal mode, " << overuse_period_ms
                     << "ms overuse mode.";
  }

  ~OverdoseInjector() override {}


  int Value() override {
    int64_t now_ms = rtc::TimeMillis();
    if (last_toggling_ms_ == -1) {
      last_toggling_ms_ = now_ms;
    } else {
    } else {
      switch (state_) {
        case State::kNormal:
          if (now_ms > last_toggling_ms_ + normal_period_ms_) {
            state_ = State::kOveruse;
            last_toggling_ms_ = now_ms;
            last_toggling_ms_ = now_ms;
            RTC_LOG(LS_INFO) << "Simulating CPU overuse.";
          }
          break;
        case State::kOveruse:
          if (now_ms > last_toggling_ms_ + overuse_period_ms_) {
          if (now_ms > last_toggling_ms_ + overuse_period_ms_) {
            state_ = State::kUnderuse;
            last_toggling_ms_ = now_ms;
            RTC_LOG(LS_INFO) << "Simulating CPU underuse.";
          }
          break;
          break;
        case State::kUnderuse:
          if (now_ms > last_toggling_ms_ + underuse_period_ms_) {
            state_ = State::kNormal;
            last_toggling_ms_ = now_ms;
            RTC_LOG(LS_INFO) << "Actual CPU overuse measurements in effect.";
          }
          break;
      }
    }
    }

    rtc::Optional<int> overried_usage_value;
    switch (state_) {
      case State::kNormal:
        break;
        break;
      case State::kOveruse:
        overried_usage_value.emplace(250);
        break;
      case State::kUnderuse:
        overried_usage_value.emplace(5);
        overried_usage_value.emplace(5);
        break;
        break;
    }

    return overried_usage_value.value_or(SendProcessingUsage::Value());
  }


 private:
  const int64_t normal_period_ms_;
  const int64_t overuse_period_ms_;
  const int64_t underuse_period_ms_;
  enum class State { kNormal, kOveruse, kUnderuse } state_;
  enum class State { kNormal, kOveruse, kUnderuse } state_;
  int64_t last_toggling_ms_;
};

std::unique_ptr<OveruseFrameDetector::SendProcessingUsage>
OveruseFrameDetector::CreateSendProcessingUsage(
OveruseFrameDetector::CreateSendProcessingUsage(
    const CpuOveruseOptions& options) {
  std::unique_ptr<SendProcessingUsage> instance;
  std::string toggling_interval =
      field_trial::FindFullName("WebRTC-ForceSimulatedOveruseIntervalMs");
  if (!toggling_interval.empty()) {
  if (!toggling_interval.empty()) {
    int normal_period_ms = 0;
    int overuse_period_ms = 0;
    int underuse_period_ms = 0;
    if (sscanf(toggling_interval.c_str(), "%d-%d-%d", &normal_period_ms,
               &overuse_period_ms, &underuse_period_ms) == 3) {
               &overuse_period_ms, &underuse_period_ms) == 3) {
      if (normal_period_ms > 0 && overuse_period_ms > 0 &&
          underuse_period_ms > 0) {
        instance.reset(new OverdoseInjector(
            options, normal_period_ms, overuse_period_ms, underuse_period_ms));
      } else {
      } else {
        RTC_LOG(LS_WARNING)
            << "Invalid (non-positive) normal/overuse/underuse periods: "
            << normal_period_ms << " / " << overuse_period_ms << " / "
            << normal_period_ms << " / " << overuse_period_ms << " / "
            << underuse_period_ms;
      }
    } else {
      RTC_LOG(LS_WARNING) << "Malformed toggling interval: "
                          << toggling_interval;
                          << toggling_interval;
    }
  }

  if (!instance) {
    // No valid overuse simulation parameters set, use normal usage class.
    // No valid overuse simulation parameters set, use normal usage class.
    instance.reset(new SendProcessingUsage(options));
  }

  return instance;
}
}

class OveruseFrameDetector::CheckOveruseTask : public rtc::QueuedTask {
 public:
  explicit CheckOveruseTask(OveruseFrameDetector* overuse_detector)
      : overuse_detector_(overuse_detector) {
      : overuse_detector_(overuse_detector) {
    rtc::TaskQueue::Current()->PostDelayedTask(
        std::unique_ptr<rtc::QueuedTask>(this), kTimeToFirstCheckForOveruseMs);
  }

  void Stop() {
    RTC_CHECK(task_checker_.CalledSequentially());
    overuse_detector_ = nullptr;
    overuse_detector_ = nullptr;
  }

 private:
  bool Run() override {
    RTC_CHECK(task_checker_.CalledSequentially());
    RTC_CHECK(task_checker_.CalledSequentially());
    if (!overuse_detector_)
      return true;  // This will make the task queue delete this task.
    overuse_detector_->CheckForOveruse();


    rtc::TaskQueue::Current()->PostDelayedTask(
        std::unique_ptr<rtc::QueuedTask>(this), kCheckForOveruseIntervalMs);
    // Return false to prevent this task from being deleted. Ownership has been
    // transferred to the task queue when PostDelayedTask was called.
    // transferred to the task queue when PostDelayedTask was called.
    return false;
  }
  rtc::SequencedTaskChecker task_checker_;
  OveruseFrameDetector* overuse_detector_;
};
};

OveruseFrameDetector::OveruseFrameDetector(
    const CpuOveruseOptions& options,
    AdaptationObserverInterface* observer,
    EncodedFrameObserver* encoder_timing,
    EncodedFrameObserver* encoder_timing,
    CpuOveruseMetricsObserver* metrics_observer)
    : check_overuse_task_(nullptr),
      options_(options),
      observer_(observer),
      encoder_timing_(encoder_timing),
      encoder_timing_(encoder_timing),
      metrics_observer_(metrics_observer),
      num_process_times_(0),
      // TODO(nisse): Use rtc::Optional
      last_capture_time_us_(-1),
      last_processed_capture_time_us_(-1),
      last_processed_capture_time_us_(-1),
      num_pixels_(0),
      max_framerate_(kDefaultFrameRate),
      last_overuse_time_ms_(-1),
      checks_above_threshold_(0),
      num_overuse_detections_(0),
      num_overuse_detections_(0),
      last_rampup_time_ms_(-1),
      in_quick_rampup_(false),
      current_rampup_delay_ms_(kStandardRampUpDelayMs),
      usage_(CreateSendProcessingUsage(options)) {
  task_checker_.Detach();
}


OveruseFrameDetector::~OveruseFrameDetector() {
  RTC_DCHECK(!check_overuse_task_) << "StopCheckForOverUse must be called.";
}


void OveruseFrameDetector::StartCheckForOveruse() {
  RTC_DCHECK_CALLED_SEQUENTIALLY(&task_checker_);
  RTC_DCHECK(!check_overuse_task_);
  check_overuse_task_ = new CheckOveruseTask(this);
}
}
void OveruseFrameDetector::StopCheckForOveruse() {
  RTC_DCHECK_CALLED_SEQUENTIALLY(&task_checker_);
  check_overuse_task_->Stop();
  check_overuse_task_ = nullptr;
}
}

void OveruseFrameDetector::EncodedFrameTimeMeasured(int encode_duration_ms) {
  RTC_DCHECK_CALLED_SEQUENTIALLY(&task_checker_);
  if (!metrics_)
    metrics_ = rtc::Optional<CpuOveruseMetrics>(CpuOveruseMetrics());
    metrics_ = rtc::Optional<CpuOveruseMetrics>(CpuOveruseMetrics());
  metrics_->encode_usage_percent = usage_->Value();

  metrics_observer_->OnEncodedFrameTimeMeasured(encode_duration_ms, *metrics_);
}


bool OveruseFrameDetector::FrameSizeChanged(int num_pixels) const {
  RTC_DCHECK_CALLED_SEQUENTIALLY(&task_checker_);
  if (num_pixels != num_pixels_) {
    return true;
  }
  }
  return false;
}

bool OveruseFrameDetector::FrameTimeoutDetected(int64_t now_us) const {
bool OveruseFrameDetector::FrameTimeoutDetected(int64_t now_us) const {
  RTC_DCHECK_CALLED_SEQUENTIALLY(&task_checker_);
  if (last_capture_time_us_ == -1)
    return false;
  return (now_us - last_capture_time_us_) >
      options_.frame_timeout_interval_ms * rtc::kNumMicrosecsPerMillisec;
}


void OveruseFrameDetector::ResetAll(int num_pixels) {
  // Reset state, as a result resolution being changed. Do not however change
  // the current frame rate back to the default.
  RTC_DCHECK_CALLED_SEQUENTIALLY(&task_checker_);
  num_pixels_ = num_pixels;
  num_pixels_ = num_pixels;
  usage_->Reset();
  frame_timing_.clear();
  last_capture_time_us_ = -1;
  last_processed_capture_time_us_ = -1;
  num_process_times_ = 0;
  num_process_times_ = 0;
  metrics_ = rtc::Optional<CpuOveruseMetrics>();
  OnTargetFramerateUpdated(max_framerate_);
}

void OveruseFrameDetector::OnTargetFramerateUpdated(int framerate_fps) {
void OveruseFrameDetector::OnTargetFramerateUpdated(int framerate_fps) {
  RTC_DCHECK_CALLED_SEQUENTIALLY(&task_checker_);
  RTC_DCHECK_GE(framerate_fps, 0);
  max_framerate_ = std::min(kMaxFramerate, framerate_fps);
  usage_->SetMaxSampleDiffMs((1000 / std::max(kMinFramerate, max_framerate_)) *
                             kMaxSampleDiffMarginFactor);
                             kMaxSampleDiffMarginFactor);
}

void OveruseFrameDetector::FrameCaptured(const VideoFrame& frame,
                                         int64_t time_when_first_seen_us) {
  RTC_DCHECK_CALLED_SEQUENTIALLY(&task_checker_);
  RTC_DCHECK_CALLED_SEQUENTIALLY(&task_checker_);

  if (FrameSizeChanged(frame.width() * frame.height()) ||
      FrameTimeoutDetected(time_when_first_seen_us)) {
      FrameTimeoutDetected(time_when_first_seen_us)) {
    ResetAll(frame.width() * frame.height());
  }

  if (last_capture_time_us_ != -1)
  if (last_capture_time_us_ != -1)
    usage_->AddCaptureSample(
        1e-3 * (time_when_first_seen_us - last_capture_time_us_));

  last_capture_time_us_ = time_when_first_seen_us;


  frame_timing_.push_back(FrameTiming(frame.timestamp_us(), frame.timestamp(),
                                      time_when_first_seen_us));
}

void OveruseFrameDetector::FrameSent(uint32_t timestamp,
void OveruseFrameDetector::FrameSent(uint32_t timestamp,
                                     int64_t time_sent_in_us) {
  RTC_DCHECK_CALLED_SEQUENTIALLY(&task_checker_);
  // Delay before reporting actual encoding time, used to have the ability to
  // detect total encoding time when encoding more than one layer. Encoding is
  // here assumed to finish within a second (or that we get enough long-time
  // here assumed to finish within a second (or that we get enough long-time
  // samples before one second to trigger an overuse even when this is not the
  // case).
  static const int64_t kEncodingTimeMeasureWindowMs = 1000;
  for (auto& it : frame_timing_) {
    if (it.timestamp == timestamp) {
    if (it.timestamp == timestamp) {
      it.last_send_us = time_sent_in_us;
      break;
    }
  }
  // TODO(pbos): Handle the case/log errors when not finding the corresponding
  // TODO(pbos): Handle the case/log errors when not finding the corresponding
  // frame (either very slow encoding or incorrect wrong timestamps returned
  // from the encoder).
  // This is currently the case for all frames on ChromeOS, so logging them
  // would be spammy, and triggering overuse would be wrong.
  // would be spammy, and triggering overuse would be wrong.
  // https://crbug.com/350106
  while (!frame_timing_.empty()) {
    FrameTiming timing = frame_timing_.front();
    if (time_sent_in_us - timing.capture_us <
        kEncodingTimeMeasureWindowMs * rtc::kNumMicrosecsPerMillisec) {
        kEncodingTimeMeasureWindowMs * rtc::kNumMicrosecsPerMillisec) {
      break;
    }
    if (timing.last_send_us != -1) {
      int encode_duration_us =
          static_cast<int>(timing.last_send_us - timing.capture_us);
          static_cast<int>(timing.last_send_us - timing.capture_us);
      if (encoder_timing_) {
        // TODO(nisse): Update encoder_timing_ to also use us units.
        encoder_timing_->OnEncodeTiming(timing.capture_time_us /
                                        rtc::kNumMicrosecsPerMillisec,
                                        encode_duration_us /
                                        encode_duration_us /
                                        rtc::kNumMicrosecsPerMillisec);
      }
      if (last_processed_capture_time_us_ != -1) {
        int64_t diff_us = timing.capture_us - last_processed_capture_time_us_;
        usage_->AddSample(1e-3 * encode_duration_us, 1e-3 * diff_us);
      }
      last_processed_capture_time_us_ = timing.capture_us;
      last_processed_capture_time_us_ = timing.capture_us;
      EncodedFrameTimeMeasured(encode_duration_us /
                               rtc::kNumMicrosecsPerMillisec);
    }
    frame_timing_.pop_front();
  }
  }
}

void OveruseFrameDetector::CheckForOveruse() {
  RTC_DCHECK_CALLED_SEQUENTIALLY(&task_checker_);
  ++num_process_times_;
  ++num_process_times_;
  if (num_process_times_ <= options_.min_process_count || !metrics_)
    return;

  int64_t now_ms = rtc::TimeMillis();
  int64_t now_ms = rtc::TimeMillis();

  if (IsOverusing(*metrics_)) {
    // If the last thing we did was going up, and now have to back down, we need
    // to check if this peak was short. If so we should back off to avoid going
    // back and forth between this load, the system doesn't seem to handle it.
    // back and forth between this load, the system doesn't seem to handle it.
    bool check_for_backoff = last_rampup_time_ms_ > last_overuse_time_ms_;
    if (check_for_backoff) {
      if (now_ms - last_rampup_time_ms_ < kStandardRampUpDelayMs ||
          num_overuse_detections_ > kMaxOverusesBeforeApplyRampupDelay) {
        // Going up was not ok for very long, back off.
        // Going up was not ok for very long, back off.
        current_rampup_delay_ms_ *= kRampUpBackoffFactor;
        if (current_rampup_delay_ms_ > kMaxRampUpDelayMs)
          current_rampup_delay_ms_ = kMaxRampUpDelayMs;
      } else {
        // Not currently backing off, reset rampup delay.
        // Not currently backing off, reset rampup delay.
        current_rampup_delay_ms_ = kStandardRampUpDelayMs;
      }
    }

    last_overuse_time_ms_ = now_ms;
    last_overuse_time_ms_ = now_ms;
    in_quick_rampup_ = false;
    checks_above_threshold_ = 0;
    ++num_overuse_detections_;

    if (observer_)
    if (observer_)
      observer_->AdaptDown(kScaleReasonCpu);
  } else if (IsUnderusing(*metrics_, now_ms)) {
    last_rampup_time_ms_ = now_ms;
    in_quick_rampup_ = true;


    if (observer_)
      observer_->AdaptUp(kScaleReasonCpu);
  }

  int rampup_delay =
      in_quick_rampup_ ? kQuickRampUpDelayMs : current_rampup_delay_ms_;


  RTC_LOG(LS_VERBOSE) << " Frame stats: "
                      << " encode usage " << metrics_->encode_usage_percent
                      << " overuse detections " << num_overuse_detections_
                      << " rampup delay " << rampup_delay;
}
}

bool OveruseFrameDetector::IsOverusing(const CpuOveruseMetrics& metrics) {
  RTC_DCHECK_CALLED_SEQUENTIALLY(&task_checker_);

  if (metrics.encode_usage_percent >=
  if (metrics.encode_usage_percent >=
      options_.high_encode_usage_threshold_percent) {
    ++checks_above_threshold_;
  } else {
    checks_above_threshold_ = 0;
    checks_above_threshold_ = 0;
  }
  return checks_above_threshold_ >= options_.high_threshold_consecutive_count;
}

bool OveruseFrameDetector::IsUnderusing(const CpuOveruseMetrics& metrics,
bool OveruseFrameDetector::IsUnderusing(const CpuOveruseMetrics& metrics,
                                        int64_t time_now) {
  RTC_DCHECK_CALLED_SEQUENTIALLY(&task_checker_);
  int delay = in_quick_rampup_ ? kQuickRampUpDelayMs : current_rampup_delay_ms_;
  if (time_now < last_rampup_time_ms_ + delay)
    return false;
    return false;

  return metrics.encode_usage_percent <
         options_.low_encode_usage_threshold_percent;
}
}  // namespace webrtc