DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Mercurial (95ddb3213aec)

VCS Links

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
/*
 *  Copyright (c) 2016 The WebRTC project authors. All Rights Reserved.
 *
 *  Use of this source code is governed by a BSD-style license
 *  that can be found in the LICENSE file in the root of the source
 *  tree. An additional intellectual property rights grant can be found
 *  in the file PATENTS.  All contributing project authors may
 *  be found in the AUTHORS file in the root of the source tree.
 */
#include <cmath>
#include <memory>
#include <vector>

#include "api/array_view.h"
#include "modules/audio_processing/rms_level.h"
#include "rtc_base/checks.h"
#include "rtc_base/numerics/mathutils.h"
#include "rtc_base/numerics/safe_conversions.h"
#include "test/gtest.h"

namespace webrtc {
namespace {
constexpr int kSampleRateHz = 48000;
constexpr size_t kBlockSizeSamples = kSampleRateHz / 100;

std::unique_ptr<RmsLevel> RunTest(rtc::ArrayView<const int16_t> input) {
  std::unique_ptr<RmsLevel> level(new RmsLevel);
  for (size_t n = 0; n + kBlockSizeSamples <= input.size();
       n += kBlockSizeSamples) {
    level->Analyze(input.subview(n, kBlockSizeSamples));
  }
  return level;
}

std::vector<int16_t> CreateSinusoid(int frequency_hz,
                                    int amplitude,
                                    size_t num_samples) {
  std::vector<int16_t> x(num_samples);
  for (size_t n = 0; n < num_samples; ++n) {
    x[n] = rtc::saturated_cast<int16_t>(
        amplitude * std::sin(2 * M_PI * n * frequency_hz / kSampleRateHz));
  }
  return x;
}
}  // namespace

TEST(RmsLevelTest, Run1000HzFullScale) {
  auto x = CreateSinusoid(1000, INT16_MAX, kSampleRateHz);
  auto level = RunTest(x);
  EXPECT_EQ(3, level->Average());  // -3 dBFS
}

TEST(RmsLevelTest, Run1000HzFullScaleAverageAndPeak) {
  auto x = CreateSinusoid(1000, INT16_MAX, kSampleRateHz);
  auto level = RunTest(x);
  auto stats = level->AverageAndPeak();
  EXPECT_EQ(3, stats.average);  // -3 dBFS
  EXPECT_EQ(3, stats.peak);
}

TEST(RmsLevelTest, Run1000HzHalfScale) {
  auto x = CreateSinusoid(1000, INT16_MAX / 2, kSampleRateHz);
  auto level = RunTest(x);
  EXPECT_EQ(9, level->Average());  // -9 dBFS
}

TEST(RmsLevelTest, RunZeros) {
  std::vector<int16_t> x(kSampleRateHz, 0);  // 1 second of pure silence.
  auto level = RunTest(x);
  EXPECT_EQ(127, level->Average());
}

TEST(RmsLevelTest, RunZerosAverageAndPeak) {
  std::vector<int16_t> x(kSampleRateHz, 0);  // 1 second of pure silence.
  auto level = RunTest(x);
  auto stats = level->AverageAndPeak();
  EXPECT_EQ(127, stats.average);
  EXPECT_EQ(127, stats.peak);
}

TEST(RmsLevelTest, NoSamples) {
  RmsLevel level;
  EXPECT_EQ(127, level.Average());  // Return minimum if no samples are given.
}

TEST(RmsLevelTest, NoSamplesAverageAndPeak) {
  RmsLevel level;
  auto stats = level.AverageAndPeak();
  EXPECT_EQ(127, stats.average);
  EXPECT_EQ(127, stats.peak);
}

TEST(RmsLevelTest, PollTwice) {
  auto x = CreateSinusoid(1000, INT16_MAX, kSampleRateHz);
  auto level = RunTest(x);
  level->Average();
  EXPECT_EQ(127, level->Average());  // Stats should be reset at this point.
}

TEST(RmsLevelTest, Reset) {
  auto x = CreateSinusoid(1000, INT16_MAX, kSampleRateHz);
  auto level = RunTest(x);
  level->Reset();
  EXPECT_EQ(127, level->Average());  // Stats should be reset at this point.
}

// Inserts 1 second of full-scale sinusoid, followed by 1 second of muted.
TEST(RmsLevelTest, ProcessMuted) {
  auto x = CreateSinusoid(1000, INT16_MAX, kSampleRateHz);
  auto level = RunTest(x);
  const size_t kBlocksPerSecond = rtc::CheckedDivExact(
      static_cast<size_t>(kSampleRateHz), kBlockSizeSamples);
  for (size_t i = 0; i < kBlocksPerSecond; ++i) {
    level->AnalyzeMuted(kBlockSizeSamples);
  }
  EXPECT_EQ(6, level->Average());  // Average RMS halved due to the silence.
}

// Inserts 1 second of half-scale sinusoid, follwed by 10 ms of full-scale, and
// finally 1 second of half-scale again. Expect the average to be -9 dBFS due
// to the vast majority of the signal being half-scale, and the peak to be
// -3 dBFS.
TEST(RmsLevelTest, RunHalfScaleAndInsertFullScale) {
  auto half_scale = CreateSinusoid(1000, INT16_MAX / 2, kSampleRateHz);
  auto full_scale = CreateSinusoid(1000, INT16_MAX, kSampleRateHz / 100);
  auto x = half_scale;
  x.insert(x.end(), full_scale.begin(), full_scale.end());
  x.insert(x.end(), half_scale.begin(), half_scale.end());
  ASSERT_EQ(static_cast<size_t>(2 * kSampleRateHz + kSampleRateHz / 100),
            x.size());
  auto level = RunTest(x);
  auto stats = level->AverageAndPeak();
  EXPECT_EQ(9, stats.average);
  EXPECT_EQ(3, stats.peak);
}

TEST(RmsLevelTest, ResetOnBlockSizeChange) {
  auto x = CreateSinusoid(1000, INT16_MAX, kSampleRateHz);
  auto level = RunTest(x);
  // Create a new signal with half amplitude, but double block length.
  auto y = CreateSinusoid(1000, INT16_MAX / 2, kBlockSizeSamples * 2);
  level->Analyze(y);
  auto stats = level->AverageAndPeak();
  // Expect all stats to only be influenced by the last signal (y), since the
  // changed block size should reset the stats.
  EXPECT_EQ(9, stats.average);
  EXPECT_EQ(9, stats.peak);
}

}  // namespace webrtc