DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Header

Mercurial (c68fe15a81fc)

VCS Links

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599
/*
 *  Copyright (c) 2014 The WebRTC project authors. All Rights Reserved.
 *
 *  Use of this source code is governed by a BSD-style license
 *  that can be found in the LICENSE file in the root of the source
 *  tree. An additional intellectual property rights grant can be found
 *  in the file PATENTS.  All contributing project authors may
 *  be found in the AUTHORS file in the root of the source tree.
 */

#define _USE_MATH_DEFINES

#include "modules/audio_processing/beamformer/nonlinear_beamformer.h"

#include <algorithm>
#include <cmath>
#include <numeric>
#include <vector>

#include "common_audio/window_generator.h"
#include "modules/audio_processing/beamformer/covariance_matrix_generator.h"
#include "rtc_base/arraysize.h"

namespace webrtc {
namespace {

// Alpha for the Kaiser Bessel Derived window.
const float kKbdAlpha = 1.5f;

const float kSpeedOfSoundMeterSeconds = 343;

// The minimum separation in radians between the target direction and an
// interferer scenario.
const float kMinAwayRadians = 0.2f;

// The separation between the target direction and the closest interferer
// scenario is proportional to this constant.
const float kAwaySlope = 0.008f;

// When calculating the interference covariance matrix, this is the weight for
// the weighted average between the uniform covariance matrix and the angled
// covariance matrix.
// Rpsi = Rpsi_angled * kBalance + Rpsi_uniform * (1 - kBalance)
const float kBalance = 0.95f;

// Alpha coefficients for mask smoothing.
const float kMaskTimeSmoothAlpha = 0.2f;
const float kMaskFrequencySmoothAlpha = 0.6f;

// The average mask is computed from masks in this mid-frequency range. If these
// ranges are changed |kMaskQuantile| might need to be adjusted.
const int kLowMeanStartHz = 200;
const int kLowMeanEndHz = 400;

// Range limiter for subtractive terms in the nominator and denominator of the
// postfilter expression. It handles the scenario mismatch between the true and
// model sources (target and interference).
const float kCutOffConstant = 0.9999f;

// Quantile of mask values which is used to estimate target presence.
const float kMaskQuantile = 0.7f;
// Mask threshold over which the data is considered signal and not interference.
// It has to be updated every time the postfilter calculation is changed
// significantly.
// TODO(aluebs): Write a tool to tune the target threshold automatically based
// on files annotated with target and interference ground truth.
const float kMaskTargetThreshold = 0.01f;
// Time in seconds after which the data is considered interference if the mask
// does not pass |kMaskTargetThreshold|.
const float kHoldTargetSeconds = 0.25f;

// To compensate for the attenuation this algorithm introduces to the target
// signal. It was estimated empirically from a low-noise low-reverberation
// recording from broadside.
const float kCompensationGain = 2.f;

// Does conjugate(|norm_mat|) * |mat| * transpose(|norm_mat|). No extra space is
// used; to accomplish this, we compute both multiplications in the same loop.
// The returned norm is clamped to be non-negative.
float Norm(const ComplexMatrix<float>& mat,
           const ComplexMatrix<float>& norm_mat) {
  RTC_CHECK_EQ(1, norm_mat.num_rows());
  RTC_CHECK_EQ(norm_mat.num_columns(), mat.num_rows());
  RTC_CHECK_EQ(norm_mat.num_columns(), mat.num_columns());

  complex<float> first_product = complex<float>(0.f, 0.f);
  complex<float> second_product = complex<float>(0.f, 0.f);

  const complex<float>* const* mat_els = mat.elements();
  const complex<float>* const* norm_mat_els = norm_mat.elements();

  for (size_t i = 0; i < norm_mat.num_columns(); ++i) {
    for (size_t j = 0; j < norm_mat.num_columns(); ++j) {
      first_product += conj(norm_mat_els[0][j]) * mat_els[j][i];
    }
    second_product += first_product * norm_mat_els[0][i];
    first_product = 0.f;
  }
  return std::max(second_product.real(), 0.f);
}

// Does conjugate(|lhs|) * |rhs| for row vectors |lhs| and |rhs|.
complex<float> ConjugateDotProduct(const ComplexMatrix<float>& lhs,
                                   const ComplexMatrix<float>& rhs) {
  RTC_CHECK_EQ(1, lhs.num_rows());
  RTC_CHECK_EQ(1, rhs.num_rows());
  RTC_CHECK_EQ(lhs.num_columns(), rhs.num_columns());

  const complex<float>* const* lhs_elements = lhs.elements();
  const complex<float>* const* rhs_elements = rhs.elements();

  complex<float> result = complex<float>(0.f, 0.f);
  for (size_t i = 0; i < lhs.num_columns(); ++i) {
    result += conj(lhs_elements[0][i]) * rhs_elements[0][i];
  }

  return result;
}

// Works for positive numbers only.
size_t Round(float x) {
  return static_cast<size_t>(std::floor(x + 0.5f));
}

// Calculates the sum of squares of a complex matrix.
float SumSquares(const ComplexMatrix<float>& mat) {
  float sum_squares = 0.f;
  const complex<float>* const* mat_els = mat.elements();
  for (size_t i = 0; i < mat.num_rows(); ++i) {
    for (size_t j = 0; j < mat.num_columns(); ++j) {
      float abs_value = std::abs(mat_els[i][j]);
      sum_squares += abs_value * abs_value;
    }
  }
  return sum_squares;
}

// Does |out| = |in|.' * conj(|in|) for row vector |in|.
void TransposedConjugatedProduct(const ComplexMatrix<float>& in,
                                 ComplexMatrix<float>* out) {
  RTC_CHECK_EQ(1, in.num_rows());
  RTC_CHECK_EQ(out->num_rows(), in.num_columns());
  RTC_CHECK_EQ(out->num_columns(), in.num_columns());
  const complex<float>* in_elements = in.elements()[0];
  complex<float>* const* out_elements = out->elements();
  for (size_t i = 0; i < out->num_rows(); ++i) {
    for (size_t j = 0; j < out->num_columns(); ++j) {
      out_elements[i][j] = in_elements[i] * conj(in_elements[j]);
    }
  }
}

std::vector<Point> GetCenteredArray(std::vector<Point> array_geometry) {
  for (size_t dim = 0; dim < 3; ++dim) {
    float center = 0.f;
    for (size_t i = 0; i < array_geometry.size(); ++i) {
      center += array_geometry[i].c[dim];
    }
    center /= array_geometry.size();
    for (size_t i = 0; i < array_geometry.size(); ++i) {
      array_geometry[i].c[dim] -= center;
    }
  }
  return array_geometry;
}

}  // namespace

const float NonlinearBeamformer::kHalfBeamWidthRadians = DegreesToRadians(20.f);

// static
const size_t NonlinearBeamformer::kNumFreqBins;

PostFilterTransform::PostFilterTransform(size_t num_channels,
                                         size_t chunk_length,
                                         float* window,
                                         size_t fft_size)
    : transform_(num_channels,
                 num_channels,
                 chunk_length,
                 window,
                 fft_size,
                 fft_size / 2,
                 this),
      num_freq_bins_(fft_size / 2 + 1) {}

void PostFilterTransform::ProcessChunk(float* const* data, float* final_mask) {
  final_mask_ = final_mask;
  transform_.ProcessChunk(data, data);
}

void PostFilterTransform::ProcessAudioBlock(const complex<float>* const* input,
                                            size_t num_input_channels,
                                            size_t num_freq_bins,
                                            size_t num_output_channels,
                                            complex<float>* const* output) {
  RTC_DCHECK_EQ(num_freq_bins_, num_freq_bins);
  RTC_DCHECK_EQ(num_input_channels, num_output_channels);

  for (size_t ch = 0; ch < num_input_channels; ++ch) {
    for (size_t f_ix = 0; f_ix < num_freq_bins_; ++f_ix) {
      output[ch][f_ix] =
          kCompensationGain * final_mask_[f_ix] * input[ch][f_ix];
    }
  }
}

NonlinearBeamformer::NonlinearBeamformer(
    const std::vector<Point>& array_geometry,
    size_t num_postfilter_channels,
    SphericalPointf target_direction)
    : num_input_channels_(array_geometry.size()),
      num_postfilter_channels_(num_postfilter_channels),
      array_geometry_(GetCenteredArray(array_geometry)),
      array_normal_(GetArrayNormalIfExists(array_geometry)),
      min_mic_spacing_(GetMinimumSpacing(array_geometry)),
      target_angle_radians_(target_direction.azimuth()),
      away_radians_(std::min(
          static_cast<float>(M_PI),
          std::max(kMinAwayRadians,
                   kAwaySlope * static_cast<float>(M_PI) / min_mic_spacing_))) {
  WindowGenerator::KaiserBesselDerived(kKbdAlpha, kFftSize, window_);
}

NonlinearBeamformer::~NonlinearBeamformer() = default;

void NonlinearBeamformer::Initialize(int chunk_size_ms, int sample_rate_hz) {
  chunk_length_ =
      static_cast<size_t>(sample_rate_hz / (1000.f / chunk_size_ms));
  sample_rate_hz_ = sample_rate_hz;

  high_pass_postfilter_mask_ = 1.f;
  is_target_present_ = false;
  hold_target_blocks_ = kHoldTargetSeconds * 2 * sample_rate_hz / kFftSize;
  interference_blocks_count_ = hold_target_blocks_;

  process_transform_.reset(new LappedTransform(num_input_channels_,
                                               0u,
                                               chunk_length_,
                                               window_,
                                               kFftSize,
                                               kFftSize / 2,
                                               this));
  postfilter_transform_.reset(new PostFilterTransform(
      num_postfilter_channels_, chunk_length_, window_, kFftSize));
  const float wave_number_step =
      (2.f * M_PI * sample_rate_hz_) / (kFftSize * kSpeedOfSoundMeterSeconds);
  for (size_t i = 0; i < kNumFreqBins; ++i) {
    time_smooth_mask_[i] = 1.f;
    final_mask_[i] = 1.f;
    wave_numbers_[i] = i * wave_number_step;
  }

  InitLowFrequencyCorrectionRanges();
  InitDiffuseCovMats();
  AimAt(SphericalPointf(target_angle_radians_, 0.f, 1.f));
}

// These bin indexes determine the regions over which a mean is taken. This is
// applied as a constant value over the adjacent end "frequency correction"
// regions.
//
//             low_mean_start_bin_     high_mean_start_bin_
//                   v                         v              constant
// |----------------|--------|----------------|-------|----------------|
//   constant               ^                        ^
//             low_mean_end_bin_       high_mean_end_bin_
//
void NonlinearBeamformer::InitLowFrequencyCorrectionRanges() {
  low_mean_start_bin_ = Round(static_cast<float>(kLowMeanStartHz) *
                                  kFftSize / sample_rate_hz_);
  low_mean_end_bin_ = Round(static_cast<float>(kLowMeanEndHz) *
                                  kFftSize / sample_rate_hz_);

  RTC_DCHECK_GT(low_mean_start_bin_, 0U);
  RTC_DCHECK_LT(low_mean_start_bin_, low_mean_end_bin_);
}

void NonlinearBeamformer::InitHighFrequencyCorrectionRanges() {
  const float kAliasingFreqHz =
      kSpeedOfSoundMeterSeconds /
      (min_mic_spacing_ * (1.f + std::abs(std::cos(target_angle_radians_))));
  const float kHighMeanStartHz = std::min(0.5f *  kAliasingFreqHz,
                                          sample_rate_hz_ / 2.f);
  const float kHighMeanEndHz = std::min(0.75f *  kAliasingFreqHz,
                                        sample_rate_hz_ / 2.f);
  high_mean_start_bin_ = Round(kHighMeanStartHz * kFftSize / sample_rate_hz_);
  high_mean_end_bin_ = Round(kHighMeanEndHz * kFftSize / sample_rate_hz_);

  RTC_DCHECK_LT(low_mean_end_bin_, high_mean_end_bin_);
  RTC_DCHECK_LT(high_mean_start_bin_, high_mean_end_bin_);
  RTC_DCHECK_LT(high_mean_end_bin_, kNumFreqBins - 1);
}

void NonlinearBeamformer::InitInterfAngles() {
  interf_angles_radians_.clear();
  const Point target_direction = AzimuthToPoint(target_angle_radians_);
  const Point clockwise_interf_direction =
      AzimuthToPoint(target_angle_radians_ - away_radians_);
  if (!array_normal_ ||
      DotProduct(*array_normal_, target_direction) *
              DotProduct(*array_normal_, clockwise_interf_direction) >=
          0.f) {
    // The target and clockwise interferer are in the same half-plane defined
    // by the array.
    interf_angles_radians_.push_back(target_angle_radians_ - away_radians_);
  } else {
    // Otherwise, the interferer will begin reflecting back at the target.
    // Instead rotate it away 180 degrees.
    interf_angles_radians_.push_back(target_angle_radians_ - away_radians_ +
                                     M_PI);
  }
  const Point counterclock_interf_direction =
      AzimuthToPoint(target_angle_radians_ + away_radians_);
  if (!array_normal_ ||
      DotProduct(*array_normal_, target_direction) *
              DotProduct(*array_normal_, counterclock_interf_direction) >=
          0.f) {
    // The target and counter-clockwise interferer are in the same half-plane
    // defined by the array.
    interf_angles_radians_.push_back(target_angle_radians_ + away_radians_);
  } else {
    // Otherwise, the interferer will begin reflecting back at the target.
    // Instead rotate it away 180 degrees.
    interf_angles_radians_.push_back(target_angle_radians_ + away_radians_ -
                                     M_PI);
  }
}

void NonlinearBeamformer::InitDelaySumMasks() {
  for (size_t f_ix = 0; f_ix < kNumFreqBins; ++f_ix) {
    delay_sum_masks_[f_ix].Resize(1, num_input_channels_);
    CovarianceMatrixGenerator::PhaseAlignmentMasks(
        f_ix, kFftSize, sample_rate_hz_, kSpeedOfSoundMeterSeconds,
        array_geometry_, target_angle_radians_, &delay_sum_masks_[f_ix]);

    complex_f norm_factor = sqrt(
        ConjugateDotProduct(delay_sum_masks_[f_ix], delay_sum_masks_[f_ix]));
    delay_sum_masks_[f_ix].Scale(1.f / norm_factor);
  }
}

void NonlinearBeamformer::InitTargetCovMats() {
  for (size_t i = 0; i < kNumFreqBins; ++i) {
    target_cov_mats_[i].Resize(num_input_channels_, num_input_channels_);
    TransposedConjugatedProduct(delay_sum_masks_[i], &target_cov_mats_[i]);
  }
}

void NonlinearBeamformer::InitDiffuseCovMats() {
  for (size_t i = 0; i < kNumFreqBins; ++i) {
    uniform_cov_mat_[i].Resize(num_input_channels_, num_input_channels_);
    CovarianceMatrixGenerator::UniformCovarianceMatrix(
        wave_numbers_[i], array_geometry_, &uniform_cov_mat_[i]);
    complex_f normalization_factor = uniform_cov_mat_[i].elements()[0][0];
    uniform_cov_mat_[i].Scale(1.f / normalization_factor);
    uniform_cov_mat_[i].Scale(1 - kBalance);
  }
}

void NonlinearBeamformer::InitInterfCovMats() {
  for (size_t i = 0; i < kNumFreqBins; ++i) {
    interf_cov_mats_[i].clear();
    for (size_t j = 0; j < interf_angles_radians_.size(); ++j) {
      interf_cov_mats_[i].push_back(std::unique_ptr<ComplexMatrixF>(
          new ComplexMatrixF(num_input_channels_, num_input_channels_)));
      ComplexMatrixF angled_cov_mat(num_input_channels_, num_input_channels_);
      CovarianceMatrixGenerator::AngledCovarianceMatrix(
          kSpeedOfSoundMeterSeconds,
          interf_angles_radians_[j],
          i,
          kFftSize,
          kNumFreqBins,
          sample_rate_hz_,
          array_geometry_,
          &angled_cov_mat);
      // Normalize matrices before averaging them.
      complex_f normalization_factor = angled_cov_mat.elements()[0][0];
      angled_cov_mat.Scale(1.f / normalization_factor);
      // Weighted average of matrices.
      angled_cov_mat.Scale(kBalance);
      interf_cov_mats_[i][j]->Add(uniform_cov_mat_[i], angled_cov_mat);
    }
  }
}

void NonlinearBeamformer::NormalizeCovMats() {
  for (size_t i = 0; i < kNumFreqBins; ++i) {
    rxiws_[i] = Norm(target_cov_mats_[i], delay_sum_masks_[i]);
    rpsiws_[i].clear();
    for (size_t j = 0; j < interf_angles_radians_.size(); ++j) {
      rpsiws_[i].push_back(Norm(*interf_cov_mats_[i][j], delay_sum_masks_[i]));
    }
  }
}

void NonlinearBeamformer::AnalyzeChunk(const ChannelBuffer<float>& data) {
  RTC_DCHECK_EQ(data.num_channels(), num_input_channels_);
  RTC_DCHECK_EQ(data.num_frames_per_band(), chunk_length_);

  old_high_pass_mask_ = high_pass_postfilter_mask_;
  process_transform_->ProcessChunk(data.channels(0), nullptr);
}

void NonlinearBeamformer::PostFilter(ChannelBuffer<float>* data) {
  RTC_DCHECK_EQ(data->num_frames_per_band(), chunk_length_);
  // TODO(aluebs): Change to RTC_CHECK_EQ once the ChannelBuffer is updated.
  RTC_DCHECK_GE(data->num_channels(), num_postfilter_channels_);

  postfilter_transform_->ProcessChunk(data->channels(0), final_mask_);

  // Ramp up/down for smoothing is needed in order to avoid discontinuities in
  // the transitions between 10 ms frames.
  const float ramp_increment =
      (high_pass_postfilter_mask_ - old_high_pass_mask_) /
      data->num_frames_per_band();
  for (size_t i = 1; i < data->num_bands(); ++i) {
    float smoothed_mask = old_high_pass_mask_;
    for (size_t j = 0; j < data->num_frames_per_band(); ++j) {
      smoothed_mask += ramp_increment;
      for (size_t k = 0; k < num_postfilter_channels_; ++k) {
        data->channels(i)[k][j] *= smoothed_mask;
      }
    }
  }
}

void NonlinearBeamformer::AimAt(const SphericalPointf& target_direction) {
  target_angle_radians_ = target_direction.azimuth();
  InitHighFrequencyCorrectionRanges();
  InitInterfAngles();
  InitDelaySumMasks();
  InitTargetCovMats();
  InitInterfCovMats();
  NormalizeCovMats();
}

bool NonlinearBeamformer::IsInBeam(const SphericalPointf& spherical_point) {
  // If more than half-beamwidth degrees away from the beam's center,
  // you are out of the beam.
  return fabs(spherical_point.azimuth() - target_angle_radians_) <
         kHalfBeamWidthRadians;
}

bool NonlinearBeamformer::is_target_present() { return is_target_present_; }

void NonlinearBeamformer::ProcessAudioBlock(const complex_f* const* input,
                                            size_t num_input_channels,
                                            size_t num_freq_bins,
                                            size_t num_output_channels,
                                            complex_f* const* output) {
  RTC_CHECK_EQ(kNumFreqBins, num_freq_bins);
  RTC_CHECK_EQ(num_input_channels_, num_input_channels);
  RTC_CHECK_EQ(0, num_output_channels);

  // Calculating the post-filter masks. Note that we need two for each
  // frequency bin to account for the positive and negative interferer
  // angle.
  for (size_t i = low_mean_start_bin_; i <= high_mean_end_bin_; ++i) {
    eig_m_.CopyFromColumn(input, i, num_input_channels_);
    float eig_m_norm_factor = std::sqrt(SumSquares(eig_m_));
    if (eig_m_norm_factor != 0.f) {
      eig_m_.Scale(1.f / eig_m_norm_factor);
    }

    float rxim = Norm(target_cov_mats_[i], eig_m_);
    float ratio_rxiw_rxim = 0.f;
    if (rxim > 0.f) {
      ratio_rxiw_rxim = rxiws_[i] / rxim;
    }

    complex_f rmw = abs(ConjugateDotProduct(delay_sum_masks_[i], eig_m_));
    rmw *= rmw;
    float rmw_r = rmw.real();

    new_mask_[i] = CalculatePostfilterMask(*interf_cov_mats_[i][0],
                                           rpsiws_[i][0],
                                           ratio_rxiw_rxim,
                                           rmw_r);
    for (size_t j = 1; j < interf_angles_radians_.size(); ++j) {
      float tmp_mask = CalculatePostfilterMask(*interf_cov_mats_[i][j],
                                               rpsiws_[i][j],
                                               ratio_rxiw_rxim,
                                               rmw_r);
      if (tmp_mask < new_mask_[i]) {
        new_mask_[i] = tmp_mask;
      }
    }
  }

  ApplyMaskTimeSmoothing();
  EstimateTargetPresence();
  ApplyLowFrequencyCorrection();
  ApplyHighFrequencyCorrection();
  ApplyMaskFrequencySmoothing();
}

float NonlinearBeamformer::CalculatePostfilterMask(
    const ComplexMatrixF& interf_cov_mat,
    float rpsiw,
    float ratio_rxiw_rxim,
    float rmw_r) {
  float rpsim = Norm(interf_cov_mat, eig_m_);

  float ratio = 0.f;
  if (rpsim > 0.f) {
    ratio = rpsiw / rpsim;
  }

  float numerator = 1.f - kCutOffConstant;
  if (rmw_r > 0.f) {
    numerator = 1.f - std::min(kCutOffConstant, ratio / rmw_r);
  }

  float denominator = 1.f - kCutOffConstant;
  if (ratio_rxiw_rxim > 0.f) {
    denominator = 1.f - std::min(kCutOffConstant, ratio / ratio_rxiw_rxim);
  }

  return numerator / denominator;
}

// Smooth new_mask_ into time_smooth_mask_.
void NonlinearBeamformer::ApplyMaskTimeSmoothing() {
  for (size_t i = low_mean_start_bin_; i <= high_mean_end_bin_; ++i) {
    time_smooth_mask_[i] = kMaskTimeSmoothAlpha * new_mask_[i] +
                           (1 - kMaskTimeSmoothAlpha) * time_smooth_mask_[i];
  }
}

// Copy time_smooth_mask_ to final_mask_ and smooth over frequency.
void NonlinearBeamformer::ApplyMaskFrequencySmoothing() {
  // Smooth over frequency in both directions. The "frequency correction"
  // regions have constant value, but we enter them to smooth over the jump
  // that exists at the boundary. However, this does mean when smoothing "away"
  // from the region that we only need to use the last element.
  //
  // Upward smoothing:
  //   low_mean_start_bin_
  //         v
  // |------|------------|------|
  //       ^------------------>^
  //
  // Downward smoothing:
  //         high_mean_end_bin_
  //                    v
  // |------|------------|------|
  //  ^<------------------^
  std::copy(time_smooth_mask_, time_smooth_mask_ + kNumFreqBins, final_mask_);
  for (size_t i = low_mean_start_bin_; i < kNumFreqBins; ++i) {
    final_mask_[i] = kMaskFrequencySmoothAlpha * final_mask_[i] +
                     (1 - kMaskFrequencySmoothAlpha) * final_mask_[i - 1];
  }
  for (size_t i = high_mean_end_bin_ + 1; i > 0; --i) {
    final_mask_[i - 1] = kMaskFrequencySmoothAlpha * final_mask_[i - 1] +
                         (1 - kMaskFrequencySmoothAlpha) * final_mask_[i];
  }
}

// Apply low frequency correction to time_smooth_mask_.
void NonlinearBeamformer::ApplyLowFrequencyCorrection() {
  const float low_frequency_mask =
      MaskRangeMean(low_mean_start_bin_, low_mean_end_bin_ + 1);
  std::fill(time_smooth_mask_, time_smooth_mask_ + low_mean_start_bin_,
            low_frequency_mask);
}

// Apply high frequency correction to time_smooth_mask_. Update
// high_pass_postfilter_mask_ to use for the high frequency time-domain bands.
void NonlinearBeamformer::ApplyHighFrequencyCorrection() {
  high_pass_postfilter_mask_ =
      MaskRangeMean(high_mean_start_bin_, high_mean_end_bin_ + 1);
  std::fill(time_smooth_mask_ + high_mean_end_bin_ + 1,
            time_smooth_mask_ + kNumFreqBins, high_pass_postfilter_mask_);
}

// Compute mean over the given range of time_smooth_mask_, [first, last).
float NonlinearBeamformer::MaskRangeMean(size_t first, size_t last) {
  RTC_DCHECK_GT(last, first);
  const float sum = std::accumulate(time_smooth_mask_ + first,
                                    time_smooth_mask_ + last, 0.f);
  return sum / (last - first);
}

void NonlinearBeamformer::EstimateTargetPresence() {
  const size_t quantile = static_cast<size_t>(
      (high_mean_end_bin_ - low_mean_start_bin_) * kMaskQuantile +
      low_mean_start_bin_);
  std::nth_element(new_mask_ + low_mean_start_bin_, new_mask_ + quantile,
                   new_mask_ + high_mean_end_bin_ + 1);
  if (new_mask_[quantile] > kMaskTargetThreshold) {
    is_target_present_ = true;
    interference_blocks_count_ = 0;
  } else {
    is_target_present_ = interference_blocks_count_++ < hold_target_blocks_;
  }
}

}  // namespace webrtc