DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Mercurial (c68fe15a81fc)

VCS Links

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369
/*
 *  Copyright (c) 2014 The WebRTC project authors. All Rights Reserved.
 *
 *  Use of this source code is governed by a BSD-style license
 *  that can be found in the LICENSE file in the root of the source
 *  tree. An additional intellectual property rights grant can be found
 *  in the file PATENTS.  All contributing project authors may
 *  be found in the AUTHORS file in the root of the source tree.
 */

#ifndef MODULES_AUDIO_PROCESSING_BEAMFORMER_MATRIX_H_
#define MODULES_AUDIO_PROCESSING_BEAMFORMER_MATRIX_H_

#include <algorithm>
#include <cstring>
#include <string>
#include <vector>

#include "rtc_base/checks.h"
#include "rtc_base/constructormagic.h"

namespace {

// Wrappers to get around the compiler warning resulting from the fact that
// there's no std::sqrt overload for ints. We cast all non-complex types to
// a double for the sqrt method.
template <typename T>
T sqrt_wrapper(T x) {
  return sqrt(static_cast<double>(x));
}

template <typename S>
std::complex<S> sqrt_wrapper(std::complex<S> x) {
  return sqrt(x);
}
} // namespace

namespace webrtc {

// Matrix is a class for doing standard matrix operations on 2 dimensional
// matrices of any size. Results of matrix operations are stored in the
// calling object. Function overloads exist for both in-place (the calling
// object is used as both an operand and the result) and out-of-place (all
// operands are passed in as parameters) operations. If operand dimensions
// mismatch, the program crashes. Out-of-place operations change the size of
// the calling object, if necessary, before operating.
//
// 'In-place' operations that inherently change the size of the matrix (eg.
// Transpose, Multiply on different-sized matrices) must make temporary copies
// (|scratch_elements_| and |scratch_data_|) of existing data to complete the
// operations.
//
// The data is stored contiguously. Data can be accessed internally as a flat
// array, |data_|, or as an array of row pointers, |elements_|, but is
// available to users only as an array of row pointers through |elements()|.
// Memory for storage is allocated when a matrix is resized only if the new
// size overflows capacity. Memory needed temporarily for any operations is
// similarly resized only if the new size overflows capacity.
//
// If you pass in storage through the ctor, that storage is copied into the
// matrix. TODO(claguna): albeit tricky, allow for data to be referenced
// instead of copied, and owned by the user.
template <typename T>
class Matrix {
 public:
  Matrix() : num_rows_(0), num_columns_(0) {}

  // Allocates space for the elements and initializes all values to zero.
  Matrix(size_t num_rows, size_t num_columns)
      : num_rows_(num_rows), num_columns_(num_columns) {
    Resize();
    scratch_data_.resize(num_rows_ * num_columns_);
    scratch_elements_.resize(num_rows_);
  }

  // Copies |data| into the new Matrix.
  Matrix(const T* data, size_t num_rows, size_t num_columns)
      : num_rows_(0), num_columns_(0) {
    CopyFrom(data, num_rows, num_columns);
    scratch_data_.resize(num_rows_ * num_columns_);
    scratch_elements_.resize(num_rows_);
  }

  virtual ~Matrix() {}

  // Deep copy an existing matrix.
  void CopyFrom(const Matrix& other) {
    CopyFrom(&other.data_[0], other.num_rows_, other.num_columns_);
  }

  // Copy |data| into the Matrix. The current data is lost.
  void CopyFrom(const T* const data, size_t num_rows, size_t num_columns) {
    Resize(num_rows, num_columns);
    memcpy(&data_[0], data, num_rows_ * num_columns_ * sizeof(data_[0]));
  }

  Matrix& CopyFromColumn(const T* const* src,
                         size_t column_index,
                         size_t num_rows) {
    Resize(1, num_rows);
    for (size_t i = 0; i < num_columns_; ++i) {
      data_[i] = src[i][column_index];
    }

    return *this;
  }

  void Resize(size_t num_rows, size_t num_columns) {
    if (num_rows != num_rows_ || num_columns != num_columns_) {
      num_rows_ = num_rows;
      num_columns_ = num_columns;
      Resize();
    }
  }

  // Accessors and mutators.
  size_t num_rows() const { return num_rows_; }
  size_t num_columns() const { return num_columns_; }
  T* const* elements() { return &elements_[0]; }
  const T* const* elements() const { return &elements_[0]; }

  T Trace() {
    RTC_CHECK_EQ(num_rows_, num_columns_);

    T trace = 0;
    for (size_t i = 0; i < num_rows_; ++i) {
      trace += elements_[i][i];
    }
    return trace;
  }

  // Matrix Operations. Returns *this to support method chaining.
  Matrix& Transpose() {
    CopyDataToScratch();
    Resize(num_columns_, num_rows_);
    return Transpose(scratch_elements());
  }

  Matrix& Transpose(const Matrix& operand) {
    RTC_CHECK_EQ(operand.num_rows_, num_columns_);
    RTC_CHECK_EQ(operand.num_columns_, num_rows_);

    return Transpose(operand.elements());
  }

  template <typename S>
  Matrix& Scale(const S& scalar) {
    for (size_t i = 0; i < data_.size(); ++i) {
      data_[i] *= scalar;
    }

    return *this;
  }

  template <typename S>
  Matrix& Scale(const Matrix& operand, const S& scalar) {
    CopyFrom(operand);
    return Scale(scalar);
  }

  Matrix& Add(const Matrix& operand) {
    RTC_CHECK_EQ(num_rows_, operand.num_rows_);
    RTC_CHECK_EQ(num_columns_, operand.num_columns_);

    for (size_t i = 0; i < data_.size(); ++i) {
      data_[i] += operand.data_[i];
    }

    return *this;
  }

  Matrix& Add(const Matrix& lhs, const Matrix& rhs) {
    CopyFrom(lhs);
    return Add(rhs);
  }

  Matrix& Subtract(const Matrix& operand) {
    RTC_CHECK_EQ(num_rows_, operand.num_rows_);
    RTC_CHECK_EQ(num_columns_, operand.num_columns_);

    for (size_t i = 0; i < data_.size(); ++i) {
      data_[i] -= operand.data_[i];
    }

    return *this;
  }

  Matrix& Subtract(const Matrix& lhs, const Matrix& rhs) {
    CopyFrom(lhs);
    return Subtract(rhs);
  }

  Matrix& PointwiseMultiply(const Matrix& operand) {
    RTC_CHECK_EQ(num_rows_, operand.num_rows_);
    RTC_CHECK_EQ(num_columns_, operand.num_columns_);

    for (size_t i = 0; i < data_.size(); ++i) {
      data_[i] *= operand.data_[i];
    }

    return *this;
  }

  Matrix& PointwiseMultiply(const Matrix& lhs, const Matrix& rhs) {
    CopyFrom(lhs);
    return PointwiseMultiply(rhs);
  }

  Matrix& PointwiseDivide(const Matrix& operand) {
    RTC_CHECK_EQ(num_rows_, operand.num_rows_);
    RTC_CHECK_EQ(num_columns_, operand.num_columns_);

    for (size_t i = 0; i < data_.size(); ++i) {
      data_[i] /= operand.data_[i];
    }

    return *this;
  }

  Matrix& PointwiseDivide(const Matrix& lhs, const Matrix& rhs) {
    CopyFrom(lhs);
    return PointwiseDivide(rhs);
  }

  Matrix& PointwiseSquareRoot() {
    for (size_t i = 0; i < data_.size(); ++i) {
      data_[i] = sqrt_wrapper(data_[i]);
    }

    return *this;
  }

  Matrix& PointwiseSquareRoot(const Matrix& operand) {
    CopyFrom(operand);
    return PointwiseSquareRoot();
  }

  Matrix& PointwiseAbsoluteValue() {
    for (size_t i = 0; i < data_.size(); ++i) {
      data_[i] = abs(data_[i]);
    }

    return *this;
  }

  Matrix& PointwiseAbsoluteValue(const Matrix& operand) {
    CopyFrom(operand);
    return PointwiseAbsoluteValue();
  }

  Matrix& PointwiseSquare() {
    for (size_t i = 0; i < data_.size(); ++i) {
      data_[i] *= data_[i];
    }

    return *this;
  }

  Matrix& PointwiseSquare(const Matrix& operand) {
    CopyFrom(operand);
    return PointwiseSquare();
  }

  Matrix& Multiply(const Matrix& lhs, const Matrix& rhs) {
    RTC_CHECK_EQ(lhs.num_columns_, rhs.num_rows_);
    RTC_CHECK_EQ(num_rows_, lhs.num_rows_);
    RTC_CHECK_EQ(num_columns_, rhs.num_columns_);

    return Multiply(lhs.elements(), rhs.num_rows_, rhs.elements());
  }

  Matrix& Multiply(const Matrix& rhs) {
    RTC_CHECK_EQ(num_columns_, rhs.num_rows_);

    CopyDataToScratch();
    Resize(num_rows_, rhs.num_columns_);
    return Multiply(scratch_elements(), rhs.num_rows_, rhs.elements());
  }

  std::string ToString() const {
    std::ostringstream ss;
    ss << std::endl << "Matrix" << std::endl;

    for (size_t i = 0; i < num_rows_; ++i) {
      for (size_t j = 0; j < num_columns_; ++j) {
        ss << elements_[i][j] << " ";
      }
      ss << std::endl;
    }
    ss << std::endl;

    return ss.str();
  }

 protected:
  void SetNumRows(const size_t num_rows) { num_rows_ = num_rows; }
  void SetNumColumns(const size_t num_columns) { num_columns_ = num_columns; }
  T* data() { return &data_[0]; }
  const T* data() const { return &data_[0]; }
  const T* const* scratch_elements() const { return &scratch_elements_[0]; }

  // Resize the matrix. If an increase in capacity is required, the current
  // data is lost.
  void Resize() {
    size_t size = num_rows_ * num_columns_;
    data_.resize(size);
    elements_.resize(num_rows_);

    for (size_t i = 0; i < num_rows_; ++i) {
      elements_[i] = &data_[i * num_columns_];
    }
  }

  // Copies data_ into scratch_data_ and updates scratch_elements_ accordingly.
  void CopyDataToScratch() {
    scratch_data_ = data_;
    scratch_elements_.resize(num_rows_);

    for (size_t i = 0; i < num_rows_; ++i) {
      scratch_elements_[i] = &scratch_data_[i * num_columns_];
    }
  }

 private:
  size_t num_rows_;
  size_t num_columns_;
  std::vector<T> data_;
  std::vector<T*> elements_;

  // Stores temporary copies of |data_| and |elements_| for in-place operations
  // where referring to original data is necessary.
  std::vector<T> scratch_data_;
  std::vector<T*> scratch_elements_;

  // Helpers for Transpose and Multiply operations that unify in-place and
  // out-of-place solutions.
  Matrix& Transpose(const T* const* src) {
    for (size_t i = 0; i < num_rows_; ++i) {
      for (size_t j = 0; j < num_columns_; ++j) {
        elements_[i][j] = src[j][i];
      }
    }

    return *this;
  }

  Matrix& Multiply(const T* const* lhs,
                   size_t num_rows_rhs,
                   const T* const* rhs) {
    for (size_t row = 0; row < num_rows_; ++row) {
      for (size_t col = 0; col < num_columns_; ++col) {
        T cur_element = 0;
        for (size_t i = 0; i < num_rows_rhs; ++i) {
          cur_element += lhs[row][i] * rhs[i][col];
        }

        elements_[row][col] = cur_element;
      }
    }

    return *this;
  }

  RTC_DISALLOW_COPY_AND_ASSIGN(Matrix);
};

}  // namespace webrtc

#endif  // MODULES_AUDIO_PROCESSING_BEAMFORMER_MATRIX_H_