DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Mercurial (c68fe15a81fc)

VCS Links

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255
/*
 *  Copyright (c) 2013 The WebRTC project authors. All Rights Reserved.
 *
 *  Use of this source code is governed by a BSD-style license
 *  that can be found in the LICENSE file in the root of the source
 *  tree. An additional intellectual property rights grant can be found
 *  in the file PATENTS.  All contributing project authors may
 *  be found in the AUTHORS file in the root of the source tree.
 */

#include <memory>

#include "common_types.h"  // NOLINT(build/include)
#include "modules/audio_coding/codecs/pcm16b/pcm16b.h"
#include "modules/audio_coding/include/audio_coding_module.h"
#include "modules/audio_coding/test/utility.h"
#include "modules/include/module_common_types.h"
#include "test/gtest.h"
#include "test/testsupport/fileutils.h"

namespace webrtc {

class TargetDelayTest : public ::testing::Test {
 protected:
  TargetDelayTest() : acm_(AudioCodingModule::Create()) {}

  ~TargetDelayTest() {}

  void SetUp() {
    EXPECT_TRUE(acm_.get() != NULL);

    ASSERT_EQ(0, acm_->InitializeReceiver());
    constexpr int pltype = 108;
    ASSERT_EQ(true,
              acm_->RegisterReceiveCodec(pltype, {"L16", kSampleRateHz, 1}));

    rtp_info_.header.payloadType = pltype;
    rtp_info_.header.timestamp = 0;
    rtp_info_.header.ssrc = 0x12345678;
    rtp_info_.header.markerBit = false;
    rtp_info_.header.sequenceNumber = 0;
    rtp_info_.type.Audio.channel = 1;
    rtp_info_.type.Audio.isCNG = false;
    rtp_info_.frameType = kAudioFrameSpeech;

    int16_t audio[kFrameSizeSamples];
    const int kRange = 0x7FF;  // 2047, easy for masking.
    for (size_t n = 0; n < kFrameSizeSamples; ++n)
      audio[n] = (rand() & kRange) - kRange / 2;
    WebRtcPcm16b_Encode(audio, kFrameSizeSamples, payload_);
  }

  void OutOfRangeInput() {
    EXPECT_EQ(-1, SetMinimumDelay(-1));
    EXPECT_EQ(-1, SetMinimumDelay(10001));
  }

  void NoTargetDelayBufferSizeChanges() {
    for (int n = 0; n < 30; ++n)  // Run enough iterations.
      Run(true);
    int clean_optimal_delay = GetCurrentOptimalDelayMs();
    Run(false);  // Run with jitter.
    int jittery_optimal_delay = GetCurrentOptimalDelayMs();
    EXPECT_GT(jittery_optimal_delay, clean_optimal_delay);
    int required_delay = RequiredDelay();
    EXPECT_GT(required_delay, 0);
    EXPECT_NEAR(required_delay, jittery_optimal_delay, 1);
  }

  void WithTargetDelayBufferNotChanging() {
    // A target delay that is one packet larger than jitter.
    const int kTargetDelayMs = (kInterarrivalJitterPacket + 1) *
        kNum10msPerFrame * 10;
    ASSERT_EQ(0, SetMinimumDelay(kTargetDelayMs));
    for (int n = 0; n < 30; ++n)  // Run enough iterations to fill the buffer.
      Run(true);
    int clean_optimal_delay = GetCurrentOptimalDelayMs();
    EXPECT_EQ(kTargetDelayMs, clean_optimal_delay);
    Run(false);  // Run with jitter.
    int jittery_optimal_delay = GetCurrentOptimalDelayMs();
    EXPECT_EQ(jittery_optimal_delay, clean_optimal_delay);
  }

  void RequiredDelayAtCorrectRange() {
    for (int n = 0; n < 30; ++n)  // Run clean and store delay.
      Run(true);
    int clean_optimal_delay = GetCurrentOptimalDelayMs();

    // A relatively large delay.
    const int kTargetDelayMs = (kInterarrivalJitterPacket + 10) *
        kNum10msPerFrame * 10;
    ASSERT_EQ(0, SetMinimumDelay(kTargetDelayMs));
    for (int n = 0; n < 300; ++n)  // Run enough iterations to fill the buffer.
      Run(true);
    Run(false);  // Run with jitter.

    int jittery_optimal_delay = GetCurrentOptimalDelayMs();
    EXPECT_EQ(kTargetDelayMs, jittery_optimal_delay);

    int required_delay = RequiredDelay();

    // Checking |required_delay| is in correct range.
    EXPECT_GT(required_delay, 0);
    EXPECT_GT(jittery_optimal_delay, required_delay);
    EXPECT_GT(required_delay, clean_optimal_delay);

    // A tighter check for the value of |required_delay|.
    // The jitter forces a delay of
    // |kInterarrivalJitterPacket * kNum10msPerFrame * 10| milliseconds. So we
    // expect |required_delay| be close to that.
    EXPECT_NEAR(kInterarrivalJitterPacket * kNum10msPerFrame * 10,
                required_delay, 1);
  }

  void TargetDelayBufferMinMax() {
    const int kTargetMinDelayMs = kNum10msPerFrame * 10;
    ASSERT_EQ(0, SetMinimumDelay(kTargetMinDelayMs));
    for (int m = 0; m < 30; ++m)  // Run enough iterations to fill the buffer.
      Run(true);
    int clean_optimal_delay = GetCurrentOptimalDelayMs();
    EXPECT_EQ(kTargetMinDelayMs, clean_optimal_delay);

    const int kTargetMaxDelayMs = 2 * (kNum10msPerFrame * 10);
    ASSERT_EQ(0, SetMaximumDelay(kTargetMaxDelayMs));
    for (int n = 0; n < 30; ++n)  // Run enough iterations to fill the buffer.
      Run(false);

    int capped_optimal_delay = GetCurrentOptimalDelayMs();
    EXPECT_EQ(kTargetMaxDelayMs, capped_optimal_delay);
  }

 private:
  static const int kSampleRateHz = 16000;
  static const int kNum10msPerFrame = 2;
  static const size_t kFrameSizeSamples = 320;  // 20 ms @ 16 kHz.
  // payload-len = frame-samples * 2 bytes/sample.
  static const int kPayloadLenBytes = 320 * 2;
  // Inter-arrival time in number of packets in a jittery channel. One is no
  // jitter.
  static const int kInterarrivalJitterPacket = 2;

  void Push() {
    rtp_info_.header.timestamp += kFrameSizeSamples;
    rtp_info_.header.sequenceNumber++;
    ASSERT_EQ(0, acm_->IncomingPacket(payload_, kFrameSizeSamples * 2,
                                      rtp_info_));
  }

  // Pull audio equivalent to the amount of audio in one RTP packet.
  void Pull() {
    AudioFrame frame;
    bool muted;
    for (int k = 0; k < kNum10msPerFrame; ++k) {  // Pull one frame.
      ASSERT_EQ(0, acm_->PlayoutData10Ms(-1, &frame, &muted));
      ASSERT_FALSE(muted);
      // Had to use ASSERT_TRUE, ASSERT_EQ generated error.
      ASSERT_TRUE(kSampleRateHz == frame.sample_rate_hz_);
      ASSERT_EQ(1u, frame.num_channels_);
      ASSERT_TRUE(kSampleRateHz / 100 == frame.samples_per_channel_);
    }
  }

  void Run(bool clean) {
    for (int n = 0; n < 10; ++n) {
      for (int m = 0; m < 5; ++m) {
        Push();
        Pull();
      }

      if (!clean) {
        for (int m = 0; m < 10; ++m) {  // Long enough to trigger delay change.
          Push();
          for (int n = 0; n < kInterarrivalJitterPacket; ++n)
            Pull();
        }
      }
    }
  }

  int SetMinimumDelay(int delay_ms) {
    return acm_->SetMinimumPlayoutDelay(delay_ms);
  }

  int SetMaximumDelay(int delay_ms) {
    return acm_->SetMaximumPlayoutDelay(delay_ms);
  }

  int GetCurrentOptimalDelayMs() {
    NetworkStatistics stats;
    acm_->GetNetworkStatistics(&stats);
    return stats.preferredBufferSize;
  }

  int RequiredDelay() {
    return acm_->LeastRequiredDelayMs();
  }

  std::unique_ptr<AudioCodingModule> acm_;
  WebRtcRTPHeader rtp_info_;
  uint8_t payload_[kPayloadLenBytes];
};

// Flaky on iOS: webrtc:7057.
#if defined(WEBRTC_ANDROID) || defined(WEBRTC_IOS)
#define MAYBE_OutOfRangeInput DISABLED_OutOfRangeInput
#else
#define MAYBE_OutOfRangeInput OutOfRangeInput
#endif
TEST_F(TargetDelayTest, MAYBE_OutOfRangeInput) {
  OutOfRangeInput();
}

// Flaky on iOS: webrtc:7057.
#if defined(WEBRTC_ANDROID) || defined(WEBRTC_IOS)
#define MAYBE_NoTargetDelayBufferSizeChanges \
  DISABLED_NoTargetDelayBufferSizeChanges
#else
#define MAYBE_NoTargetDelayBufferSizeChanges NoTargetDelayBufferSizeChanges
#endif
TEST_F(TargetDelayTest, MAYBE_NoTargetDelayBufferSizeChanges) {
  NoTargetDelayBufferSizeChanges();
}

// Flaky on iOS: webrtc:7057.
#if defined(WEBRTC_ANDROID) || defined(WEBRTC_IOS)
#define MAYBE_WithTargetDelayBufferNotChanging \
  DISABLED_WithTargetDelayBufferNotChanging
#else
#define MAYBE_WithTargetDelayBufferNotChanging WithTargetDelayBufferNotChanging
#endif
TEST_F(TargetDelayTest, MAYBE_WithTargetDelayBufferNotChanging) {
  WithTargetDelayBufferNotChanging();
}

// Flaky on iOS: webrtc:7057.
#if defined(WEBRTC_ANDROID) || defined(WEBRTC_IOS)
#define MAYBE_RequiredDelayAtCorrectRange DISABLED_RequiredDelayAtCorrectRange
#else
#define MAYBE_RequiredDelayAtCorrectRange RequiredDelayAtCorrectRange
#endif
TEST_F(TargetDelayTest, MAYBE_RequiredDelayAtCorrectRange) {
  RequiredDelayAtCorrectRange();
}

// Flaky on iOS: webrtc:7057.
#if defined(WEBRTC_ANDROID) || defined(WEBRTC_IOS)
#define MAYBE_TargetDelayBufferMinMax DISABLED_TargetDelayBufferMinMax
#else
#define MAYBE_TargetDelayBufferMinMax TargetDelayBufferMinMax
#endif
TEST_F(TargetDelayTest, MAYBE_TargetDelayBufferMinMax) {
  TargetDelayBufferMinMax();
}

}  // namespace webrtc