DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Mercurial (c68fe15a81fc)

VCS Links

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348
/*
 *  Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
 *
 *  Use of this source code is governed by a BSD-style license
 *  that can be found in the LICENSE file in the root of the source
 *  tree. An additional intellectual property rights grant can be found
 *  in the file PATENTS.  All contributing project authors may
 *  be found in the AUTHORS file in the root of the source tree.
 */

#include "modules/audio_coding/include/audio_coding_module.h"

#include <algorithm>

#include "api/audio_codecs/builtin_audio_decoder_factory.h"
#include "modules/audio_coding/acm2/acm_receiver.h"
#include "modules/audio_coding/acm2/acm_resampler.h"
#include "modules/audio_coding/acm2/codec_manager.h"
#include "modules/audio_coding/acm2/rent_a_codec.h"
#include "rtc_base/checks.h"
#include "rtc_base/logging.h"
#include "rtc_base/numerics/safe_conversions.h"
#include "system_wrappers/include/metrics.h"

namespace webrtc {

namespace {

struct EncoderFactory {
  AudioEncoder* external_speech_encoder = nullptr;
  acm2::CodecManager codec_manager;
  acm2::RentACodec rent_a_codec;
};

class AudioCodingModuleImpl final : public AudioCodingModule {
 public:
  explicit AudioCodingModuleImpl(const AudioCodingModule::Config& config);
  ~AudioCodingModuleImpl() override;

  /////////////////////////////////////////
  //   Sender
  //

  // Can be called multiple times for Codec, CNG, RED.
  int RegisterSendCodec(const CodecInst& send_codec) override;

  void RegisterExternalSendCodec(
      AudioEncoder* external_speech_encoder) override;

  void ModifyEncoder(rtc::FunctionView<void(std::unique_ptr<AudioEncoder>*)>
                         modifier) override;

  void QueryEncoder(
      rtc::FunctionView<void(const AudioEncoder*)> query) override;

  // Get current send codec.
  rtc::Optional<CodecInst> SendCodec() const override;

  // Get current send frequency.
  int SendFrequency() const override;

  // Sets the bitrate to the specified value in bits/sec. In case the codec does
  // not support the requested value it will choose an appropriate value
  // instead.
  void SetBitRate(int bitrate_bps) override;

  // Register a transport callback which will be
  // called to deliver the encoded buffers.
  int RegisterTransportCallback(AudioPacketizationCallback* transport) override;

  // Add 10 ms of raw (PCM) audio data to the encoder.
  int Add10MsData(const AudioFrame& audio_frame) override;

  /////////////////////////////////////////
  // (RED) Redundant Coding
  //

  // Configure RED status i.e. on/off.
  int SetREDStatus(bool enable_red) override;

  // Get RED status.
  bool REDStatus() const override;

  /////////////////////////////////////////
  // (FEC) Forward Error Correction (codec internal)
  //

  // Configure FEC status i.e. on/off.
  int SetCodecFEC(bool enabled_codec_fec) override;

  // Get FEC status.
  bool CodecFEC() const override;

  // Set target packet loss rate
  int SetPacketLossRate(int loss_rate) override;

  /////////////////////////////////////////
  //   (VAD) Voice Activity Detection
  //   and
  //   (CNG) Comfort Noise Generation
  //

  int SetVAD(bool enable_dtx = true,
             bool enable_vad = false,
             ACMVADMode mode = VADNormal) override;

  int VAD(bool* dtx_enabled,
          bool* vad_enabled,
          ACMVADMode* mode) const override;

  int RegisterVADCallback(ACMVADCallback* vad_callback) override;

  /////////////////////////////////////////
  //   Receiver
  //

  // Initialize receiver, resets codec database etc.
  int InitializeReceiver() override;

  // Get current receive frequency.
  int ReceiveFrequency() const override;

  // Get current playout frequency.
  int PlayoutFrequency() const override;

  void SetReceiveCodecs(const std::map<int, SdpAudioFormat>& codecs) override;

  bool RegisterReceiveCodec(int rtp_payload_type,
                            const SdpAudioFormat& audio_format) override;

  int RegisterReceiveCodec(const CodecInst& receive_codec) override;
  int RegisterReceiveCodec(
      const CodecInst& receive_codec,
      rtc::FunctionView<std::unique_ptr<AudioDecoder>()> isac_factory) override;

  int RegisterExternalReceiveCodec(int rtp_payload_type,
                                   AudioDecoder* external_decoder,
                                   int sample_rate_hz,
                                   int num_channels,
                                   const std::string& name) override;

  // Get current received codec.
  int ReceiveCodec(CodecInst* current_codec) const override;

  rtc::Optional<SdpAudioFormat> ReceiveFormat() const override;
  int ReceiveSampleRate() const override;

  // Incoming packet from network parsed and ready for decode.
  int IncomingPacket(const uint8_t* incoming_payload,
                     const size_t payload_length,
                     const WebRtcRTPHeader& rtp_info) override;

  // Minimum playout delay.
  int SetMinimumPlayoutDelay(int time_ms) override;

  // Maximum playout delay.
  int SetMaximumPlayoutDelay(int time_ms) override;

  // Smallest latency NetEq will maintain.
  int LeastRequiredDelayMs() const override;

  RTC_DEPRECATED int32_t PlayoutTimestamp(uint32_t* timestamp) override;

  rtc::Optional<uint32_t> PlayoutTimestamp() override;

  int FilteredCurrentDelayMs() const override;

  int TargetDelayMs() const override;

  // Get 10 milliseconds of raw audio data to play out, and
  // automatic resample to the requested frequency if > 0.
  int PlayoutData10Ms(int desired_freq_hz,
                      AudioFrame* audio_frame,
                      bool* muted) override;
  int PlayoutData10Ms(int desired_freq_hz, AudioFrame* audio_frame) override;

  /////////////////////////////////////////
  //   Statistics
  //

  int GetNetworkStatistics(NetworkStatistics* statistics) override;

  int SetOpusApplication(OpusApplicationMode application) override;

  // If current send codec is Opus, informs it about the maximum playback rate
  // the receiver will render.
  int SetOpusMaxPlaybackRate(int frequency_hz) override;

  int EnableOpusDtx() override;

  int DisableOpusDtx() override;

  int UnregisterReceiveCodec(uint8_t payload_type) override;

  int EnableNack(size_t max_nack_list_size) override;

  void DisableNack() override;

  std::vector<uint16_t> GetNackList(int64_t round_trip_time_ms) const override;

  void GetDecodingCallStatistics(AudioDecodingCallStats* stats) const override;

  ANAStats GetANAStats() const override;

 private:
  struct InputData {
    uint32_t input_timestamp;
    const int16_t* audio;
    size_t length_per_channel;
    size_t audio_channel;
    // If a re-mix is required (up or down), this buffer will store a re-mixed
    // version of the input.
    int16_t buffer[WEBRTC_10MS_PCM_AUDIO];
  };

  // This member class writes values to the named UMA histogram, but only if
  // the value has changed since the last time (and always for the first call).
  class ChangeLogger {
   public:
    explicit ChangeLogger(const std::string& histogram_name)
        : histogram_name_(histogram_name) {}
    // Logs the new value if it is different from the last logged value, or if
    // this is the first call.
    void MaybeLog(int value);

   private:
    int last_value_ = 0;
    int first_time_ = true;
    const std::string histogram_name_;
  };

  int RegisterReceiveCodecUnlocked(
      const CodecInst& codec,
      rtc::FunctionView<std::unique_ptr<AudioDecoder>()> isac_factory)
      RTC_EXCLUSIVE_LOCKS_REQUIRED(acm_crit_sect_);

  int Add10MsDataInternal(const AudioFrame& audio_frame, InputData* input_data)
      RTC_EXCLUSIVE_LOCKS_REQUIRED(acm_crit_sect_);
  int Encode(const InputData& input_data)
      RTC_EXCLUSIVE_LOCKS_REQUIRED(acm_crit_sect_);

  int InitializeReceiverSafe() RTC_EXCLUSIVE_LOCKS_REQUIRED(acm_crit_sect_);

  bool HaveValidEncoder(const char* caller_name) const
      RTC_EXCLUSIVE_LOCKS_REQUIRED(acm_crit_sect_);

  // Preprocessing of input audio, including resampling and down-mixing if
  // required, before pushing audio into encoder's buffer.
  //
  // in_frame: input audio-frame
  // ptr_out: pointer to output audio_frame. If no preprocessing is required
  //          |ptr_out| will be pointing to |in_frame|, otherwise pointing to
  //          |preprocess_frame_|.
  //
  // Return value:
  //   -1: if encountering an error.
  //    0: otherwise.
  int PreprocessToAddData(const AudioFrame& in_frame,
                          const AudioFrame** ptr_out)
      RTC_EXCLUSIVE_LOCKS_REQUIRED(acm_crit_sect_);

  // Change required states after starting to receive the codec corresponding
  // to |index|.
  int UpdateUponReceivingCodec(int index);

  rtc::CriticalSection acm_crit_sect_;
  rtc::Buffer encode_buffer_ RTC_GUARDED_BY(acm_crit_sect_);
  uint32_t expected_codec_ts_ RTC_GUARDED_BY(acm_crit_sect_);
  uint32_t expected_in_ts_ RTC_GUARDED_BY(acm_crit_sect_);
  acm2::ACMResampler resampler_ RTC_GUARDED_BY(acm_crit_sect_);
  acm2::AcmReceiver receiver_;  // AcmReceiver has it's own internal lock.
  ChangeLogger bitrate_logger_ RTC_GUARDED_BY(acm_crit_sect_);

  std::unique_ptr<EncoderFactory> encoder_factory_
      RTC_GUARDED_BY(acm_crit_sect_);

  // Current encoder stack, either obtained from
  // encoder_factory_->rent_a_codec.RentEncoderStack or provided by a call to
  // RegisterEncoder.
  std::unique_ptr<AudioEncoder> encoder_stack_ RTC_GUARDED_BY(acm_crit_sect_);

  std::unique_ptr<AudioDecoder> isac_decoder_16k_
      RTC_GUARDED_BY(acm_crit_sect_);
  std::unique_ptr<AudioDecoder> isac_decoder_32k_
      RTC_GUARDED_BY(acm_crit_sect_);

  // This is to keep track of CN instances where we can send DTMFs.
  uint8_t previous_pltype_ RTC_GUARDED_BY(acm_crit_sect_);

  bool receiver_initialized_ RTC_GUARDED_BY(acm_crit_sect_);

  AudioFrame preprocess_frame_ RTC_GUARDED_BY(acm_crit_sect_);
  bool first_10ms_data_ RTC_GUARDED_BY(acm_crit_sect_);

  bool first_frame_ RTC_GUARDED_BY(acm_crit_sect_);
  uint32_t last_timestamp_ RTC_GUARDED_BY(acm_crit_sect_);
  uint32_t last_rtp_timestamp_ RTC_GUARDED_BY(acm_crit_sect_);

  rtc::CriticalSection callback_crit_sect_;
  AudioPacketizationCallback* packetization_callback_
      RTC_GUARDED_BY(callback_crit_sect_);
  ACMVADCallback* vad_callback_ RTC_GUARDED_BY(callback_crit_sect_);

  int codec_histogram_bins_log_[static_cast<size_t>(
      AudioEncoder::CodecType::kMaxLoggedAudioCodecTypes)];
  int number_of_consecutive_empty_packets_;
};

// Adds a codec usage sample to the histogram.
void UpdateCodecTypeHistogram(size_t codec_type) {
  RTC_HISTOGRAM_ENUMERATION(
      "WebRTC.Audio.Encoder.CodecType", static_cast<int>(codec_type),
      static_cast<int>(
          webrtc::AudioEncoder::CodecType::kMaxLoggedAudioCodecTypes));
}

// Stereo-to-mono can be used as in-place.
int DownMix(const AudioFrame& frame,
            size_t length_out_buff,
            int16_t* out_buff) {
  RTC_DCHECK_EQ(frame.num_channels_, 2);
  RTC_DCHECK_GE(length_out_buff, frame.samples_per_channel_);

  if (!frame.muted()) {
    const int16_t* frame_data = frame.data();
    for (size_t n = 0; n < frame.samples_per_channel_; ++n) {
      out_buff[n] = static_cast<int16_t>(
          (static_cast<int32_t>(frame_data[2 * n]) +
           static_cast<int32_t>(frame_data[2 * n + 1])) >> 1);
    }
  } else {
    std::fill(out_buff, out_buff + frame.samples_per_channel_, 0);
  }
  return 0;
}

// Mono-to-stereo can be used as in-place.
int UpMix(const AudioFrame& frame, size_t length_out_buff, int16_t* out_buff) {
  RTC_DCHECK_EQ(frame.num_channels_, 1);
  RTC_DCHECK_GE(length_out_buff, 2 * frame.samples_per_channel_);

  if (!frame.muted()) {
    const int16_t* frame_data = frame.data();
    for (size_t n = frame.samples_per_channel_; n != 0; --n) {
      size_t i = n - 1;
      int16_t sample = frame_data[i];
      out_buff[2 * i + 1] = sample;
      out_buff[2 * i] = sample;
    }
  } else {
    std::fill(out_buff, out_buff + frame.samples_per_channel_ * 2, 0);
  }
  return 0;
}

void ConvertEncodedInfoToFragmentationHeader(
    const AudioEncoder::EncodedInfo& info,
    RTPFragmentationHeader* frag) {
  if (info.redundant.empty()) {
    frag->fragmentationVectorSize = 0;
    return;
  }

  frag->VerifyAndAllocateFragmentationHeader(
      static_cast<uint16_t>(info.redundant.size()));
  frag->fragmentationVectorSize = static_cast<uint16_t>(info.redundant.size());
  size_t offset = 0;
  for (size_t i = 0; i < info.redundant.size(); ++i) {
    frag->fragmentationOffset[i] = offset;
    offset += info.redundant[i].encoded_bytes;
    frag->fragmentationLength[i] = info.redundant[i].encoded_bytes;
    frag->fragmentationTimeDiff[i] = rtc::dchecked_cast<uint16_t>(
        info.encoded_timestamp - info.redundant[i].encoded_timestamp);
    frag->fragmentationPlType[i] = info.redundant[i].payload_type;
  }
}

// Wraps a raw AudioEncoder pointer. The idea is that you can put one of these
// in a unique_ptr, to protect the contained raw pointer from being deleted
// when the unique_ptr expires. (This is of course a bad idea in general, but
// backwards compatibility.)
class RawAudioEncoderWrapper final : public AudioEncoder {
 public:
  RawAudioEncoderWrapper(AudioEncoder* enc) : enc_(enc) {}
  int SampleRateHz() const override { return enc_->SampleRateHz(); }
  size_t NumChannels() const override { return enc_->NumChannels(); }
  int RtpTimestampRateHz() const override { return enc_->RtpTimestampRateHz(); }
  size_t Num10MsFramesInNextPacket() const override {
    return enc_->Num10MsFramesInNextPacket();
  }
  size_t Max10MsFramesInAPacket() const override {
    return enc_->Max10MsFramesInAPacket();
  }
  int GetTargetBitrate() const override { return enc_->GetTargetBitrate(); }
  EncodedInfo EncodeImpl(uint32_t rtp_timestamp,
                         rtc::ArrayView<const int16_t> audio,
                         rtc::Buffer* encoded) override {
    return enc_->Encode(rtp_timestamp, audio, encoded);
  }
  void Reset() override { return enc_->Reset(); }
  bool SetFec(bool enable) override { return enc_->SetFec(enable); }
  bool SetDtx(bool enable) override { return enc_->SetDtx(enable); }
  bool SetApplication(Application application) override {
    return enc_->SetApplication(application);
  }
  void SetMaxPlaybackRate(int frequency_hz) override {
    return enc_->SetMaxPlaybackRate(frequency_hz);
  }

 private:
  AudioEncoder* enc_;
};

// Return false on error.
bool CreateSpeechEncoderIfNecessary(EncoderFactory* ef) {
  auto* sp = ef->codec_manager.GetStackParams();
  if (sp->speech_encoder) {
    // Do nothing; we already have a speech encoder.
  } else if (ef->codec_manager.GetCodecInst()) {
    RTC_DCHECK(!ef->external_speech_encoder);
    // We have no speech encoder, but we have a specification for making one.
    std::unique_ptr<AudioEncoder> enc =
        ef->rent_a_codec.RentEncoder(*ef->codec_manager.GetCodecInst());
    if (!enc)
      return false;  // Encoder spec was bad.
    sp->speech_encoder = std::move(enc);
  } else if (ef->external_speech_encoder) {
    RTC_DCHECK(!ef->codec_manager.GetCodecInst());
    // We have an external speech encoder.
    sp->speech_encoder = std::unique_ptr<AudioEncoder>(
        new RawAudioEncoderWrapper(ef->external_speech_encoder));
  }
  return true;
}

void AudioCodingModuleImpl::ChangeLogger::MaybeLog(int value) {
  if (value != last_value_ || first_time_) {
    first_time_ = false;
    last_value_ = value;
    RTC_HISTOGRAM_COUNTS_SPARSE_100(histogram_name_, value);
  }
}

AudioCodingModuleImpl::AudioCodingModuleImpl(
    const AudioCodingModule::Config& config)
    : expected_codec_ts_(0xD87F3F9F),
      expected_in_ts_(0xD87F3F9F),
      receiver_(config),
      bitrate_logger_("WebRTC.Audio.TargetBitrateInKbps"),
      encoder_factory_(new EncoderFactory),
      encoder_stack_(nullptr),
      previous_pltype_(255),
      receiver_initialized_(false),
      first_10ms_data_(false),
      first_frame_(true),
      packetization_callback_(NULL),
      vad_callback_(NULL),
      codec_histogram_bins_log_(),
      number_of_consecutive_empty_packets_(0) {
  if (InitializeReceiverSafe() < 0) {
    RTC_LOG(LS_ERROR) << "Cannot initialize receiver";
  }
  RTC_LOG(LS_INFO) << "Created";
}

AudioCodingModuleImpl::~AudioCodingModuleImpl() = default;

int32_t AudioCodingModuleImpl::Encode(const InputData& input_data) {
  AudioEncoder::EncodedInfo encoded_info;
  uint8_t previous_pltype;

  // Check if there is an encoder before.
  if (!HaveValidEncoder("Process"))
    return -1;

  if(!first_frame_) {
    RTC_DCHECK(IsNewerTimestamp(input_data.input_timestamp, last_timestamp_))
        << "Time should not move backwards";
  }

  // Scale the timestamp to the codec's RTP timestamp rate.
  uint32_t rtp_timestamp =
      first_frame_ ? input_data.input_timestamp
                   : last_rtp_timestamp_ +
                         rtc::CheckedDivExact(
                             input_data.input_timestamp - last_timestamp_,
                             static_cast<uint32_t>(rtc::CheckedDivExact(
                                 encoder_stack_->SampleRateHz(),
                                 encoder_stack_->RtpTimestampRateHz())));
  last_timestamp_ = input_data.input_timestamp;
  last_rtp_timestamp_ = rtp_timestamp;
  first_frame_ = false;

  // Clear the buffer before reuse - encoded data will get appended.
  encode_buffer_.Clear();
  encoded_info = encoder_stack_->Encode(
      rtp_timestamp, rtc::ArrayView<const int16_t>(
                         input_data.audio, input_data.audio_channel *
                                               input_data.length_per_channel),
      &encode_buffer_);

  bitrate_logger_.MaybeLog(encoder_stack_->GetTargetBitrate() / 1000);
  if (encode_buffer_.size() == 0 && !encoded_info.send_even_if_empty) {
    // Not enough data.
    return 0;
  }
  previous_pltype = previous_pltype_;  // Read it while we have the critsect.

  // Log codec type to histogram once every 500 packets.
  if (encoded_info.encoded_bytes == 0) {
    ++number_of_consecutive_empty_packets_;
  } else {
    size_t codec_type = static_cast<size_t>(encoded_info.encoder_type);
    codec_histogram_bins_log_[codec_type] +=
        number_of_consecutive_empty_packets_ + 1;
    number_of_consecutive_empty_packets_ = 0;
    if (codec_histogram_bins_log_[codec_type] >= 500) {
      codec_histogram_bins_log_[codec_type] -= 500;
      UpdateCodecTypeHistogram(codec_type);
    }
  }

  RTPFragmentationHeader my_fragmentation;
  ConvertEncodedInfoToFragmentationHeader(encoded_info, &my_fragmentation);
  FrameType frame_type;
  if (encode_buffer_.size() == 0 && encoded_info.send_even_if_empty) {
    frame_type = kEmptyFrame;
    encoded_info.payload_type = previous_pltype;
  } else {
    RTC_DCHECK_GT(encode_buffer_.size(), 0);
    frame_type = encoded_info.speech ? kAudioFrameSpeech : kAudioFrameCN;
  }

  {
    rtc::CritScope lock(&callback_crit_sect_);
    if (packetization_callback_) {
      packetization_callback_->SendData(
          frame_type, encoded_info.payload_type, encoded_info.encoded_timestamp,
          encode_buffer_.data(), encode_buffer_.size(),
          my_fragmentation.fragmentationVectorSize > 0 ? &my_fragmentation
                                                       : nullptr);
    }

    if (vad_callback_) {
      // Callback with VAD decision.
      vad_callback_->InFrameType(frame_type);
    }
  }
  previous_pltype_ = encoded_info.payload_type;
  return static_cast<int32_t>(encode_buffer_.size());
}

/////////////////////////////////////////
//   Sender
//

// Can be called multiple times for Codec, CNG, RED.
int AudioCodingModuleImpl::RegisterSendCodec(const CodecInst& send_codec) {
  rtc::CritScope lock(&acm_crit_sect_);
  if (!encoder_factory_->codec_manager.RegisterEncoder(send_codec)) {
    return -1;
  }
  if (encoder_factory_->codec_manager.GetCodecInst()) {
    encoder_factory_->external_speech_encoder = nullptr;
  }
  if (!CreateSpeechEncoderIfNecessary(encoder_factory_.get())) {
    return -1;
  }
  auto* sp = encoder_factory_->codec_manager.GetStackParams();
  if (sp->speech_encoder)
    encoder_stack_ = encoder_factory_->rent_a_codec.RentEncoderStack(sp);
  return 0;
}

void AudioCodingModuleImpl::RegisterExternalSendCodec(
    AudioEncoder* external_speech_encoder) {
  rtc::CritScope lock(&acm_crit_sect_);
  encoder_factory_->codec_manager.UnsetCodecInst();
  encoder_factory_->external_speech_encoder = external_speech_encoder;
  RTC_CHECK(CreateSpeechEncoderIfNecessary(encoder_factory_.get()));
  auto* sp = encoder_factory_->codec_manager.GetStackParams();
  RTC_CHECK(sp->speech_encoder);
  encoder_stack_ = encoder_factory_->rent_a_codec.RentEncoderStack(sp);
}

void AudioCodingModuleImpl::ModifyEncoder(
    rtc::FunctionView<void(std::unique_ptr<AudioEncoder>*)> modifier) {
  rtc::CritScope lock(&acm_crit_sect_);

  // Wipe the encoder factory, so that everything that relies on it will fail.
  // We don't want the complexity of supporting swapping back and forth.
  if (encoder_factory_) {
    encoder_factory_.reset();
    RTC_CHECK(!encoder_stack_);  // Ensure we hadn't started using the factory.
  }

  modifier(&encoder_stack_);
}

void AudioCodingModuleImpl::QueryEncoder(
    rtc::FunctionView<void(const AudioEncoder*)> query) {
  rtc::CritScope lock(&acm_crit_sect_);
  query(encoder_stack_.get());
}

// Get current send codec.
rtc::Optional<CodecInst> AudioCodingModuleImpl::SendCodec() const {
  rtc::CritScope lock(&acm_crit_sect_);
  if (encoder_factory_) {
    auto* ci = encoder_factory_->codec_manager.GetCodecInst();
    if (ci) {
      return *ci;
    }
    CreateSpeechEncoderIfNecessary(encoder_factory_.get());
    const std::unique_ptr<AudioEncoder>& enc =
        encoder_factory_->codec_manager.GetStackParams()->speech_encoder;
    if (enc) {
      return acm2::CodecManager::ForgeCodecInst(enc.get());
    }
    return rtc::nullopt;
  } else {
    return encoder_stack_
               ? rtc::Optional<CodecInst>(
                     acm2::CodecManager::ForgeCodecInst(encoder_stack_.get()))
               : rtc::nullopt;
  }
}

// Get current send frequency.
int AudioCodingModuleImpl::SendFrequency() const {
  rtc::CritScope lock(&acm_crit_sect_);

  if (!encoder_stack_) {
    RTC_LOG(LS_ERROR) << "SendFrequency Failed, no codec is registered";
    return -1;
  }

  return encoder_stack_->SampleRateHz();
}

void AudioCodingModuleImpl::SetBitRate(int bitrate_bps) {
  rtc::CritScope lock(&acm_crit_sect_);
  if (encoder_stack_) {
    encoder_stack_->OnReceivedUplinkBandwidth(bitrate_bps, rtc::nullopt);
  }
}

// Register a transport callback which will be called to deliver
// the encoded buffers.
int AudioCodingModuleImpl::RegisterTransportCallback(
    AudioPacketizationCallback* transport) {
  rtc::CritScope lock(&callback_crit_sect_);
  packetization_callback_ = transport;
  return 0;
}

// Add 10MS of raw (PCM) audio data to the encoder.
int AudioCodingModuleImpl::Add10MsData(const AudioFrame& audio_frame) {
  InputData input_data;
  rtc::CritScope lock(&acm_crit_sect_);
  int r = Add10MsDataInternal(audio_frame, &input_data);
  return r < 0 ? r : Encode(input_data);
}

int AudioCodingModuleImpl::Add10MsDataInternal(const AudioFrame& audio_frame,
                                               InputData* input_data) {
  if (audio_frame.samples_per_channel_ == 0) {
    assert(false);
    RTC_LOG(LS_ERROR) << "Cannot Add 10 ms audio, payload length is zero";
    return -1;
  }

  if (audio_frame.sample_rate_hz_ > 48000) {
    assert(false);
    RTC_LOG(LS_ERROR) << "Cannot Add 10 ms audio, input frequency not valid";
    return -1;
  }

  // If the length and frequency matches. We currently just support raw PCM.
  if (static_cast<size_t>(audio_frame.sample_rate_hz_ / 100) !=
      audio_frame.samples_per_channel_) {
    RTC_LOG(LS_ERROR)
        << "Cannot Add 10 ms audio, input frequency and length doesn't match";
    return -1;
  }

  if (audio_frame.num_channels_ != 1 && audio_frame.num_channels_ != 2) {
    RTC_LOG(LS_ERROR) << "Cannot Add 10 ms audio, invalid number of channels.";
    return -1;
  }

  // Do we have a codec registered?
  if (!HaveValidEncoder("Add10MsData")) {
    return -1;
  }

  const AudioFrame* ptr_frame;
  // Perform a resampling, also down-mix if it is required and can be
  // performed before resampling (a down mix prior to resampling will take
  // place if both primary and secondary encoders are mono and input is in
  // stereo).
  if (PreprocessToAddData(audio_frame, &ptr_frame) < 0) {
    return -1;
  }

  // Check whether we need an up-mix or down-mix?
  const size_t current_num_channels = encoder_stack_->NumChannels();
  const bool same_num_channels =
      ptr_frame->num_channels_ == current_num_channels;

  if (!same_num_channels) {
    if (ptr_frame->num_channels_ == 1) {
      if (UpMix(*ptr_frame, WEBRTC_10MS_PCM_AUDIO, input_data->buffer) < 0)
        return -1;
    } else {
      if (DownMix(*ptr_frame, WEBRTC_10MS_PCM_AUDIO, input_data->buffer) < 0)
        return -1;
    }
  }

  // When adding data to encoders this pointer is pointing to an audio buffer
  // with correct number of channels.
  const int16_t* ptr_audio = ptr_frame->data();

  // For pushing data to primary, point the |ptr_audio| to correct buffer.
  if (!same_num_channels)
    ptr_audio = input_data->buffer;

  // TODO(yujo): Skip encode of muted frames.
  input_data->input_timestamp = ptr_frame->timestamp_;
  input_data->audio = ptr_audio;
  input_data->length_per_channel = ptr_frame->samples_per_channel_;
  input_data->audio_channel = current_num_channels;

  return 0;
}

// Perform a resampling and down-mix if required. We down-mix only if
// encoder is mono and input is stereo. In case of dual-streaming, both
// encoders has to be mono for down-mix to take place.
// |*ptr_out| will point to the pre-processed audio-frame. If no pre-processing
// is required, |*ptr_out| points to |in_frame|.
// TODO(yujo): Make this more efficient for muted frames.
int AudioCodingModuleImpl::PreprocessToAddData(const AudioFrame& in_frame,
                                               const AudioFrame** ptr_out) {
  const bool resample =
      in_frame.sample_rate_hz_ != encoder_stack_->SampleRateHz();

  // This variable is true if primary codec and secondary codec (if exists)
  // are both mono and input is stereo.
  // TODO(henrik.lundin): This condition should probably be
  //   in_frame.num_channels_ > encoder_stack_->NumChannels()
  const bool down_mix =
      in_frame.num_channels_ == 2 && encoder_stack_->NumChannels() == 1;

  if (!first_10ms_data_) {
    expected_in_ts_ = in_frame.timestamp_;
    expected_codec_ts_ = in_frame.timestamp_;
    first_10ms_data_ = true;
  } else if (in_frame.timestamp_ != expected_in_ts_) {
    RTC_LOG(LS_WARNING) << "Unexpected input timestamp: " << in_frame.timestamp_
                        << ", expected: " << expected_in_ts_;
    expected_codec_ts_ +=
        (in_frame.timestamp_ - expected_in_ts_) *
        static_cast<uint32_t>(
            static_cast<double>(encoder_stack_->SampleRateHz()) /
            static_cast<double>(in_frame.sample_rate_hz_));
    expected_in_ts_ = in_frame.timestamp_;
  }


  if (!down_mix && !resample) {
    // No pre-processing is required.
    if (expected_in_ts_ == expected_codec_ts_) {
      // If we've never resampled, we can use the input frame as-is
      *ptr_out = &in_frame;
    } else {
      // Otherwise we'll need to alter the timestamp. Since in_frame is const,
      // we'll have to make a copy of it.
      preprocess_frame_.CopyFrom(in_frame);
      preprocess_frame_.timestamp_ = expected_codec_ts_;
      *ptr_out = &preprocess_frame_;
    }

    expected_in_ts_ += static_cast<uint32_t>(in_frame.samples_per_channel_);
    expected_codec_ts_ += static_cast<uint32_t>(in_frame.samples_per_channel_);
    return 0;
  }

  *ptr_out = &preprocess_frame_;
  preprocess_frame_.num_channels_ = in_frame.num_channels_;
  int16_t audio[WEBRTC_10MS_PCM_AUDIO];
  const int16_t* src_ptr_audio = in_frame.data();
  if (down_mix) {
    // If a resampling is required the output of a down-mix is written into a
    // local buffer, otherwise, it will be written to the output frame.
    int16_t* dest_ptr_audio = resample ?
        audio : preprocess_frame_.mutable_data();
    if (DownMix(in_frame, WEBRTC_10MS_PCM_AUDIO, dest_ptr_audio) < 0)
      return -1;
    preprocess_frame_.num_channels_ = 1;
    // Set the input of the resampler is the down-mixed signal.
    src_ptr_audio = audio;
  }

  preprocess_frame_.timestamp_ = expected_codec_ts_;
  preprocess_frame_.samples_per_channel_ = in_frame.samples_per_channel_;
  preprocess_frame_.sample_rate_hz_ = in_frame.sample_rate_hz_;
  // If it is required, we have to do a resampling.
  if (resample) {
    // The result of the resampler is written to output frame.
    int16_t* dest_ptr_audio = preprocess_frame_.mutable_data();

    int samples_per_channel = resampler_.Resample10Msec(
        src_ptr_audio, in_frame.sample_rate_hz_, encoder_stack_->SampleRateHz(),
        preprocess_frame_.num_channels_, AudioFrame::kMaxDataSizeSamples,
        dest_ptr_audio);

    if (samples_per_channel < 0) {
      RTC_LOG(LS_ERROR) << "Cannot add 10 ms audio, resampling failed";
      return -1;
    }
    preprocess_frame_.samples_per_channel_ =
        static_cast<size_t>(samples_per_channel);
    preprocess_frame_.sample_rate_hz_ = encoder_stack_->SampleRateHz();
  }

  expected_codec_ts_ +=
      static_cast<uint32_t>(preprocess_frame_.samples_per_channel_);
  expected_in_ts_ += static_cast<uint32_t>(in_frame.samples_per_channel_);

  return 0;
}

/////////////////////////////////////////
//   (RED) Redundant Coding
//

bool AudioCodingModuleImpl::REDStatus() const {
  rtc::CritScope lock(&acm_crit_sect_);
  return encoder_factory_->codec_manager.GetStackParams()->use_red;
}

// Configure RED status i.e on/off.
int AudioCodingModuleImpl::SetREDStatus(bool enable_red) {
#ifdef WEBRTC_CODEC_RED
  rtc::CritScope lock(&acm_crit_sect_);
  CreateSpeechEncoderIfNecessary(encoder_factory_.get());
  if (!encoder_factory_->codec_manager.SetCopyRed(enable_red)) {
    return -1;
  }
  auto* sp = encoder_factory_->codec_manager.GetStackParams();
  if (sp->speech_encoder)
    encoder_stack_ = encoder_factory_->rent_a_codec.RentEncoderStack(sp);
  return 0;
#else
  RTC_LOG(LS_WARNING) << "  WEBRTC_CODEC_RED is undefined";
  return -1;
#endif
}

/////////////////////////////////////////
//   (FEC) Forward Error Correction (codec internal)
//

bool AudioCodingModuleImpl::CodecFEC() const {
  rtc::CritScope lock(&acm_crit_sect_);
  return encoder_factory_->codec_manager.GetStackParams()->use_codec_fec;
}

int AudioCodingModuleImpl::SetCodecFEC(bool enable_codec_fec) {
  rtc::CritScope lock(&acm_crit_sect_);
  CreateSpeechEncoderIfNecessary(encoder_factory_.get());
  if (!encoder_factory_->codec_manager.SetCodecFEC(enable_codec_fec)) {
    return -1;
  }
  auto* sp = encoder_factory_->codec_manager.GetStackParams();
  if (sp->speech_encoder)
    encoder_stack_ = encoder_factory_->rent_a_codec.RentEncoderStack(sp);
  if (enable_codec_fec) {
    return sp->use_codec_fec ? 0 : -1;
  } else {
    RTC_DCHECK(!sp->use_codec_fec);
    return 0;
  }
}

int AudioCodingModuleImpl::SetPacketLossRate(int loss_rate) {
  rtc::CritScope lock(&acm_crit_sect_);
  if (HaveValidEncoder("SetPacketLossRate")) {
    encoder_stack_->OnReceivedUplinkPacketLossFraction(loss_rate / 100.0);
  }
  return 0;
}

/////////////////////////////////////////
//   (VAD) Voice Activity Detection
//
int AudioCodingModuleImpl::SetVAD(bool enable_dtx,
                                  bool enable_vad,
                                  ACMVADMode mode) {
  // Note: |enable_vad| is not used; VAD is enabled based on the DTX setting.
  RTC_DCHECK_EQ(enable_dtx, enable_vad);
  rtc::CritScope lock(&acm_crit_sect_);
  CreateSpeechEncoderIfNecessary(encoder_factory_.get());
  if (!encoder_factory_->codec_manager.SetVAD(enable_dtx, mode)) {
    return -1;
  }
  auto* sp = encoder_factory_->codec_manager.GetStackParams();
  if (sp->speech_encoder)
    encoder_stack_ = encoder_factory_->rent_a_codec.RentEncoderStack(sp);
  return 0;
}

// Get VAD/DTX settings.
int AudioCodingModuleImpl::VAD(bool* dtx_enabled, bool* vad_enabled,
                               ACMVADMode* mode) const {
  rtc::CritScope lock(&acm_crit_sect_);
  const auto* sp = encoder_factory_->codec_manager.GetStackParams();
  *dtx_enabled = *vad_enabled = sp->use_cng;
  *mode = sp->vad_mode;
  return 0;
}

/////////////////////////////////////////
//   Receiver
//

int AudioCodingModuleImpl::InitializeReceiver() {
  rtc::CritScope lock(&acm_crit_sect_);
  return InitializeReceiverSafe();
}

// Initialize receiver, resets codec database etc.
int AudioCodingModuleImpl::InitializeReceiverSafe() {
  // If the receiver is already initialized then we want to destroy any
  // existing decoders. After a call to this function, we should have a clean
  // start-up.
  if (receiver_initialized_)
    receiver_.RemoveAllCodecs();
  receiver_.ResetInitialDelay();
  receiver_.SetMinimumDelay(0);
  receiver_.SetMaximumDelay(0);
  receiver_.FlushBuffers();

  receiver_initialized_ = true;
  return 0;
}

// Get current receive frequency.
int AudioCodingModuleImpl::ReceiveFrequency() const {
  const auto last_packet_sample_rate = receiver_.last_packet_sample_rate_hz();
  return last_packet_sample_rate ? *last_packet_sample_rate
                                 : receiver_.last_output_sample_rate_hz();
}

// Get current playout frequency.
int AudioCodingModuleImpl::PlayoutFrequency() const {
  return receiver_.last_output_sample_rate_hz();
}

void AudioCodingModuleImpl::SetReceiveCodecs(
    const std::map<int, SdpAudioFormat>& codecs) {
  rtc::CritScope lock(&acm_crit_sect_);
  receiver_.SetCodecs(codecs);
}

bool AudioCodingModuleImpl::RegisterReceiveCodec(
    int rtp_payload_type,
    const SdpAudioFormat& audio_format) {
  rtc::CritScope lock(&acm_crit_sect_);
  RTC_DCHECK(receiver_initialized_);

  if (!acm2::RentACodec::IsPayloadTypeValid(rtp_payload_type)) {
    RTC_LOG_F(LS_ERROR) << "Invalid payload-type " << rtp_payload_type
                        << " for decoder.";
    return false;
  }

  return receiver_.AddCodec(rtp_payload_type, audio_format);
}

int AudioCodingModuleImpl::RegisterReceiveCodec(const CodecInst& codec) {
  rtc::CritScope lock(&acm_crit_sect_);
  auto* ef = encoder_factory_.get();
  return RegisterReceiveCodecUnlocked(
      codec, [&] { return ef->rent_a_codec.RentIsacDecoder(codec.plfreq); });
}

int AudioCodingModuleImpl::RegisterReceiveCodec(
    const CodecInst& codec,
    rtc::FunctionView<std::unique_ptr<AudioDecoder>()> isac_factory) {
  rtc::CritScope lock(&acm_crit_sect_);
  return RegisterReceiveCodecUnlocked(codec, isac_factory);
}

int AudioCodingModuleImpl::RegisterReceiveCodecUnlocked(
    const CodecInst& codec,
    rtc::FunctionView<std::unique_ptr<AudioDecoder>()> isac_factory) {
  RTC_DCHECK(receiver_initialized_);
  if (codec.channels > 2) {
    RTC_LOG_F(LS_ERROR) << "Unsupported number of channels: " << codec.channels;
    return -1;
  }

  auto codec_id = acm2::RentACodec::CodecIdByParams(codec.plname, codec.plfreq,
                                                    codec.channels);
  if (!codec_id) {
    RTC_LOG_F(LS_ERROR)
        << "Wrong codec params to be registered as receive codec";
    return -1;
  }
  auto codec_index = acm2::RentACodec::CodecIndexFromId(*codec_id);
  RTC_CHECK(codec_index) << "Invalid codec ID: " << static_cast<int>(*codec_id);

  // Check if the payload-type is valid.
  if (!acm2::RentACodec::IsPayloadTypeValid(codec.pltype)) {
    RTC_LOG_F(LS_ERROR) << "Invalid payload type " << codec.pltype << " for "
                        << codec.plname;
    return -1;
  }

  AudioDecoder* isac_decoder = nullptr;
  if (STR_CASE_CMP(codec.plname, "isac") == 0) {
    std::unique_ptr<AudioDecoder>& saved_isac_decoder =
        codec.plfreq == 16000 ? isac_decoder_16k_ : isac_decoder_32k_;
    if (!saved_isac_decoder) {
      saved_isac_decoder = isac_factory();
    }
    isac_decoder = saved_isac_decoder.get();
  }
  return receiver_.AddCodec(*codec_index, codec.pltype, codec.channels,
                            codec.plfreq, isac_decoder, codec.plname);
}

int AudioCodingModuleImpl::RegisterExternalReceiveCodec(
    int rtp_payload_type,
    AudioDecoder* external_decoder,
    int sample_rate_hz,
    int num_channels,
    const std::string& name) {
  rtc::CritScope lock(&acm_crit_sect_);
  RTC_DCHECK(receiver_initialized_);
  if (num_channels > 2 || num_channels < 0) {
    RTC_LOG_F(LS_ERROR) << "Unsupported number of channels: " << num_channels;
    return -1;
  }

  // Check if the payload-type is valid.
  if (!acm2::RentACodec::IsPayloadTypeValid(rtp_payload_type)) {
    RTC_LOG_F(LS_ERROR) << "Invalid payload-type " << rtp_payload_type
                        << " for external decoder.";
    return -1;
  }

  return receiver_.AddCodec(-1 /* external */, rtp_payload_type, num_channels,
                            sample_rate_hz, external_decoder, name);
}

// Get current received codec.
int AudioCodingModuleImpl::ReceiveCodec(CodecInst* current_codec) const {
  rtc::CritScope lock(&acm_crit_sect_);
  return receiver_.LastAudioCodec(current_codec);
}

rtc::Optional<SdpAudioFormat> AudioCodingModuleImpl::ReceiveFormat() const {
  rtc::CritScope lock(&acm_crit_sect_);
  return receiver_.LastAudioFormat();
}

int AudioCodingModuleImpl::ReceiveSampleRate() const {
  return receiver_.LastAudioSampleRate();
}

// Incoming packet from network parsed and ready for decode.
int AudioCodingModuleImpl::IncomingPacket(const uint8_t* incoming_payload,
                                          const size_t payload_length,
                                          const WebRtcRTPHeader& rtp_header) {
  RTC_DCHECK_EQ(payload_length == 0, incoming_payload == nullptr);
  return receiver_.InsertPacket(
      rtp_header,
      rtc::ArrayView<const uint8_t>(incoming_payload, payload_length));
}

// Minimum playout delay (Used for lip-sync).
int AudioCodingModuleImpl::SetMinimumPlayoutDelay(int time_ms) {
  if ((time_ms < 0) || (time_ms > 10000)) {
    RTC_LOG(LS_ERROR) << "Delay must be in the range of 0-10000 milliseconds.";
    return -1;
  }
  return receiver_.SetMinimumDelay(time_ms);
}

int AudioCodingModuleImpl::SetMaximumPlayoutDelay(int time_ms) {
  if ((time_ms < 0) || (time_ms > 10000)) {
    RTC_LOG(LS_ERROR) << "Delay must be in the range of 0-10000 milliseconds.";
    return -1;
  }
  return receiver_.SetMaximumDelay(time_ms);
}

// Get 10 milliseconds of raw audio data to play out.
// Automatic resample to the requested frequency.
int AudioCodingModuleImpl::PlayoutData10Ms(int desired_freq_hz,
                                           AudioFrame* audio_frame,
                                           bool* muted) {
  // GetAudio always returns 10 ms, at the requested sample rate.
  if (receiver_.GetAudio(desired_freq_hz, audio_frame, muted) != 0) {
    RTC_LOG(LS_ERROR) << "PlayoutData failed, RecOut Failed";
    return -1;
  }
  return 0;
}

int AudioCodingModuleImpl::PlayoutData10Ms(int desired_freq_hz,
                                           AudioFrame* audio_frame) {
  bool muted;
  int ret = PlayoutData10Ms(desired_freq_hz, audio_frame, &muted);
  RTC_DCHECK(!muted);
  return ret;
}

/////////////////////////////////////////
//   Statistics
//

// TODO(turajs) change the return value to void. Also change the corresponding
// NetEq function.
int AudioCodingModuleImpl::GetNetworkStatistics(NetworkStatistics* statistics) {
  receiver_.GetNetworkStatistics(statistics);
  return 0;
}

int AudioCodingModuleImpl::RegisterVADCallback(ACMVADCallback* vad_callback) {
  RTC_LOG(LS_VERBOSE) << "RegisterVADCallback()";
  rtc::CritScope lock(&callback_crit_sect_);
  vad_callback_ = vad_callback;
  return 0;
}

int AudioCodingModuleImpl::SetOpusApplication(OpusApplicationMode application) {
  rtc::CritScope lock(&acm_crit_sect_);
  if (!HaveValidEncoder("SetOpusApplication")) {
    return -1;
  }
  AudioEncoder::Application app;
  switch (application) {
    case kVoip:
      app = AudioEncoder::Application::kSpeech;
      break;
    case kAudio:
      app = AudioEncoder::Application::kAudio;
      break;
    default:
      FATAL();
      return 0;
  }
  return encoder_stack_->SetApplication(app) ? 0 : -1;
}

// Informs Opus encoder of the maximum playback rate the receiver will render.
int AudioCodingModuleImpl::SetOpusMaxPlaybackRate(int frequency_hz) {
  rtc::CritScope lock(&acm_crit_sect_);
  if (!HaveValidEncoder("SetOpusMaxPlaybackRate")) {
    return -1;
  }
  encoder_stack_->SetMaxPlaybackRate(frequency_hz);
  return 0;
}

int AudioCodingModuleImpl::EnableOpusDtx() {
  rtc::CritScope lock(&acm_crit_sect_);
  if (!HaveValidEncoder("EnableOpusDtx")) {
    return -1;
  }
  return encoder_stack_->SetDtx(true) ? 0 : -1;
}

int AudioCodingModuleImpl::DisableOpusDtx() {
  rtc::CritScope lock(&acm_crit_sect_);
  if (!HaveValidEncoder("DisableOpusDtx")) {
    return -1;
  }
  return encoder_stack_->SetDtx(false) ? 0 : -1;
}

int32_t AudioCodingModuleImpl::PlayoutTimestamp(uint32_t* timestamp) {
  rtc::Optional<uint32_t> ts = PlayoutTimestamp();
  if (!ts)
    return -1;
  *timestamp = *ts;
  return 0;
}

rtc::Optional<uint32_t> AudioCodingModuleImpl::PlayoutTimestamp() {
  return receiver_.GetPlayoutTimestamp();
}

int AudioCodingModuleImpl::FilteredCurrentDelayMs() const {
  return receiver_.FilteredCurrentDelayMs();
}

int AudioCodingModuleImpl::TargetDelayMs() const {
  return receiver_.TargetDelayMs();
}

bool AudioCodingModuleImpl::HaveValidEncoder(const char* caller_name) const {
  if (!encoder_stack_) {
    RTC_LOG(LS_ERROR) << caller_name << " failed: No send codec is registered.";
    return false;
  }
  return true;
}

int AudioCodingModuleImpl::UnregisterReceiveCodec(uint8_t payload_type) {
  return receiver_.RemoveCodec(payload_type);
}

int AudioCodingModuleImpl::EnableNack(size_t max_nack_list_size) {
  return receiver_.EnableNack(max_nack_list_size);
}

void AudioCodingModuleImpl::DisableNack() {
  receiver_.DisableNack();
}

std::vector<uint16_t> AudioCodingModuleImpl::GetNackList(
    int64_t round_trip_time_ms) const {
  return receiver_.GetNackList(round_trip_time_ms);
}

int AudioCodingModuleImpl::LeastRequiredDelayMs() const {
  return receiver_.LeastRequiredDelayMs();
}

void AudioCodingModuleImpl::GetDecodingCallStatistics(
      AudioDecodingCallStats* call_stats) const {
  receiver_.GetDecodingCallStatistics(call_stats);
}

ANAStats AudioCodingModuleImpl::GetANAStats() const {
  rtc::CritScope lock(&acm_crit_sect_);
  if (encoder_stack_)
    return encoder_stack_->GetANAStats();
  // If no encoder is set, return default stats.
  return ANAStats();
}

}  // namespace

AudioCodingModule::Config::Config()
    : neteq_config(), clock(Clock::GetRealTimeClock()) {
  // Post-decode VAD is disabled by default in NetEq, however, Audio
  // Conference Mixer relies on VAD decisions and fails without them.
  neteq_config.enable_post_decode_vad = true;
}

AudioCodingModule::Config::Config(const Config&) = default;
AudioCodingModule::Config::~Config() = default;

AudioCodingModule* AudioCodingModule::Create(int id) {
  RTC_UNUSED(id);
  return Create();
}

// Create module
AudioCodingModule* AudioCodingModule::Create() {
  Config config;
  config.clock = Clock::GetRealTimeClock();
  config.decoder_factory = CreateBuiltinAudioDecoderFactory();
  return Create(config);
}

AudioCodingModule* AudioCodingModule::Create(Clock* clock) {
  Config config;
  config.clock = clock;
  config.decoder_factory = CreateBuiltinAudioDecoderFactory();
  return Create(config);
}

AudioCodingModule* AudioCodingModule::Create(const Config& config) {
  if (!config.decoder_factory) {
    // TODO(ossu): Backwards compatibility. Will be removed after a deprecation
    // cycle.
    Config config_copy = config;
    config_copy.decoder_factory = CreateBuiltinAudioDecoderFactory();
    return new AudioCodingModuleImpl(config_copy);
  }
  return new AudioCodingModuleImpl(config);
}

int AudioCodingModule::NumberOfCodecs() {
  return static_cast<int>(acm2::RentACodec::NumberOfCodecs());
}

int AudioCodingModule::Codec(int list_id, CodecInst* codec) {
  auto codec_id = acm2::RentACodec::CodecIdFromIndex(list_id);
  if (!codec_id)
    return -1;
  auto ci = acm2::RentACodec::CodecInstById(*codec_id);
  if (!ci)
    return -1;
  *codec = *ci;
  return 0;
}

int AudioCodingModule::Codec(const char* payload_name,
                             CodecInst* codec,
                             int sampling_freq_hz,
                             size_t channels) {
  rtc::Optional<CodecInst> ci = acm2::RentACodec::CodecInstByParams(
      payload_name, sampling_freq_hz, channels);
  if (ci) {
    *codec = *ci;
    return 0;
  } else {
    // We couldn't find a matching codec, so set the parameters to unacceptable
    // values and return.
    codec->plname[0] = '\0';
    codec->pltype = -1;
    codec->pacsize = 0;
    codec->rate = 0;
    codec->plfreq = 0;
    return -1;
  }
}

int AudioCodingModule::Codec(const char* payload_name,
                             int sampling_freq_hz,
                             size_t channels) {
  rtc::Optional<acm2::RentACodec::CodecId> ci =
      acm2::RentACodec::CodecIdByParams(payload_name, sampling_freq_hz,
                                        channels);
  if (!ci)
    return -1;
  rtc::Optional<int> i = acm2::RentACodec::CodecIndexFromId(*ci);
  return i ? *i : -1;
}

// Checks the validity of the parameters of the given codec
bool AudioCodingModule::IsCodecValid(const CodecInst& codec) {
  bool valid = acm2::RentACodec::IsCodecValid(codec);
  if (!valid)
    RTC_LOG(LS_ERROR) << "Invalid codec setting";
  return valid;
}

}  // namespace webrtc