DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Header

Mercurial (e8a1932001eb)

VCS Links

There was only 1 search result, so I took you straight to it.
Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */

/* class that manages rules for positioning floats */

#include "nsFloatManager.h"

#include <algorithm>
#include <initializer_list>

#include "gfxContext.h"
#include "mozilla/PresShell.h"
#include "mozilla/ReflowInput.h"
#include "mozilla/ShapeUtils.h"
#include "nsBlockFrame.h"
#include "nsDeviceContext.h"
#include "nsError.h"
#include "nsImageRenderer.h"
#include "nsMemory.h"

using namespace mozilla;
using namespace mozilla::image;
using namespace mozilla::gfx;

int32_t nsFloatManager::sCachedFloatManagerCount = 0;
void* nsFloatManager::sCachedFloatManagers[NS_FLOAT_MANAGER_CACHE_SIZE];

/////////////////////////////////////////////////////////////////////////////
// nsFloatManager

nsFloatManager::nsFloatManager(PresShell* aPresShell, WritingMode aWM)
    :
#ifdef DEBUG
      mWritingMode(aWM),
#endif
      mLineLeft(0),
      mBlockStart(0),
      mFloatDamage(aPresShell),
      mPushedLeftFloatPastBreak(false),
      mPushedRightFloatPastBreak(false),
      mSplitLeftFloatAcrossBreak(false),
      mSplitRightFloatAcrossBreak(false) {
  MOZ_COUNT_CTOR(nsFloatManager);
}

nsFloatManager::~nsFloatManager() { MOZ_COUNT_DTOR(nsFloatManager); }

// static
void* nsFloatManager::operator new(size_t aSize) CPP_THROW_NEW {
  if (sCachedFloatManagerCount > 0) {
    // We have cached unused instances of this class, return a cached
    // instance in stead of always creating a new one.
    return sCachedFloatManagers[--sCachedFloatManagerCount];
  }

  // The cache is empty, this means we have to create a new instance using
  // the global |operator new|.
  return moz_xmalloc(aSize);
}

void nsFloatManager::operator delete(void* aPtr, size_t aSize) {
  if (!aPtr) return;
  // This float manager is no longer used, if there's still room in
  // the cache we'll cache this float manager, unless the layout
  // module was already shut down.

  if (sCachedFloatManagerCount < NS_FLOAT_MANAGER_CACHE_SIZE &&
      sCachedFloatManagerCount >= 0) {
    // There's still space in the cache for more instances, put this
    // instance in the cache in stead of deleting it.

    sCachedFloatManagers[sCachedFloatManagerCount++] = aPtr;
    return;
  }

  // The cache is full, or the layout module has been shut down,
  // delete this float manager.
  free(aPtr);
}

/* static */
void nsFloatManager::Shutdown() {
  // The layout module is being shut down, clean up the cache and
  // disable further caching.

  int32_t i;

  for (i = 0; i < sCachedFloatManagerCount; i++) {
    void* floatManager = sCachedFloatManagers[i];
    if (floatManager) free(floatManager);
  }

  // Disable further caching.
  sCachedFloatManagerCount = -1;
}

#define CHECK_BLOCK_AND_LINE_DIR(aWM)                                       \
  NS_ASSERTION((aWM).GetBlockDir() == mWritingMode.GetBlockDir() &&         \
                   (aWM).IsLineInverted() == mWritingMode.IsLineInverted(), \
               "incompatible writing modes")

nsFlowAreaRect nsFloatManager::GetFlowArea(
    WritingMode aWM, nscoord aBCoord, nscoord aBSize,
    BandInfoType aBandInfoType, ShapeType aShapeType, LogicalRect aContentArea,
    SavedState* aState, const nsSize& aContainerSize) const {
  CHECK_BLOCK_AND_LINE_DIR(aWM);
  NS_ASSERTION(aBSize >= 0, "unexpected max block size");
  NS_ASSERTION(aContentArea.ISize(aWM) >= 0,
               "unexpected content area inline size");

  nscoord blockStart = aBCoord + mBlockStart;
  if (blockStart < nscoord_MIN) {
    NS_WARNING("bad value");
    blockStart = nscoord_MIN;
  }

  // Determine the last float that we should consider.
  uint32_t floatCount;
  if (aState) {
    // Use the provided state.
    floatCount = aState->mFloatInfoCount;
    MOZ_ASSERT(floatCount <= mFloats.Length(), "bad state");
  } else {
    // Use our current state.
    floatCount = mFloats.Length();
  }

  // If there are no floats at all, or we're below the last one, return
  // quickly.
  if (floatCount == 0 || (mFloats[floatCount - 1].mLeftBEnd <= blockStart &&
                          mFloats[floatCount - 1].mRightBEnd <= blockStart)) {
    return nsFlowAreaRect(aWM, aContentArea.IStart(aWM), aBCoord,
                          aContentArea.ISize(aWM), aBSize,
                          nsFlowAreaRectFlags::NoFlags);
  }

  nscoord blockEnd;
  if (aBSize == nscoord_MAX) {
    // This warning (and the two below) are possible to hit on pages
    // with really large objects.
    NS_WARNING_ASSERTION(aBandInfoType == BandInfoType::BandFromPoint,
                         "bad height");
    blockEnd = nscoord_MAX;
  } else {
    blockEnd = blockStart + aBSize;
    if (blockEnd < blockStart || blockEnd > nscoord_MAX) {
      NS_WARNING("bad value");
      blockEnd = nscoord_MAX;
    }
  }
  nscoord lineLeft = mLineLeft + aContentArea.LineLeft(aWM, aContainerSize);
  nscoord lineRight = mLineLeft + aContentArea.LineRight(aWM, aContainerSize);
  if (lineRight < lineLeft) {
    NS_WARNING("bad value");
    lineRight = lineLeft;
  }

  // Walk backwards through the floats until we either hit the front of
  // the list or we're above |blockStart|.
  bool haveFloats = false;
  bool mayWiden = false;
  for (uint32_t i = floatCount; i > 0; --i) {
    const FloatInfo& fi = mFloats[i - 1];
    if (fi.mLeftBEnd <= blockStart && fi.mRightBEnd <= blockStart) {
      // There aren't any more floats that could intersect this band.
      break;
    }
    if (fi.IsEmpty(aShapeType)) {
      // Ignore empty float areas.
      // https://drafts.csswg.org/css-shapes/#relation-to-box-model-and-float-behavior
      continue;
    }

    nscoord floatBStart = fi.BStart(aShapeType);
    nscoord floatBEnd = fi.BEnd(aShapeType);
    if (blockStart < floatBStart &&
        aBandInfoType == BandInfoType::BandFromPoint) {
      // This float is below our band.  Shrink our band's height if needed.
      if (floatBStart < blockEnd) {
        blockEnd = floatBStart;
      }
    }
    // If blockStart == blockEnd (which happens only with WidthWithinHeight),
    // we include floats that begin at our 0-height vertical area.  We
    // need to do this to satisfy the invariant that a
    // WidthWithinHeight call is at least as narrow on both sides as a
    // BandFromPoint call beginning at its blockStart.
    else if (blockStart < floatBEnd &&
             (floatBStart < blockEnd ||
              (floatBStart == blockEnd && blockStart == blockEnd))) {
      // This float is in our band.

      // Shrink our band's width if needed.
      StyleFloat floatStyle = fi.mFrame->StyleDisplay()->mFloat;

      // When aBandInfoType is BandFromPoint, we're only intended to
      // consider a point along the y axis rather than a band.
      const nscoord bandBlockEnd =
          aBandInfoType == BandInfoType::BandFromPoint ? blockStart : blockEnd;
      if (floatStyle == StyleFloat::Left) {
        // A left float
        nscoord lineRightEdge =
            fi.LineRight(aShapeType, blockStart, bandBlockEnd);
        if (lineRightEdge > lineLeft) {
          lineLeft = lineRightEdge;
          // Only set haveFloats to true if the float is inside our
          // containing block.  This matches the spec for what some
          // callers want and disagrees for other callers, so we should
          // probably provide better information at some point.
          haveFloats = true;

          // Our area may widen in the block direction if this float may
          // narrow in the block direction.
          mayWiden = mayWiden || fi.MayNarrowInBlockDirection(aShapeType);
        }
      } else {
        // A right float
        nscoord lineLeftEdge =
            fi.LineLeft(aShapeType, blockStart, bandBlockEnd);
        if (lineLeftEdge < lineRight) {
          lineRight = lineLeftEdge;
          // See above.
          haveFloats = true;
          mayWiden = mayWiden || fi.MayNarrowInBlockDirection(aShapeType);
        }
      }

      // Shrink our band's height if needed.
      if (floatBEnd < blockEnd &&
          aBandInfoType == BandInfoType::BandFromPoint) {
        blockEnd = floatBEnd;
      }
    }
  }

  nscoord blockSize =
      (blockEnd == nscoord_MAX) ? nscoord_MAX : (blockEnd - blockStart);
  // convert back from LineLeft/Right to IStart
  nscoord inlineStart =
      aWM.IsBidiLTR()
          ? lineLeft - mLineLeft
          : mLineLeft - lineRight + LogicalSize(aWM, aContainerSize).ISize(aWM);

  nsFlowAreaRectFlags flags =
      (haveFloats ? nsFlowAreaRectFlags::HasFloats
                  : nsFlowAreaRectFlags::NoFlags) |
      (mayWiden ? nsFlowAreaRectFlags::MayWiden : nsFlowAreaRectFlags::NoFlags);

  return nsFlowAreaRect(aWM, inlineStart, blockStart - mBlockStart,
                        lineRight - lineLeft, blockSize, flags);
}

void nsFloatManager::AddFloat(nsIFrame* aFloatFrame,
                              const LogicalRect& aMarginRect, WritingMode aWM,
                              const nsSize& aContainerSize) {
  CHECK_BLOCK_AND_LINE_DIR(aWM);
  NS_ASSERTION(aMarginRect.ISize(aWM) >= 0, "negative inline size!");
  NS_ASSERTION(aMarginRect.BSize(aWM) >= 0, "negative block size!");

  FloatInfo info(aFloatFrame, mLineLeft, mBlockStart, aMarginRect, aWM,
                 aContainerSize);

  // Set mLeftBEnd and mRightBEnd.
  if (HasAnyFloats()) {
    FloatInfo& tail = mFloats[mFloats.Length() - 1];
    info.mLeftBEnd = tail.mLeftBEnd;
    info.mRightBEnd = tail.mRightBEnd;
  } else {
    info.mLeftBEnd = nscoord_MIN;
    info.mRightBEnd = nscoord_MIN;
  }
  StyleFloat floatStyle = aFloatFrame->StyleDisplay()->mFloat;
  MOZ_ASSERT(floatStyle == StyleFloat::Left || floatStyle == StyleFloat::Right,
             "Unexpected float style!");
  nscoord& sideBEnd =
      floatStyle == StyleFloat::Left ? info.mLeftBEnd : info.mRightBEnd;
  nscoord thisBEnd = info.BEnd();
  if (thisBEnd > sideBEnd) sideBEnd = thisBEnd;

  mFloats.AppendElement(std::move(info));
}

// static
LogicalRect nsFloatManager::CalculateRegionFor(WritingMode aWM,
                                               nsIFrame* aFloat,
                                               const LogicalMargin& aMargin,
                                               const nsSize& aContainerSize) {
  // We consider relatively positioned frames at their original position.
  LogicalRect region(aWM,
                     nsRect(aFloat->GetNormalPosition(), aFloat->GetSize()),
                     aContainerSize);

  // Float region includes its margin
  region.Inflate(aWM, aMargin);

  // Don't store rectangles with negative margin-box width or height in
  // the float manager; it can't deal with them.
  if (region.ISize(aWM) < 0) {
    // Preserve the right margin-edge for left floats and the left
    // margin-edge for right floats
    const nsStyleDisplay* display = aFloat->StyleDisplay();
    StyleFloat floatStyle = display->mFloat;
    if ((StyleFloat::Left == floatStyle) == aWM.IsBidiLTR()) {
      region.IStart(aWM) = region.IEnd(aWM);
    }
    region.ISize(aWM) = 0;
  }
  if (region.BSize(aWM) < 0) {
    region.BSize(aWM) = 0;
  }
  return region;
}

NS_DECLARE_FRAME_PROPERTY_DELETABLE(FloatRegionProperty, nsMargin)

LogicalRect nsFloatManager::GetRegionFor(WritingMode aWM, nsIFrame* aFloat,
                                         const nsSize& aContainerSize) {
  LogicalRect region = aFloat->GetLogicalRect(aWM, aContainerSize);
  void* storedRegion = aFloat->GetProperty(FloatRegionProperty());
  if (storedRegion) {
    nsMargin margin = *static_cast<nsMargin*>(storedRegion);
    region.Inflate(aWM, LogicalMargin(aWM, margin));
  }
  return region;
}

void nsFloatManager::StoreRegionFor(WritingMode aWM, nsIFrame* aFloat,
                                    const LogicalRect& aRegion,
                                    const nsSize& aContainerSize) {
  nsRect region = aRegion.GetPhysicalRect(aWM, aContainerSize);
  nsRect rect = aFloat->GetRect();
  if (region.IsEqualEdges(rect)) {
    aFloat->DeleteProperty(FloatRegionProperty());
  } else {
    nsMargin* storedMargin = aFloat->GetProperty(FloatRegionProperty());
    if (!storedMargin) {
      storedMargin = new nsMargin();
      aFloat->SetProperty(FloatRegionProperty(), storedMargin);
    }
    *storedMargin = region - rect;
  }
}

nsresult nsFloatManager::RemoveTrailingRegions(nsIFrame* aFrameList) {
  if (!aFrameList) {
    return NS_OK;
  }
  // This could be a good bit simpler if we could guarantee that the
  // floats given were at the end of our list, so we could just search
  // for the head of aFrameList.  (But we can't;
  // layout/reftests/bugs/421710-1.html crashes.)
  nsTHashtable<nsPtrHashKey<nsIFrame> > frameSet(1);

  for (nsIFrame* f = aFrameList; f; f = f->GetNextSibling()) {
    frameSet.PutEntry(f);
  }

  uint32_t newLength = mFloats.Length();
  while (newLength > 0) {
    if (!frameSet.Contains(mFloats[newLength - 1].mFrame)) {
      break;
    }
    --newLength;
  }
  mFloats.TruncateLength(newLength);

#ifdef DEBUG
  for (uint32_t i = 0; i < mFloats.Length(); ++i) {
    NS_ASSERTION(
        !frameSet.Contains(mFloats[i].mFrame),
        "Frame region deletion was requested but we couldn't delete it");
  }
#endif

  return NS_OK;
}

void nsFloatManager::PushState(SavedState* aState) {
  MOZ_ASSERT(aState, "Need a place to save state");

  // This is a cheap push implementation, which
  // only saves the (x,y) and last frame in the mFrameInfoMap
  // which is enough info to get us back to where we should be
  // when pop is called.
  //
  // This push/pop mechanism is used to undo any
  // floats that were added during the unconstrained reflow
  // in nsBlockReflowContext::DoReflowBlock(). (See bug 96736)
  //
  // It should also be noted that the state for mFloatDamage is
  // intentionally not saved or restored in PushState() and PopState(),
  // since that could lead to bugs where damage is missed/dropped when
  // we move from position A to B (during the intermediate incremental
  // reflow mentioned above) and then from B to C during the subsequent
  // reflow. In the typical case A and C will be the same, but not always.
  // Allowing mFloatDamage to accumulate the damage incurred during both
  // reflows ensures that nothing gets missed.
  aState->mLineLeft = mLineLeft;
  aState->mBlockStart = mBlockStart;
  aState->mPushedLeftFloatPastBreak = mPushedLeftFloatPastBreak;
  aState->mPushedRightFloatPastBreak = mPushedRightFloatPastBreak;
  aState->mSplitLeftFloatAcrossBreak = mSplitLeftFloatAcrossBreak;
  aState->mSplitRightFloatAcrossBreak = mSplitRightFloatAcrossBreak;
  aState->mFloatInfoCount = mFloats.Length();
}

void nsFloatManager::PopState(SavedState* aState) {
  MOZ_ASSERT(aState, "No state to restore?");

  mLineLeft = aState->mLineLeft;
  mBlockStart = aState->mBlockStart;
  mPushedLeftFloatPastBreak = aState->mPushedLeftFloatPastBreak;
  mPushedRightFloatPastBreak = aState->mPushedRightFloatPastBreak;
  mSplitLeftFloatAcrossBreak = aState->mSplitLeftFloatAcrossBreak;
  mSplitRightFloatAcrossBreak = aState->mSplitRightFloatAcrossBreak;

  NS_ASSERTION(aState->mFloatInfoCount <= mFloats.Length(),
               "somebody misused PushState/PopState");
  mFloats.TruncateLength(aState->mFloatInfoCount);
}

nscoord nsFloatManager::GetLowestFloatTop() const {
  if (mPushedLeftFloatPastBreak || mPushedRightFloatPastBreak) {
    return nscoord_MAX;
  }
  if (!HasAnyFloats()) {
    return nscoord_MIN;
  }
  return mFloats[mFloats.Length() - 1].BStart() - mBlockStart;
}

#ifdef DEBUG_FRAME_DUMP
void DebugListFloatManager(const nsFloatManager* aFloatManager) {
  aFloatManager->List(stdout);
}

nsresult nsFloatManager::List(FILE* out) const {
  if (!HasAnyFloats()) return NS_OK;

  for (uint32_t i = 0; i < mFloats.Length(); ++i) {
    const FloatInfo& fi = mFloats[i];
    fprintf_stderr(out,
                   "Float %u: frame=%p rect={%d,%d,%d,%d} BEnd={l:%d, r:%d}\n",
                   i, static_cast<void*>(fi.mFrame), fi.LineLeft(), fi.BStart(),
                   fi.ISize(), fi.BSize(), fi.mLeftBEnd, fi.mRightBEnd);
  }
  return NS_OK;
}
#endif

nscoord nsFloatManager::ClearFloats(nscoord aBCoord, StyleClear aBreakType,
                                    uint32_t aFlags) const {
  if (!(aFlags & DONT_CLEAR_PUSHED_FLOATS) && ClearContinues(aBreakType)) {
    return nscoord_MAX;
  }
  if (!HasAnyFloats()) {
    return aBCoord;
  }

  nscoord blockEnd = aBCoord + mBlockStart;

  const FloatInfo& tail = mFloats[mFloats.Length() - 1];
  switch (aBreakType) {
    case StyleClear::Both:
      blockEnd = std::max(blockEnd, tail.mLeftBEnd);
      blockEnd = std::max(blockEnd, tail.mRightBEnd);
      break;
    case StyleClear::Left:
      blockEnd = std::max(blockEnd, tail.mLeftBEnd);
      break;
    case StyleClear::Right:
      blockEnd = std::max(blockEnd, tail.mRightBEnd);
      break;
    default:
      // Do nothing
      break;
  }

  blockEnd -= mBlockStart;

  return blockEnd;
}

bool nsFloatManager::ClearContinues(StyleClear aBreakType) const {
  return ((mPushedLeftFloatPastBreak || mSplitLeftFloatAcrossBreak) &&
          (aBreakType == StyleClear::Both || aBreakType == StyleClear::Left)) ||
         ((mPushedRightFloatPastBreak || mSplitRightFloatAcrossBreak) &&
          (aBreakType == StyleClear::Both || aBreakType == StyleClear::Right));
}

/////////////////////////////////////////////////////////////////////////////
// ShapeInfo is an abstract class for implementing all the shapes in CSS
// Shapes Module. A subclass needs to override all the methods to adjust
// the flow area with respect to its shape.
//
class nsFloatManager::ShapeInfo {
 public:
  virtual ~ShapeInfo() {}

  virtual nscoord LineLeft(const nscoord aBStart,
                           const nscoord aBEnd) const = 0;
  virtual nscoord LineRight(const nscoord aBStart,
                            const nscoord aBEnd) const = 0;
  virtual nscoord BStart() const = 0;
  virtual nscoord BEnd() const = 0;
  virtual bool IsEmpty() const = 0;

  // Does this shape possibly get inline narrower in the BStart() to BEnd()
  // span when proceeding in the block direction? This is false for unrounded
  // rectangles that span all the way to BEnd(), but could be true for other
  // shapes. Note that we don't care if the BEnd() falls short of the margin
  // rect -- the ShapeInfo can only affect float behavior in the span between
  // BStart() and BEnd().
  virtual bool MayNarrowInBlockDirection() const = 0;

  // Translate the current origin by the specified offsets.
  virtual void Translate(nscoord aLineLeft, nscoord aBlockStart) = 0;

  static LogicalRect ComputeShapeBoxRect(const StyleShapeSource& aShapeOutside,
                                         nsIFrame* const aFrame,
                                         const LogicalRect& aMarginRect,
                                         WritingMode aWM);

  // Convert the LogicalRect to the special logical coordinate space used
  // in float manager.
  static nsRect ConvertToFloatLogical(const LogicalRect& aRect, WritingMode aWM,
                                      const nsSize& aContainerSize) {
    return nsRect(aRect.LineLeft(aWM, aContainerSize), aRect.BStart(aWM),
                  aRect.ISize(aWM), aRect.BSize(aWM));
  }

  static UniquePtr<ShapeInfo> CreateShapeBox(nsIFrame* const aFrame,
                                             nscoord aShapeMargin,
                                             const LogicalRect& aShapeBoxRect,
                                             WritingMode aWM,
                                             const nsSize& aContainerSize);

  static UniquePtr<ShapeInfo> CreateBasicShape(
      const StyleBasicShape& aBasicShape, nscoord aShapeMargin,
      nsIFrame* const aFrame, const LogicalRect& aShapeBoxRect,
      const LogicalRect& aMarginRect, WritingMode aWM,
      const nsSize& aContainerSize);

  static UniquePtr<ShapeInfo> CreateInset(const StyleBasicShape& aBasicShape,
                                          nscoord aShapeMargin,
                                          nsIFrame* aFrame,
                                          const LogicalRect& aShapeBoxRect,
                                          WritingMode aWM,
                                          const nsSize& aContainerSize);

  static UniquePtr<ShapeInfo> CreateCircleOrEllipse(
      const StyleBasicShape& aBasicShape, nscoord aShapeMargin,
      nsIFrame* const aFrame, const LogicalRect& aShapeBoxRect, WritingMode aWM,
      const nsSize& aContainerSize);

  static UniquePtr<ShapeInfo> CreatePolygon(const StyleBasicShape& aBasicShape,
                                            nscoord aShapeMargin,
                                            nsIFrame* const aFrame,
                                            const LogicalRect& aShapeBoxRect,
                                            const LogicalRect& aMarginRect,
                                            WritingMode aWM,
                                            const nsSize& aContainerSize);

  static UniquePtr<ShapeInfo> CreateImageShape(const nsStyleImage& aShapeImage,
                                               float aShapeImageThreshold,
                                               nscoord aShapeMargin,
                                               nsIFrame* const aFrame,
                                               const LogicalRect& aMarginRect,
                                               WritingMode aWM,
                                               const nsSize& aContainerSize);

 protected:
  // Compute the minimum line-axis difference between the bounding shape
  // box and its rounded corner within the given band (block-axis region).
  // This is used as a helper function to compute the LineRight() and
  // LineLeft(). See the picture in the implementation for an example.
  // RadiusL and RadiusB stand for radius on the line-axis and block-axis.
  //
  // Returns radius-x diff on the line-axis, or 0 if there's no rounded
  // corner within the given band.
  static nscoord ComputeEllipseLineInterceptDiff(
      const nscoord aShapeBoxBStart, const nscoord aShapeBoxBEnd,
      const nscoord aBStartCornerRadiusL, const nscoord aBStartCornerRadiusB,
      const nscoord aBEndCornerRadiusL, const nscoord aBEndCornerRadiusB,
      const nscoord aBandBStart, const nscoord aBandBEnd);

  static nscoord XInterceptAtY(const nscoord aY, const nscoord aRadiusX,
                               const nscoord aRadiusY);

  // Convert the physical point to the special logical coordinate space
  // used in float manager.
  static nsPoint ConvertToFloatLogical(const nsPoint& aPoint, WritingMode aWM,
                                       const nsSize& aContainerSize);

  // Convert the half corner radii (nscoord[8]) to the special logical
  // coordinate space used in float manager.
  static UniquePtr<nscoord[]> ConvertToFloatLogical(const nscoord aRadii[8],
                                                    WritingMode aWM);

  // Some ShapeInfo subclasses may define their float areas in intervals.
  // Each interval is a rectangle that is one device pixel deep in the block
  // axis. The values are stored as block edges in the y coordinates,
  // and inline edges as the x coordinates. Interval arrays should be sorted
  // on increasing y values. This function uses a binary search to find the
  // first interval that contains aTargetY. If no such interval exists, this
  // function returns aIntervals.Length().
  static size_t MinIntervalIndexContainingY(const nsTArray<nsRect>& aIntervals,
                                            const nscoord aTargetY);

  // This interval function is designed to handle the arguments to ::LineLeft()
  // and LineRight() and interpret them for the supplied aIntervals.
  static nscoord LineEdge(const nsTArray<nsRect>& aIntervals,
                          const nscoord aBStart, const nscoord aBEnd,
                          bool aIsLineLeft);

  // These types, constants, and functions are useful for ShapeInfos that
  // allocate a distance field. Efficient distance field calculations use
  // integer values that are 5X the Euclidean distance. MAX_MARGIN_5X is the
  // largest possible margin that we can calculate (in 5X integer dev pixels),
  // given these constraints.
  typedef uint16_t dfType;
  static const dfType MAX_CHAMFER_VALUE;
  static const dfType MAX_MARGIN;
  static const dfType MAX_MARGIN_5X;

  // This function returns a typed, overflow-safe value of aShapeMargin in
  // 5X integer dev pixels.
  static dfType CalcUsedShapeMargin5X(nscoord aShapeMargin,
                                      int32_t aAppUnitsPerDevPixel);
};

const nsFloatManager::ShapeInfo::dfType
    nsFloatManager::ShapeInfo::MAX_CHAMFER_VALUE = 11;

const nsFloatManager::ShapeInfo::dfType nsFloatManager::ShapeInfo::MAX_MARGIN =
    (std::numeric_limits<dfType>::max() - MAX_CHAMFER_VALUE) / 5;

const nsFloatManager::ShapeInfo::dfType
    nsFloatManager::ShapeInfo::MAX_MARGIN_5X = MAX_MARGIN * 5;

/////////////////////////////////////////////////////////////////////////////
// EllipseShapeInfo
//
// Implements shape-outside: circle() and shape-outside: ellipse().
//
class nsFloatManager::EllipseShapeInfo final
    : public nsFloatManager::ShapeInfo {
 public:
  // Construct the float area using math to calculate the shape boundary.
  // This is the fast path and should be used when shape-margin is negligible,
  // or when the two values of aRadii are roughly equal. Those two conditions
  // are defined by ShapeMarginIsNegligible() and RadiiAreRoughlyEqual(). In
  // those cases, we can conveniently represent the entire float area using
  // an ellipse.
  EllipseShapeInfo(const nsPoint& aCenter, const nsSize& aRadii,
                   nscoord aShapeMargin);

  // Construct the float area using rasterization to calculate the shape
  // boundary. This constructor accounts for the fact that applying
  // 'shape-margin' to an ellipse produces a shape that is not mathematically
  // representable as an ellipse.
  EllipseShapeInfo(const nsPoint& aCenter, const nsSize& aRadii,
                   nscoord aShapeMargin, int32_t aAppUnitsPerDevPixel);

  static bool ShapeMarginIsNegligible(nscoord aShapeMargin) {
    // For now, only return true for a shape-margin of 0. In the future, if
    // we want to enable use of the fast-path constructor more often, this
    // limit could be increased;
    static const nscoord SHAPE_MARGIN_NEGLIGIBLE_MAX(0);
    return aShapeMargin <= SHAPE_MARGIN_NEGLIGIBLE_MAX;
  }

  static bool RadiiAreRoughlyEqual(const nsSize& aRadii) {
    // For now, only return true when we are exactly equal. In the future, if
    // we want to enable use of the fast-path constructor more often, this
    // could be generalized to allow radii that are in some close proportion
    // to each other.
    return aRadii.width == aRadii.height;
  }
  nscoord LineEdge(const nscoord aBStart, const nscoord aBEnd,
                   bool aLeft) const;
  nscoord LineLeft(const nscoord aBStart, const nscoord aBEnd) const override;
  nscoord LineRight(const nscoord aBStart, const nscoord aBEnd) const override;
  nscoord BStart() const override {
    return mCenter.y - mRadii.height - mShapeMargin;
  }
  nscoord BEnd() const override {
    return mCenter.y + mRadii.height + mShapeMargin;
  }
  bool IsEmpty() const override {
    // An EllipseShapeInfo is never empty, because an ellipse or circle with
    // a zero radius acts like a point, and an ellipse with one zero radius
    // acts like a line.
    return false;
  }
  bool MayNarrowInBlockDirection() const override { return true; }

  void Translate(nscoord aLineLeft, nscoord aBlockStart) override {
    mCenter.MoveBy(aLineLeft, aBlockStart);

    for (nsRect& interval : mIntervals) {
      interval.MoveBy(aLineLeft, aBlockStart);
    }
  }

 private:
  // The position of the center of the ellipse. The coordinate space is the
  // same as FloatInfo::mRect.
  nsPoint mCenter;
  // The radii of the ellipse in app units. The width and height represent
  // the line-axis and block-axis radii of the ellipse.
  nsSize mRadii;
  // The shape-margin of the ellipse in app units. If this value is greater
  // than zero, then we calculate the bounds of the ellipse + margin using
  // numerical methods and store the values in mIntervals.
  nscoord mShapeMargin;

  // An interval is slice of the float area defined by this EllipseShapeInfo.
  // Each interval is a rectangle that is one pixel deep in the block
  // axis. The values are stored as block edges in the y coordinates,
  // and inline edges as the x coordinates.

  // The intervals are stored in ascending order on y.
  nsTArray<nsRect> mIntervals;
};

nsFloatManager::EllipseShapeInfo::EllipseShapeInfo(const nsPoint& aCenter,
                                                   const nsSize& aRadii,
                                                   nscoord aShapeMargin)
    : mCenter(aCenter),
      mRadii(aRadii),
      mShapeMargin(
          0)  // We intentionally ignore the value of aShapeMargin here.
{
  MOZ_ASSERT(
      RadiiAreRoughlyEqual(aRadii) || ShapeMarginIsNegligible(aShapeMargin),
      "This constructor should only be called when margin is "
      "negligible or radii are roughly equal.");

  // We add aShapeMargin into the radii, and we earlier stored a mShapeMargin
  // of zero.
  mRadii.width += aShapeMargin;
  mRadii.height += aShapeMargin;
}

nsFloatManager::EllipseShapeInfo::EllipseShapeInfo(const nsPoint& aCenter,
                                                   const nsSize& aRadii,
                                                   nscoord aShapeMargin,
                                                   int32_t aAppUnitsPerDevPixel)
    : mCenter(aCenter), mRadii(aRadii), mShapeMargin(aShapeMargin) {
  if (RadiiAreRoughlyEqual(aRadii) || ShapeMarginIsNegligible(aShapeMargin)) {
    // Mimic the behavior of the simple constructor, by adding aShapeMargin
    // into the radii, and then storing mShapeMargin of zero.
    mRadii.width += mShapeMargin;
    mRadii.height += mShapeMargin;
    mShapeMargin = 0;
    return;
  }

  // We have to calculate a distance field from the ellipse edge, then build
  // intervals based on pixels with less than aShapeMargin distance to an
  // edge pixel.

  // mCenter and mRadii have already been translated into logical coordinates.
  // x = inline, y = block. Due to symmetry, we only need to calculate the
  // distance field for one quadrant of the ellipse. We choose the positive-x,
  // positive-y quadrant (the lower right quadrant in horizontal-tb writing
  // mode). We choose this quadrant because it allows us to traverse our
  // distance field in memory order, which is more cache efficient.
  // When we apply these intervals in LineLeft() and LineRight(), we
  // account for block ranges that hit other quadrants, or hit multiple
  // quadrants.

  // Given this setup, computing the distance field is a one-pass O(n)
  // operation that runs from block top-to-bottom, inline left-to-right. We
  // use a chamfer 5-7-11 5x5 matrix to compute minimum distance to an edge
  // pixel. This integer math computation is reasonably close to the true
  // Euclidean distance. The distances will be approximately 5x the true
  // distance, quantized in integer units. The 5x is factored away in the
  // comparison which builds the intervals.
  dfType usedMargin5X =
      CalcUsedShapeMargin5X(aShapeMargin, aAppUnitsPerDevPixel);

  // Calculate the bounds of one quadrant of the ellipse, in integer device
  // pixels. These bounds are equal to the rectangle defined by the radii,
  // plus the shape-margin value in both dimensions.
  const LayoutDeviceIntSize bounds =
      LayoutDevicePixel::FromAppUnitsRounded(mRadii, aAppUnitsPerDevPixel) +
      LayoutDeviceIntSize(usedMargin5X / 5, usedMargin5X / 5);

  // Since our distance field is computed with a 5x5 neighborhood, but only
  // looks in the negative block and negative inline directions, it is
  // effectively a 3x3 neighborhood. We need to expand our distance field
  // outwards by a further 2 pixels in both axes (on the minimum block edge
  // and the minimum inline edge). We call this edge area the expanded region.

  static const uint32_t iExpand = 2;
  static const uint32_t bExpand = 2;

  // Clamp the size of our distance field sizes to prevent multiplication
  // overflow.
  static const uint32_t DF_SIDE_MAX =
      floor(sqrt((double)(std::numeric_limits<int32_t>::max())));
  const uint32_t iSize = std::min(bounds.width + iExpand, DF_SIDE_MAX);
  const uint32_t bSize = std::min(bounds.height + bExpand, DF_SIDE_MAX);
  auto df = MakeUniqueFallible<dfType[]>(iSize * bSize);
  if (!df) {
    // Without a distance field, we can't reason about the float area.
    return;
  }

  // Single pass setting distance field, in positive block direction, three
  // cases:
  // 1) Expanded region pixel: set to MAX_MARGIN_5X.
  // 2) Pixel within the ellipse: set to 0.
  // 3) Other pixel: set to minimum neighborhood distance value, computed
  //                 with 5-7-11 chamfer.

  for (uint32_t b = 0; b < bSize; ++b) {
    bool bIsInExpandedRegion(b < bExpand);
    nscoord bInAppUnits = (b - bExpand) * aAppUnitsPerDevPixel;
    bool bIsMoreThanEllipseBEnd(bInAppUnits > mRadii.height);

    // Find the i intercept of the ellipse edge for this block row, and
    // adjust it to compensate for the expansion of the inline dimension.
    // If we're in the expanded region, or if we're using a b that's more
    // than the bEnd of the ellipse, the intercept is nscoord_MIN.
    // We have one other special case to consider: when the ellipse has no
    // height. In that case we treat the bInAppUnits == 0 case as
    // intercepting at the width of the ellipse. All other cases solve
    // the intersection mathematically.
    const int32_t iIntercept =
        (bIsInExpandedRegion || bIsMoreThanEllipseBEnd)
            ? nscoord_MIN
            : iExpand + NSAppUnitsToIntPixels(
                            (!!mRadii.height || bInAppUnits)
                                ? XInterceptAtY(bInAppUnits, mRadii.width,
                                                mRadii.height)
                                : mRadii.width,
                            aAppUnitsPerDevPixel);

    // Set iMax in preparation for this block row.
    int32_t iMax = iIntercept;

    for (uint32_t i = 0; i < iSize; ++i) {
      const uint32_t index = i + b * iSize;
      MOZ_ASSERT(index < (iSize * bSize),
                 "Our distance field index should be in-bounds.");

      // Handle our three cases, in order.
      if (i < iExpand || bIsInExpandedRegion) {
        // Case 1: Expanded reqion pixel.
        df[index] = MAX_MARGIN_5X;
      } else if ((int32_t)i <= iIntercept) {
        // Case 2: Pixel within the ellipse, or just outside the edge of it.
        // Having a positive height indicates that there's an area we can
        // be inside of.
        df[index] = (!!mRadii.height) ? 0 : 5;
      } else {
        // Case 3: Other pixel.

        // Backward-looking neighborhood distance from target pixel X
        // with chamfer 5-7-11 looks like:
        //
        // +--+--+--+
        // |  |11|  |
        // +--+--+--+
        // |11| 7| 5|
        // +--+--+--+
        // |  | 5| X|
        // +--+--+--+
        //
        // X should be set to the minimum of the values of all of the numbered
        // neighbors summed with the value in that chamfer cell.
        MOZ_ASSERT(index - iSize - 2 < (iSize * bSize) &&
                       index - (iSize * 2) - 1 < (iSize * bSize),
                   "Our distance field most extreme indices should be "
                   "in-bounds.");

        // clang-format off
        df[index] = std::min<dfType>(df[index - 1] + 5,
                    std::min<dfType>(df[index - iSize] + 5,
                    std::min<dfType>(df[index - iSize - 1] + 7,
                    std::min<dfType>(df[index - iSize - 2] + 11,
                    df[index - (iSize * 2) - 1] + 11))));
        // clang-format on

        // Check the df value and see if it's less than or equal to the
        // usedMargin5X value.
        if (df[index] <= usedMargin5X) {
          MOZ_ASSERT(iMax < (int32_t)i);
          iMax = i;
        } else {
          // Since we're computing the bottom-right quadrant, there's no way
          // for a later i value in this row to be within the usedMargin5X
          // value. Likewise, every row beyond us will encounter this
          // condition with an i value less than or equal to our i value now.
          // Since our chamfer only looks upward and leftward, we can stop
          // calculating for the rest of the row, because the distance field
          // values there will never be looked at in a later row's chamfer
          // calculation.
          break;
        }
      }
    }

    // It's very likely, though not guaranteed that we will find an pixel
    // within the shape-margin distance for each block row. This may not
    // always be true due to rounding errors.
    if (iMax > nscoord_MIN) {
      // Origin for this interval is at the center of the ellipse, adjusted
      // in the positive block direction by bInAppUnits.
      nsPoint origin(aCenter.x, aCenter.y + bInAppUnits);
      // Size is an inline iMax plus 1 (to account for the whole pixel) dev
      // pixels, by 1 block dev pixel. We convert this to app units.
      nsSize size((iMax - iExpand + 1) * aAppUnitsPerDevPixel,
                  aAppUnitsPerDevPixel);
      mIntervals.AppendElement(nsRect(origin, size));
    }
  }
}

nscoord nsFloatManager::EllipseShapeInfo::LineEdge(const nscoord aBStart,
                                                   const nscoord aBEnd,
                                                   bool aIsLineLeft) const {
  // If no mShapeMargin, just compute the edge using math.
  if (mShapeMargin == 0) {
    nscoord lineDiff = ComputeEllipseLineInterceptDiff(
        BStart(), BEnd(), mRadii.width, mRadii.height, mRadii.width,
        mRadii.height, aBStart, aBEnd);
    return mCenter.x + (aIsLineLeft ? (-mRadii.width + lineDiff)
                                    : (mRadii.width - lineDiff));
  }

  // We are checking against our intervals. Make sure we have some.
  if (mIntervals.IsEmpty()) {
    NS_WARNING("With mShapeMargin > 0, we can't proceed without intervals.");
    return aIsLineLeft ? nscoord_MAX : nscoord_MIN;
  }

  // Map aBStart and aBEnd into our intervals. Our intervals are calculated
  // for the lower-right quadrant (in terms of horizontal-tb writing mode).
  // If aBStart and aBEnd span the center of the ellipse, then we know we
  // are at the maximum displacement from the center.
  bool bStartIsAboveCenter = (aBStart < mCenter.y);
  bool bEndIsBelowOrAtCenter = (aBEnd >= mCenter.y);
  if (bStartIsAboveCenter && bEndIsBelowOrAtCenter) {
    return mCenter.x + (aIsLineLeft ? (-mRadii.width - mShapeMargin)
                                    : (mRadii.width + mShapeMargin));
  }

  // aBStart and aBEnd don't span the center. Since the intervals are
  // strictly wider approaching the center (the start of the mIntervals
  // array), we only need to find the interval at the block value closest to
  // the center. We find the min of aBStart, aBEnd, and their reflections --
  // whichever two of them are within the lower-right quadrant. When we
  // reflect from the upper-right quadrant to the lower-right, we have to
  // subtract 1 from the reflection, to account that block values are always
  // addressed from the leading block edge.

  // The key example is when we check with aBStart == aBEnd at the top of the
  // intervals. That block line would be considered contained in the
  // intervals (though it has no height), but its reflection would not be
  // within the intervals unless we subtract 1.
  nscoord bSmallestWithinIntervals = std::min(
      bStartIsAboveCenter ? aBStart + (mCenter.y - aBStart) * 2 - 1 : aBStart,
      bEndIsBelowOrAtCenter ? aBEnd : aBEnd + (mCenter.y - aBEnd) * 2 - 1);

  MOZ_ASSERT(bSmallestWithinIntervals >= mCenter.y &&
                 bSmallestWithinIntervals < BEnd(),
             "We should have a block value within the float area.");

  size_t index =
      MinIntervalIndexContainingY(mIntervals, bSmallestWithinIntervals);
  if (index >= mIntervals.Length()) {
    // This indicates that our intervals don't cover the block value
    // bSmallestWithinIntervals. This can happen when rounding error in the
    // distance field calculation resulted in the last block pixel row not
    // contributing to the float area. As long as we're within one block pixel
    // past the last interval, this is an expected outcome.
#ifdef DEBUG
    nscoord onePixelPastLastInterval =
        mIntervals[mIntervals.Length() - 1].YMost() +
        mIntervals[mIntervals.Length() - 1].Height();
    NS_WARNING_ASSERTION(bSmallestWithinIntervals < onePixelPastLastInterval,
                         "We should have found a matching interval for this "
                         "block value.");
#endif
    return aIsLineLeft ? nscoord_MAX : nscoord_MIN;
  }

  // The interval is storing the line right value. If aIsLineLeft is true,
  // return the line right value reflected about the center. Since this is
  // an inline measurement, it's just checking the distance to an edge, and
  // not a collision with a specific pixel. For that reason, we don't need
  // to subtract 1 from the reflection, as we did with the block reflection.
  nscoord iLineRight = mIntervals[index].XMost();
  return aIsLineLeft ? iLineRight - (iLineRight - mCenter.x) * 2 : iLineRight;
}

nscoord nsFloatManager::EllipseShapeInfo::LineLeft(const nscoord aBStart,
                                                   const nscoord aBEnd) const {
  return LineEdge(aBStart, aBEnd, true);
}

nscoord nsFloatManager::EllipseShapeInfo::LineRight(const nscoord aBStart,
                                                    const nscoord aBEnd) const {
  return LineEdge(aBStart, aBEnd, false);
}

/////////////////////////////////////////////////////////////////////////////
// RoundedBoxShapeInfo
//
// Implements shape-outside: <shape-box> and shape-outside: inset().
//
class nsFloatManager::RoundedBoxShapeInfo final
    : public nsFloatManager::ShapeInfo {
 public:
  RoundedBoxShapeInfo(const nsRect& aRect, UniquePtr<nscoord[]> aRadii)
      : mRect(aRect), mRadii(std::move(aRadii)), mShapeMargin(0) {}

  RoundedBoxShapeInfo(const nsRect& aRect, UniquePtr<nscoord[]> aRadii,
                      nscoord aShapeMargin, int32_t aAppUnitsPerDevPixel);

  nscoord LineLeft(const nscoord aBStart, const nscoord aBEnd) const override;
  nscoord LineRight(const nscoord aBStart, const nscoord aBEnd) const override;
  nscoord BStart() const override { return mRect.y; }
  nscoord BEnd() const override { return mRect.YMost(); }
  bool IsEmpty() const override {
    // A RoundedBoxShapeInfo is never empty, because if it is collapsed to
    // zero area, it acts like a point. If it is collapsed further, to become
    // inside-out, it acts like a rect in the same shape as the inside-out
    // rect.
    return false;
  }
  bool MayNarrowInBlockDirection() const override {
    // Only possible to narrow if there are non-null mRadii.
    return !!mRadii;
  }

  void Translate(nscoord aLineLeft, nscoord aBlockStart) override {
    mRect.MoveBy(aLineLeft, aBlockStart);

    if (mShapeMargin > 0) {
      MOZ_ASSERT(mLogicalTopLeftCorner && mLogicalTopRightCorner &&
                     mLogicalBottomLeftCorner && mLogicalBottomRightCorner,
                 "If we have positive shape-margin, we should have corners.");
      mLogicalTopLeftCorner->Translate(aLineLeft, aBlockStart);
      mLogicalTopRightCorner->Translate(aLineLeft, aBlockStart);
      mLogicalBottomLeftCorner->Translate(aLineLeft, aBlockStart);
      mLogicalBottomRightCorner->Translate(aLineLeft, aBlockStart);
    }
  }

  static bool EachCornerHasBalancedRadii(const nscoord* aRadii) {
    return (aRadii[eCornerTopLeftX] == aRadii[eCornerTopLeftY] &&
            aRadii[eCornerTopRightX] == aRadii[eCornerTopRightY] &&
            aRadii[eCornerBottomLeftX] == aRadii[eCornerBottomLeftY] &&
            aRadii[eCornerBottomRightX] == aRadii[eCornerBottomRightY]);
  }

 private:
  // The rect of the rounded box shape in the float manager's coordinate
  // space.
  nsRect mRect;
  // The half corner radii of the reference box. It's an nscoord[8] array
  // in the float manager's coordinate space. If there are no radii, it's
  // nullptr.
  const UniquePtr<nscoord[]> mRadii;

  // A shape-margin value extends the boundaries of the float area. When our
  // first constructor is used, it is for the creation of rounded boxes that
  // can ignore shape-margin -- either because it was specified as zero or
  // because the box shape and radii can be inflated to account for it. When
  // our second constructor is used, we store the shape-margin value here.
  const nscoord mShapeMargin;

  // If our second constructor is called (which implies mShapeMargin > 0),
  // we will construct EllipseShapeInfo objects for each corner. We use the
  // float logical naming here, where LogicalTopLeftCorner means the BStart
  // LineLeft corner, and similarly for the other corners.
  UniquePtr<EllipseShapeInfo> mLogicalTopLeftCorner;
  UniquePtr<EllipseShapeInfo> mLogicalTopRightCorner;
  UniquePtr<EllipseShapeInfo> mLogicalBottomLeftCorner;
  UniquePtr<EllipseShapeInfo> mLogicalBottomRightCorner;
};

nsFloatManager::RoundedBoxShapeInfo::RoundedBoxShapeInfo(
    const nsRect& aRect, UniquePtr<nscoord[]> aRadii, nscoord aShapeMargin,
    int32_t aAppUnitsPerDevPixel)
    : mRect(aRect), mRadii(std::move(aRadii)), mShapeMargin(aShapeMargin) {
  MOZ_ASSERT(mShapeMargin > 0 && !EachCornerHasBalancedRadii(mRadii.get()),
             "Slow constructor should only be used for for shape-margin > 0 "
             "and radii with elliptical corners.");

  // Before we inflate mRect by mShapeMargin, construct each of our corners.
  // If we do it in this order, it's a bit simpler to calculate the center
  // of each of the corners.
  mLogicalTopLeftCorner = MakeUnique<EllipseShapeInfo>(
      nsPoint(mRect.X() + mRadii[eCornerTopLeftX],
              mRect.Y() + mRadii[eCornerTopLeftY]),
      nsSize(mRadii[eCornerTopLeftX], mRadii[eCornerTopLeftY]), mShapeMargin,
      aAppUnitsPerDevPixel);

  mLogicalTopRightCorner = MakeUnique<EllipseShapeInfo>(
      nsPoint(mRect.XMost() - mRadii[eCornerTopRightX],
              mRect.Y() + mRadii[eCornerTopRightY]),
      nsSize(mRadii[eCornerTopRightX], mRadii[eCornerTopRightY]), mShapeMargin,
      aAppUnitsPerDevPixel);

  mLogicalBottomLeftCorner = MakeUnique<EllipseShapeInfo>(
      nsPoint(mRect.X() + mRadii[eCornerBottomLeftX],
              mRect.YMost() - mRadii[eCornerBottomLeftY]),
      nsSize(mRadii[eCornerBottomLeftX], mRadii[eCornerBottomLeftY]),
      mShapeMargin, aAppUnitsPerDevPixel);

  mLogicalBottomRightCorner = MakeUnique<EllipseShapeInfo>(
      nsPoint(mRect.XMost() - mRadii[eCornerBottomRightX],
              mRect.YMost() - mRadii[eCornerBottomRightY]),
      nsSize(mRadii[eCornerBottomRightX], mRadii[eCornerBottomRightY]),
      mShapeMargin, aAppUnitsPerDevPixel);

  // Now we inflate our mRect by mShapeMargin.
  mRect.Inflate(mShapeMargin);
}

nscoord nsFloatManager::RoundedBoxShapeInfo::LineLeft(
    const nscoord aBStart, const nscoord aBEnd) const {
  if (mShapeMargin == 0) {
    if (!mRadii) {
      return mRect.x;
    }

    nscoord lineLeftDiff = ComputeEllipseLineInterceptDiff(
        mRect.y, mRect.YMost(), mRadii[eCornerTopLeftX],
        mRadii[eCornerTopLeftY], mRadii[eCornerBottomLeftX],
        mRadii[eCornerBottomLeftY], aBStart, aBEnd);
    return mRect.x + lineLeftDiff;
  }

  MOZ_ASSERT(mLogicalTopLeftCorner && mLogicalBottomLeftCorner,
             "If we have positive shape-margin, we should have corners.");

  // Determine if aBEnd is within our top corner.
  if (aBEnd < mLogicalTopLeftCorner->BEnd()) {
    return mLogicalTopLeftCorner->LineLeft(aBStart, aBEnd);
  }

  // Determine if aBStart is within our bottom corner.
  if (aBStart >= mLogicalBottomLeftCorner->BStart()) {
    return mLogicalBottomLeftCorner->LineLeft(aBStart, aBEnd);
  }

  // Either aBStart or aBEnd or both are within the flat part of our left
  // edge. Because we've already inflated our mRect to encompass our
  // mShapeMargin, we can just return the edge.
  return mRect.X();
}

nscoord nsFloatManager::RoundedBoxShapeInfo::LineRight(
    const nscoord aBStart, const nscoord aBEnd) const {
  if (mShapeMargin == 0) {
    if (!mRadii) {
      return mRect.XMost();
    }

    nscoord lineRightDiff = ComputeEllipseLineInterceptDiff(
        mRect.y, mRect.YMost(), mRadii[eCornerTopRightX],
        mRadii[eCornerTopRightY], mRadii[eCornerBottomRightX],
        mRadii[eCornerBottomRightY], aBStart, aBEnd);
    return mRect.XMost() - lineRightDiff;
  }

  MOZ_ASSERT(mLogicalTopRightCorner && mLogicalBottomRightCorner,
             "If we have positive shape-margin, we should have corners.");

  // Determine if aBEnd is within our top corner.
  if (aBEnd < mLogicalTopRightCorner->BEnd()) {
    return mLogicalTopRightCorner->LineRight(aBStart, aBEnd);
  }

  // Determine if aBStart is within our bottom corner.
  if (aBStart >= mLogicalBottomRightCorner->BStart()) {
    return mLogicalBottomRightCorner->LineRight(aBStart, aBEnd);
  }

  // Either aBStart or aBEnd or both are within the flat part of our right
  // edge. Because we've already inflated our mRect to encompass our
  // mShapeMargin, we can just return the edge.
  return mRect.XMost();
}

/////////////////////////////////////////////////////////////////////////////
// PolygonShapeInfo
//
// Implements shape-outside: polygon().
//
class nsFloatManager::PolygonShapeInfo final
    : public nsFloatManager::ShapeInfo {
 public:
  explicit PolygonShapeInfo(nsTArray<nsPoint>&& aVertices);
  PolygonShapeInfo(nsTArray<nsPoint>&& aVertices, nscoord aShapeMargin,
                   int32_t aAppUnitsPerDevPixel, const nsRect& aMarginRect);

  nscoord LineLeft(const nscoord aBStart, const nscoord aBEnd) const override;
  nscoord LineRight(const nscoord aBStart, const nscoord aBEnd) const override;
  nscoord BStart() const override { return mBStart; }
  nscoord BEnd() const override { return mBEnd; }
  bool IsEmpty() const override {
    // A PolygonShapeInfo is never empty, because the parser prevents us from
    // creating a shape with no vertices. If we only have 1 vertex, the
    // shape acts like a point. With 2 non-coincident vertices, the shape
    // acts like a line.
    return false;
  }
  bool MayNarrowInBlockDirection() const override { return true; }

  void Translate(nscoord aLineLeft, nscoord aBlockStart) override;

 private:
  // Helper method for determining the mBStart and mBEnd based on the
  // vertices' y extent.
  void ComputeExtent();

  // Helper method for implementing LineLeft() and LineRight().
  nscoord ComputeLineIntercept(
      const nscoord aBStart, const nscoord aBEnd,
      nscoord (*aCompareOp)(std::initializer_list<nscoord>),
      const nscoord aLineInterceptInitialValue) const;

  // Given a horizontal line y, and two points p1 and p2 forming a line
  // segment L. Solve x for the intersection of y and L. This method
  // assumes y and L do intersect, and L is *not* horizontal.
  static nscoord XInterceptAtY(const nscoord aY, const nsPoint& aP1,
                               const nsPoint& aP2);

  // The vertices of the polygon in the float manager's coordinate space.
  nsTArray<nsPoint> mVertices;

  // An interval is slice of the float area defined by this PolygonShapeInfo.
  // These are only generated and used in float area calculations for
  // shape-margin > 0. Each interval is a rectangle that is one device pixel
  // deep in the block axis. The values are stored as block edges in the y
  // coordinates, and inline edges as the x coordinates.

  // The intervals are stored in ascending order on y.
  nsTArray<nsRect> mIntervals;

  // Computed block start and block end value of the polygon shape. These
  // initial values are set to correct values in ComputeExtent(), which is
  // called from all constructors. Afterwards, mBStart is guaranteed to be
  // less than or equal to mBEnd.
  nscoord mBStart = nscoord_MAX;
  nscoord mBEnd = nscoord_MIN;
};

nsFloatManager::PolygonShapeInfo::PolygonShapeInfo(
    nsTArray<nsPoint>&& aVertices)
    : mVertices(aVertices) {
  ComputeExtent();
}

nsFloatManager::PolygonShapeInfo::PolygonShapeInfo(
    nsTArray<nsPoint>&& aVertices, nscoord aShapeMargin,
    int32_t aAppUnitsPerDevPixel, const nsRect& aMarginRect)
    : mVertices(aVertices) {
  MOZ_ASSERT(aShapeMargin > 0,
             "This constructor should only be used for a "
             "polygon with a positive shape-margin.");

  ComputeExtent();

  // With a positive aShapeMargin, we have to calculate a distance
  // field from the opaque pixels, then build intervals based on
  // them being within aShapeMargin distance to an opaque pixel.

  // Roughly: for each pixel in the margin box, we need to determine the
  // distance to the nearest opaque image-pixel.  If that distance is less
  // than aShapeMargin, we consider this margin-box pixel as being part of
  // the float area.

  // Computing the distance field is a two-pass O(n) operation.
  // We use a chamfer 5-7-11 5x5 matrix to compute minimum distance
  // to an opaque pixel. This integer math computation is reasonably
  // close to the true Euclidean distance. The distances will be
  // approximately 5x the true distance, quantized in integer units.
  // The 5x is factored away in the comparison used in the final
  // pass which builds the intervals.
  dfType usedMargin5X =
      CalcUsedShapeMargin5X(aShapeMargin, aAppUnitsPerDevPixel);

  // Allocate our distance field.  The distance field has to cover
  // the entire aMarginRect, since aShapeMargin could bleed into it.
  // Conveniently, our vertices have been converted into this same space,
  // so if we cover the aMarginRect, we cover all the vertices.
  const LayoutDeviceIntSize marginRectDevPixels =
      LayoutDevicePixel::FromAppUnitsRounded(aMarginRect.Size(),
                                             aAppUnitsPerDevPixel);

  // Since our distance field is computed with a 5x5 neighborhood,
  // we need to expand our distance field by a further 4 pixels in
  // both axes, 2 on the leading edge and 2 on the trailing edge.
  // We call this edge area the "expanded region".
  static const uint32_t kiExpansionPerSide = 2;
  static const uint32_t kbExpansionPerSide = 2;

  // Clamp the size of our distance field sizes to prevent multiplication
  // overflow.
  static const uint32_t DF_SIDE_MAX =
      floor(sqrt((double)(std::numeric_limits<int32_t>::max())));

  // Clamp the margin plus 2X the expansion values between expansion + 1 and
  // DF_SIDE_MAX. This ensures that the distance field allocation doesn't
  // overflow during multiplication, and the reverse iteration doesn't
  // underflow.
  const uint32_t iSize =
      std::max(std::min(marginRectDevPixels.width + (kiExpansionPerSide * 2),
                        DF_SIDE_MAX),
               kiExpansionPerSide + 1);
  const uint32_t bSize =
      std::max(std::min(marginRectDevPixels.height + (kbExpansionPerSide * 2),
                        DF_SIDE_MAX),
               kbExpansionPerSide + 1);

  // Since the margin-box size is CSS controlled, and large values will
  // generate large iSize and bSize values, we do a fallible allocation for
  // the distance field. If allocation fails, we early exit and layout will
  // be wrong, but we'll avoid aborting from OOM.
  auto df = MakeUniqueFallible<dfType[]>(iSize * bSize);
  if (!df) {
    // Without a distance field, we can't reason about the float area.
    return;
  }

  // First pass setting distance field, starting at top-left, three cases:
  // 1) Expanded region pixel: set to MAX_MARGIN_5X.
  // 2) Pixel within the polygon: set to 0.
  // 3) Other pixel: set to minimum backward-looking neighborhood
  //                 distance value, computed with 5-7-11 chamfer.

  for (uint32_t b = 0; b < bSize; ++b) {
    // Find the left and right i intercepts of the polygon edge for this
    // block row, and adjust them to compensate for the expansion of the
    // inline dimension. If we're in the expanded region, or if we're using
    // a b that's less than the bStart of the polygon, the intercepts are
    // the nscoord min and max limits.
    nscoord bInAppUnits = (b - kbExpansionPerSide) * aAppUnitsPerDevPixel;
    bool bIsInExpandedRegion(b < kbExpansionPerSide ||
                             b >= bSize - kbExpansionPerSide);

    // We now figure out the i values that correspond to the left edge and
    // the right edge of the polygon at one-dev-pixel-thick strip of b. We
    // have a ComputeLineIntercept function that takes and returns app unit
    // coordinates in the space of aMarginRect. So to pass in b values, we
    // first have to add the aMarginRect.y value. And for the values that we
    // get out, we have to subtract away the aMarginRect.x value before
    // converting the app units to dev pixels.
    nscoord bInAppUnitsMarginRect = bInAppUnits + aMarginRect.y;
    bool bIsLessThanPolygonBStart(bInAppUnitsMarginRect < mBStart);
    bool bIsMoreThanPolygonBEnd(bInAppUnitsMarginRect > mBEnd);

    const int32_t iLeftEdge =
        (bIsInExpandedRegion || bIsLessThanPolygonBStart ||
         bIsMoreThanPolygonBEnd)
            ? nscoord_MAX
            : kiExpansionPerSide +
                  NSAppUnitsToIntPixels(
                      ComputeLineIntercept(
                          bInAppUnitsMarginRect,
                          bInAppUnitsMarginRect + aAppUnitsPerDevPixel,
                          std::min<nscoord>, nscoord_MAX) -
                          aMarginRect.x,
                      aAppUnitsPerDevPixel);

    const int32_t iRightEdge =
        (bIsInExpandedRegion || bIsLessThanPolygonBStart ||
         bIsMoreThanPolygonBEnd)
            ? nscoord_MIN
            : kiExpansionPerSide +
                  NSAppUnitsToIntPixels(
                      ComputeLineIntercept(
                          bInAppUnitsMarginRect,
                          bInAppUnitsMarginRect + aAppUnitsPerDevPixel,
                          std::max<nscoord>, nscoord_MIN) -
                          aMarginRect.x,
                      aAppUnitsPerDevPixel);

    for (uint32_t i = 0; i < iSize; ++i) {
      const uint32_t index = i + b * iSize;
      MOZ_ASSERT(index < (iSize * bSize),
                 "Our distance field index should be in-bounds.");

      // Handle our three cases, in order.
      if (i < kiExpansionPerSide || i >= iSize - kiExpansionPerSide ||
          bIsInExpandedRegion) {
        // Case 1: Expanded pixel.
        df[index] = MAX_MARGIN_5X;
      } else if ((int32_t)i >= iLeftEdge && (int32_t)i <= iRightEdge) {
        // Case 2: Polygon pixel, either inside or just adjacent to the right
        // edge. We need this special distinction to detect a space between
        // edges that is less than one dev pixel.
        df[index] = (int32_t)i < iRightEdge ? 0 : 5;
      } else {
        // Case 3: Other pixel.

        // Backward-looking neighborhood distance from target pixel X
        // with chamfer 5-7-11 looks like:
        //
        // +--+--+--+--+--+
        // |  |11|  |11|  |
        // +--+--+--+--+--+
        // |11| 7| 5| 7|11|
        // +--+--+--+--+--+
        // |  | 5| X|  |  |
        // +--+--+--+--+--+
        //
        // X should be set to the minimum of MAX_MARGIN_5X and the
        // values of all of the numbered neighbors summed with the
        // value in that chamfer cell.
        MOZ_ASSERT(index - (iSize * 2) - 1 < (iSize * bSize) &&
                       index - iSize - 2 < (iSize * bSize),
                   "Our distance field most extreme indices should be "
                   "in-bounds.");

        // clang-format off
        df[index] = std::min<dfType>(MAX_MARGIN_5X,
                    std::min<dfType>(df[index - (iSize * 2) - 1] + 11,
                    std::min<dfType>(df[index - (iSize * 2) + 1] + 11,
                    std::min<dfType>(df[index - iSize - 2] + 11,
                    std::min<dfType>(df[index - iSize - 1] + 7,
                    std::min<dfType>(df[index - iSize] + 5,
                    std::min<dfType>(df[index - iSize + 1] + 7,
                    std::min<dfType>(df[index - iSize + 2] + 11,
                                     df[index - 1] + 5))))))));
        // clang-format on
      }
    }
  }

  // Okay, time for the second pass. This pass is in reverse order from
  // the first pass. All of our opaque pixels have been set to 0, and all
  // of our expanded region pixels have been set to MAX_MARGIN_5X. Other
  // pixels have been set to some value between those two (inclusive) but
  // this hasn't yet taken into account the neighbors that were processed
  // after them in the first pass. This time we reverse iterate so we can
  // apply the forward-looking chamfer.

  // This time, we constrain our outer and inner loop to ignore the
  // expanded region pixels. For each pixel we iterate, we set the df value
  // to the minimum forward-looking neighborhood distance value, computed
  // with a 5-7-11 chamfer. We also check each df value against the
  // usedMargin5X threshold, and use that to set the iMin and iMax values
  // for the interval we'll create for that block axis value (b).

  // At the end of each row, if any of the other pixels had a value less
  // than usedMargin5X, we create an interval.
  for (uint32_t b = bSize - kbExpansionPerSide - 1; b >= kbExpansionPerSide;
       --b) {
    // iMin tracks the first df pixel and iMax the last df pixel whose
    // df[] value is less than usedMargin5X. Set iMin and iMax in
    // preparation for this row or column.
    int32_t iMin = iSize;
    int32_t iMax = -1;

    for (uint32_t i = iSize - kiExpansionPerSide - 1; i >= kiExpansionPerSide;
         --i) {
      const uint32_t index = i + b * iSize;
      MOZ_ASSERT(index < (iSize * bSize),
                 "Our distance field index should be in-bounds.");

      // Only apply the chamfer calculation if the df value is not
      // already 0, since the chamfer can only reduce the value.
      if (df[index]) {
        // Forward-looking neighborhood distance from target pixel X
        // with chamfer 5-7-11 looks like:
        //
        // +--+--+--+--+--+
        // |  |  | X| 5|  |
        // +--+--+--+--+--+
        // |11| 7| 5| 7|11|
        // +--+--+--+--+--+
        // |  |11|  |11|  |
        // +--+--+--+--+--+
        //
        // X should be set to the minimum of its current value and
        // the values of all of the numbered neighbors summed with
        // the value in that chamfer cell.
        MOZ_ASSERT(index + (iSize * 2) + 1 < (iSize * bSize) &&
                       index + iSize + 2 < (iSize * bSize),
                   "Our distance field most extreme indices should be "
                   "in-bounds.");

        // clang-format off
        df[index] = std::min<dfType>(df[index],
                    std::min<dfType>(df[index + (iSize * 2) + 1] + 11,
                    std::min<dfType>(df[index + (iSize * 2) - 1] + 11,
                    std::min<dfType>(df[index + iSize + 2] + 11,
                    std::min<dfType>(df[index + iSize + 1] + 7,
                    std::min<dfType>(df[index + iSize] + 5,
                    std::min<dfType>(df[index + iSize - 1] + 7,
                    std::min<dfType>(df[index + iSize - 2] + 11,
                                     df[index + 1] + 5))))))));
        // clang-format on
      }

      // Finally, we can check the df value and see if it's less than
      // or equal to the usedMargin5X value.
      if (df[index] <= usedMargin5X) {
        if (iMax == -1) {
          iMax = i;
        }
        MOZ_ASSERT(iMin > (int32_t)i);
        iMin = i;
      }
    }

    if (iMax != -1) {
      // Our interval values, iMin, iMax, and b are all calculated from
      // the expanded region, which is based on the margin rect. To create
      // our interval, we have to subtract kiExpansionPerSide from iMin and
      // iMax, and subtract kbExpansionPerSide from b to account for the
      // expanded region edges.  This produces coords that are relative to
      // our margin-rect.

      // Origin for this interval is at the aMarginRect origin, adjusted in
      // the block direction by b in app units, and in the inline direction
      // by iMin in app units.
      nsPoint origin(
          aMarginRect.x + (iMin - kiExpansionPerSide) * aAppUnitsPerDevPixel,
          aMarginRect.y + (b - kbExpansionPerSide) * aAppUnitsPerDevPixel);

      // Size is the difference in iMax and iMin, plus 1 (to account for the
      // whole pixel) dev pixels, by 1 block dev pixel. We don't bother
      // subtracting kiExpansionPerSide from iMin and iMax in this case
      // because we only care about the distance between them. We convert
      // everything to app units.
      nsSize size((iMax - iMin + 1) * aAppUnitsPerDevPixel,
                  aAppUnitsPerDevPixel);

      mIntervals.AppendElement(nsRect(origin, size));
    }
  }

  // Reverse the intervals keep the array sorted on the block direction.
  mIntervals.Reverse();

  // Adjust our extents by aShapeMargin. This may cause overflow of some
  // kind if aShapeMargin is large, so we do some clamping to maintain the
  // invariant mBStart <= mBEnd.
  mBStart = std::min(mBStart, mBStart - aShapeMargin);
  mBEnd = std::max(mBEnd, mBEnd + aShapeMargin);
}

nscoord nsFloatManager::PolygonShapeInfo::LineLeft(const nscoord aBStart,
                                                   const nscoord aBEnd) const {
  // Use intervals if we have them.
  if (!mIntervals.IsEmpty()) {
    return LineEdge(mIntervals, aBStart, aBEnd, true);
  }

  // We want the line-left-most inline-axis coordinate where the
  // (block-axis) aBStart/aBEnd band crosses a line segment of the polygon.
  // To get that, we start as line-right as possible (at nscoord_MAX). Then
  // we iterate each line segment to compute its intersection point with the
  // band (if any) and using std::min() successively to get the smallest
  // inline-coordinates among those intersection points.
  //
  // Note: std::min<nscoord> means the function std::min() with template
  // parameter nscoord, not the minimum value of nscoord.
  return ComputeLineIntercept(aBStart, aBEnd, std::min<nscoord>, nscoord_MAX);
}

nscoord nsFloatManager::PolygonShapeInfo::LineRight(const nscoord aBStart,
                                                    const nscoord aBEnd) const {
  // Use intervals if we have them.
  if (!mIntervals.IsEmpty()) {
    return LineEdge(mIntervals, aBStart, aBEnd, false);
  }

  // Similar to LineLeft(). Though here, we want the line-right-most
  // inline-axis coordinate, so we instead start at nscoord_MIN and use
  // std::max() to get the biggest inline-coordinate among those
  // intersection points.
  return ComputeLineIntercept(aBStart, aBEnd, std::max<nscoord>, nscoord_MIN);
}

void nsFloatManager::PolygonShapeInfo::ComputeExtent() {
  // mBStart and mBEnd are the lower and the upper bounds of all the
  // vertex.y, respectively. The vertex.y is actually on the block-axis of
  // the float manager's writing mode.
  for (const nsPoint& vertex : mVertices) {
    mBStart = std::min(mBStart, vertex.y);
    mBEnd = std::max(mBEnd, vertex.y);
  }

  MOZ_ASSERT(mBStart <= mBEnd,
             "Start of float area should be less than "
             "or equal to the end.");
}

nscoord nsFloatManager::PolygonShapeInfo::ComputeLineIntercept(
    const nscoord aBStart, const nscoord aBEnd,
    nscoord (*aCompareOp)(std::initializer_list<nscoord>),
    const nscoord aLineInterceptInitialValue) const {
  MOZ_ASSERT(aBStart <= aBEnd,
             "The band's block start is greater than its block end?");

  const size_t len = mVertices.Length();
  nscoord lineIntercept = aLineInterceptInitialValue;

  // We have some special treatment of horizontal lines between vertices.
  // Generally, we can ignore the impact of the horizontal lines since their
  // endpoints will be included in the lines preceeding or following them.
  // However, it's possible the polygon is entirely a horizontal line,
  // possibly built from more than one horizontal segment. In such a case,
  // we need to have the horizontal line(s) contribute to the line intercepts.
  // We do this by accepting horizontal lines until we find a non-horizontal
  // line, after which all further horizontal lines are ignored.
  bool canIgnoreHorizontalLines = false;

  // Iterate each line segment {p0, p1}, {p1, p2}, ..., {pn, p0}.
  for (size_t i = 0; i < len; ++i) {
    const nsPoint* smallYVertex = &mVertices[i];
    const nsPoint* bigYVertex = &mVertices[(i + 1) % len];

    // Swap the two points to satisfy the requirement for calling
    // XInterceptAtY.
    if (smallYVertex->y > bigYVertex->y) {
      std::swap(smallYVertex, bigYVertex);
    }

    // Generally, we need to ignore line segments that either don't intersect
    // the band, or merely touch it. However, if the polygon has no block extent
    // (it is a point, or a horizontal line), and the band touches the line
    // segment, we let that line segment through.
    if ((aBStart >= bigYVertex->y || aBEnd <= smallYVertex->y) &&
        !(mBStart == mBEnd && aBStart == bigYVertex->y)) {
      // Skip computing the intercept if the band doesn't intersect the
      // line segment.
      continue;
    }

    nscoord bStartLineIntercept;
    nscoord bEndLineIntercept;

    if (smallYVertex->y == bigYVertex->y) {
      // The line is horizontal; see if we can ignore it.
      if (canIgnoreHorizontalLines) {
        continue;
      }

      // For a horizontal line that we can't ignore, we treat the two x value
      // ends as the bStartLineIntercept and bEndLineIntercept. It doesn't
      // matter which is applied to which, because they'll both be applied
      // to aCompareOp.
      bStartLineIntercept = smallYVertex->x;
      bEndLineIntercept = bigYVertex->x;
    } else {
      // This is not a horizontal line. We can now ignore all future
      // horizontal lines.
      canIgnoreHorizontalLines = true;

      bStartLineIntercept =
          aBStart <= smallYVertex->y
              ? smallYVertex->x
              : XInterceptAtY(aBStart, *smallYVertex, *bigYVertex);
      bEndLineIntercept =
          aBEnd >= bigYVertex->y
              ? bigYVertex->x
              : XInterceptAtY(aBEnd, *smallYVertex, *bigYVertex);
    }

    // If either new intercept is more extreme than lineIntercept (per
    // aCompareOp), then update lineIntercept to that value.
    lineIntercept =
        aCompareOp({lineIntercept, bStartLineIntercept, bEndLineIntercept});
  }

  return lineIntercept;
}

void nsFloatManager::PolygonShapeInfo::Translate(nscoord aLineLeft,
                                                 nscoord aBlockStart) {
  for (nsPoint& vertex : mVertices) {
    vertex.MoveBy(aLineLeft, aBlockStart);
  }
  for (nsRect& interval : mIntervals) {
    interval.MoveBy(aLineLeft, aBlockStart);
  }
  mBStart += aBlockStart;
  mBEnd += aBlockStart;
}

/* static */
nscoord nsFloatManager::PolygonShapeInfo::XInterceptAtY(const nscoord aY,
                                                        const nsPoint& aP1,
                                                        const nsPoint& aP2) {
  // Solve for x in the linear equation: x = x1 + (y-y1) * (x2-x1) / (y2-y1),
  // where aP1 = (x1, y1) and aP2 = (x2, y2).

  MOZ_ASSERT(aP1.y <= aY && aY <= aP2.y,
             "This function won't work if the horizontal line at aY and "
             "the line segment (aP1, aP2) do not intersect!");

  MOZ_ASSERT(aP1.y != aP2.y,
             "A horizontal line segment results in dividing by zero error!");

  return aP1.x + (aY - aP1.y) * (aP2.x - aP1.x) / (aP2.y - aP1.y);
}

/////////////////////////////////////////////////////////////////////////////
// ImageShapeInfo
//
// Implements shape-outside: <image>
//
class nsFloatManager::ImageShapeInfo final : public nsFloatManager::ShapeInfo {
 public:
  ImageShapeInfo(uint8_t* aAlphaPixels, int32_t aStride,
                 const LayoutDeviceIntSize& aImageSize,
                 int32_t aAppUnitsPerDevPixel, float aShapeImageThreshold,
                 nscoord aShapeMargin, const nsRect& aContentRect,
                 const nsRect& aMarginRect, WritingMode aWM,
                 const nsSize& aContainerSize);

  nscoord LineLeft(const nscoord aBStart, const nscoord aBEnd) const override;
  nscoord LineRight(const nscoord aBStart, const nscoord aBEnd) const override;
  nscoord BStart() const override { return mBStart; }
  nscoord BEnd() const override { return mBEnd; }
  bool IsEmpty() const override { return mIntervals.IsEmpty(); }
  bool MayNarrowInBlockDirection() const override { return true; }

  void Translate(nscoord aLineLeft, nscoord aBlockStart) override;

 private:
  // An interval is slice of the float area defined by this ImageShapeInfo.
  // Each interval is a rectangle that is one pixel deep in the block
  // axis. The values are stored as block edges in the y coordinates,
  // and inline edges as the x coordinates.

  // The intervals are stored in ascending order on y.
  nsTArray<nsRect> mIntervals;

  nscoord mBStart = nscoord_MAX;
  nscoord mBEnd = nscoord_MIN;

  // CreateInterval transforms the supplied aIMin and aIMax and aB
  // values into an interval that respects the writing mode. An
  // aOffsetFromContainer can be provided if the aIMin, aIMax, aB
  // values were generated relative to something other than the container
  // rect (such as the content rect or margin rect).
  void CreateInterval(int32_t aIMin, int32_t aIMax, int32_t aB,
                      int32_t aAppUnitsPerDevPixel,
                      const nsPoint& aOffsetFromContainer, WritingMode aWM,
                      const nsSize& aContainerSize);
};

nsFloatManager::ImageShapeInfo::ImageShapeInfo(
    uint8_t* aAlphaPixels, int32_t aStride,
    const LayoutDeviceIntSize& aImageSize, int32_t aAppUnitsPerDevPixel,
    float aShapeImageThreshold, nscoord aShapeMargin,
    const nsRect& aContentRect, const nsRect& aMarginRect, WritingMode aWM,
    const nsSize& aContainerSize) {
  MOZ_ASSERT(aShapeImageThreshold >= 0.0 && aShapeImageThreshold <= 1.0,
             "The computed value of shape-image-threshold is wrong!");

  const uint8_t threshold = NSToIntFloor(aShapeImageThreshold * 255);

  MOZ_ASSERT(aImageSize.width >= 0 && aImageSize.height >= 0,
             "Image size must be non-negative for our math to work.");
  const uint32_t w = aImageSize.width;
  const uint32_t h = aImageSize.height;

  if (aShapeMargin <= 0) {
    // Without a positive aShapeMargin, all we have to do is a
    // direct threshold comparison of the alpha pixels.
    // https://drafts.csswg.org/css-shapes-1/#valdef-shape-image-threshold-number

    // Scan the pixels in a double loop. For horizontal writing modes, we do
    // this row by row, from top to bottom. For vertical writing modes, we do
    // column by column, from left to right. We define the two loops
    // generically, then figure out the rows and cols within the inner loop.
    const uint32_t bSize = aWM.IsVertical() ? w : h;
    const uint32_t iSize = aWM.IsVertical() ? h : w;
    for (uint32_t b = 0; b < bSize; ++b) {
      // iMin and max store the start and end of the float area for the row
      // or column represented by this iteration of the outer loop.
      int32_t iMin = -1;
      int32_t iMax = -1;

      for (uint32_t i = 0; i < iSize; ++i) {
        const uint32_t col = aWM.IsVertical() ? b : i;
        const uint32_t row = aWM.IsVertical() ? i : b;
        const uint32_t index = col + row * aStride;

        // Determine if the alpha pixel at this row and column has a value
        // greater than the threshold. If it does, update our iMin and iMax
        // values to track the edges of the float area for this row or column.
        // https://drafts.csswg.org/css-shapes-1/#valdef-shape-image-threshold-number
        const uint8_t alpha = aAlphaPixels[index];
        if (alpha > threshold) {
          if (iMin == -1) {
            iMin = i;
          }
          MOZ_ASSERT(iMax < (int32_t)i);
          iMax = i;
        }
      }

      // At the end of a row or column; did we find something?
      if (iMin != -1) {
        // We need to supply an offset of the content rect top left, since
        // our col and row have been calculated from the content rect,
        // instead of the margin rect (against which floats are applied).
        CreateInterval(iMin, iMax, b, aAppUnitsPerDevPixel,
                       aContentRect.TopLeft(), aWM, aContainerSize);
      }
    }

    if (aWM.IsVerticalRL()) {
      // vertical-rl or sideways-rl.
      // Because we scan the columns from left to right, we need to reverse
      // the array so that it's sorted (in ascending order) on the block
      // direction.
      mIntervals.Reverse();
    }
  } else {
    // With a positive aShapeMargin, we have to calculate a distance
    // field from the opaque pixels, then build intervals based on
    // them being within aShapeMargin distance to an opaque pixel.

    // Roughly: for each pixel in the margin box, we need to determine the
    // distance to the nearest opaque image-pixel.  If that distance is less
    // than aShapeMargin, we consider this margin-box pixel as being part of
    // the float area.

    // Computing the distance field is a two-pass O(n) operation.
    // We use a chamfer 5-7-11 5x5 matrix to compute minimum distance
    // to an opaque pixel. This integer math computation is reasonably
    // close to the true Euclidean distance. The distances will be
    // approximately 5x the true distance, quantized in integer units.
    // The 5x is factored away in the comparison used in the final
    // pass which builds the intervals.
    dfType usedMargin5X =
        CalcUsedShapeMargin5X(aShapeMargin, aAppUnitsPerDevPixel);

    // Allocate our distance field.  The distance field has to cover
    // the entire aMarginRect, since aShapeMargin could bleed into it,
    // beyond the content rect covered by aAlphaPixels. To make this work,
    // we calculate a dfOffset value which is the top left of the content
    // rect relative to the margin rect.
    nsPoint offsetPoint = aContentRect.TopLeft() - aMarginRect.TopLeft();
    LayoutDeviceIntPoint dfOffset = LayoutDevicePixel::FromAppUnitsRounded(
        offsetPoint, aAppUnitsPerDevPixel);

    // Since our distance field is computed with a 5x5 neighborhood,
    // we need to expand our distance field by a further 4 pixels in
    // both axes, 2 on the leading edge and 2 on the trailing edge.
    // We call this edge area the "expanded region".

    // Our expansion amounts need to be the same for our math to work.
    static uint32_t kExpansionPerSide = 2;
    // Since dfOffset will be used in comparisons against expanded region
    // pixel values, it's convenient to add expansion amounts to dfOffset in
    // both axes, to simplify comparison math later.
    dfOffset.x += kExpansionPerSide;
    dfOffset.y += kExpansionPerSide;

    // In all these calculations, we purposely ignore aStride, because
    // we don't have to replicate the packing that we received in
    // aAlphaPixels. When we need to convert from df coordinates to
    // alpha coordinates, we do that with math based on row and col.
    const LayoutDeviceIntSize marginRectDevPixels =
        LayoutDevicePixel::FromAppUnitsRounded(aMarginRect.Size(),
                                               aAppUnitsPerDevPixel);

    // Clamp the size of our distance field sizes to prevent multiplication
    // overflow.
    static const uint32_t DF_SIDE_MAX =
        floor(sqrt((double)(std::numeric_limits<int32_t>::max())));

    // Clamp the margin plus 2X the expansion values between expansion + 1
    // and DF_SIDE_MAX. This ensures that the distance field allocation
    // doesn't overflow during multiplication, and the reverse iteration
    // doesn't underflow.
    const uint32_t wEx =
        std::max(std::min(marginRectDevPixels.width + (kExpansionPerSide * 2),
                          DF_SIDE_MAX),
                 kExpansionPerSide + 1);
    const uint32_t hEx =
        std::max(std::min(marginRectDevPixels.height + (kExpansionPerSide * 2),
                          DF_SIDE_MAX),
                 kExpansionPerSide + 1);

    // Since the margin-box size is CSS controlled, and large values will
    // generate large wEx and hEx values, we do a falliable allocation for
    // the distance field. If allocation fails, we early exit and layout will
    // be wrong, but we'll avoid aborting from OOM.
    auto df = MakeUniqueFallible<dfType[]>(wEx * hEx);
    if (!df) {
      // Without a distance field, we can't reason about the float area.
      return;
    }

    const uint32_t bSize = aWM.IsVertical() ? wEx : hEx;
    const uint32_t iSize = aWM.IsVertical() ? hEx : wEx;

    // First pass setting distance field, starting at top-left, three cases:
    // 1) Expanded region pixel: set to MAX_MARGIN_5X.
    // 2) Image pixel with alpha greater than threshold: set to 0.
    // 3) Other pixel: set to minimum backward-looking neighborhood
    //                 distance value, computed with 5-7-11 chamfer.

    // Scan the pixels in a double loop. For horizontal writing modes, we do
    // this row by row, from top to bottom. For vertical writing modes, we do
    // column by column, from left to right. We define the two loops
    // generically, then figure out the rows and cols within the inner loop.
    for (uint32_t b = 0; b < bSize; ++b) {
      for (uint32_t i = 0; i < iSize; ++i) {
        const uint32_t col = aWM.IsVertical() ? b : i;
        const uint32_t row = aWM.IsVertical() ? i : b;
        const uint32_t index = col + row * wEx;
        MOZ_ASSERT(index < (wEx * hEx),
                   "Our distance field index should be in-bounds.");

        // Handle our three cases, in order.
        if (col < kExpansionPerSide || col >= wEx - kExpansionPerSide ||
            row < kExpansionPerSide || row >= hEx - kExpansionPerSide) {
          // Case 1: Expanded pixel.
          df[index] = MAX_MARGIN_5X;
        } else if ((int32_t)col >= dfOffset.x &&
                   (int32_t)col < (dfOffset.x + aImageSize.width) &&
                   (int32_t)row >= dfOffset.y &&
                   (int32_t)row < (dfOffset.y + aImageSize.height) &&
                   aAlphaPixels[col - dfOffset.x +
                                (row - dfOffset.y) * aStride] > threshold) {
          // Case 2: Image pixel that is opaque.
          DebugOnly<uint32_t> alphaIndex =
              col - dfOffset.x + (row - dfOffset.y) * aStride;
          MOZ_ASSERT(alphaIndex < (aStride * h),
                     "Our aAlphaPixels index should be in-bounds.");

          df[index] = 0;
        } else {
          // Case 3: Other pixel.
          if (aWM.IsVertical()) {
            // Column-by-column, starting at the left, each column
            // top-to-bottom.
            // Backward-looking neighborhood distance from target pixel X
            // with chamfer 5-7-11 looks like:
            //
            // +--+--+--+
            // |  |11|  |   |    +
            // +--+--+--+   |   /|
            // |11| 7| 5|   |  / |
            // +--+--+--+   | /  V
            // |  | 5| X|   |/
            // +--+--+--+   +
            // |11| 7|  |
            // +--+--+--+
            // |  |11|  |
            // +--+--+--+
            //
            // X should be set to the minimum of MAX_MARGIN_5X and the
            // values of all of the numbered neighbors summed with the
            // value in that chamfer cell.
            MOZ_ASSERT(index - wEx - 2 < (iSize * bSize) &&
                           index + wEx - 2 < (iSize * bSize) &&
                           index - (wEx * 2) - 1 < (iSize * bSize),
                       "Our distance field most extreme indices should be "
                       "in-bounds.");

            // clang-format off
            df[index] = std::min<dfType>(MAX_MARGIN_5X,
                        std::min<dfType>(df[index - wEx - 2] + 11,
                        std::min<dfType>(df[index + wEx - 2] + 11,
                        std::min<dfType>(df[index - (wEx * 2) - 1] + 11,
                        std::min<dfType>(df[index - wEx - 1] + 7,
                        std::min<dfType>(df[index - 1] + 5,
                        std::min<dfType>(df[index + wEx - 1] + 7,
                        std::min<dfType>(df[index + (wEx * 2) - 1] + 11,
                                         df[index - wEx] + 5))))))));
            // clang-format on
          } else {
            // Row-by-row, starting at the top, each row left-to-right.
            // Backward-looking neighborhood distance from target pixel X
            // with chamfer 5-7-11 looks like:
            //
            // +--+--+--+--+--+
            // |  |11|  |11|  |   ----+
            // +--+--+--+--+--+      /
            // |11| 7| 5| 7|11|     /
            // +--+--+--+--+--+    /
            // |  | 5| X|  |  |   +-->
            // +--+--+--+--+--+
            //
            // X should be set to the minimum of MAX_MARGIN_5X and the
            // values of all of the numbered neighbors summed with the
            // value in that chamfer cell.
            MOZ_ASSERT(index - (wEx * 2) - 1 < (iSize * bSize) &&
                           index - wEx - 2 < (iSize * bSize),
                       "Our distance field most extreme indices should be "
                       "in-bounds.");

            // clang-format off
            df[index] = std::min<dfType>(MAX_MARGIN_5X,
                        std::min<dfType>(df[index - (wEx * 2) - 1] + 11,
                        std::min<dfType>(df[index - (wEx * 2) + 1] + 11,
                        std::min<dfType>(df[index - wEx - 2] + 11,
                        std::min<dfType>(df[index - wEx - 1] + 7,
                        std::min<dfType>(df[index - wEx] + 5,
                        std::min<dfType>(df[index - wEx + 1] + 7,
                        std::min<dfType>(df[index - wEx + 2] + 11,
                                         df[index - 1] + 5))))))));
            // clang-format on
          }
        }
      }
    }

    // Okay, time for the second pass. This pass is in reverse order from
    // the first pass. All of our opaque pixels have been set to 0, and all
    // of our expanded region pixels have been set to MAX_MARGIN_5X. Other
    // pixels have been set to some value between those two (inclusive) but
    // this hasn't yet taken into account the neighbors that were processed
    // after them in the first pass. This time we reverse iterate so we can
    // apply the forward-looking chamfer.

    // This time, we constrain our outer and inner loop to ignore the
    // expanded region pixels. For each pixel we iterate, we set the df value
    // to the minimum forward-looking neighborhood distance value, computed
    // with a 5-7-11 chamfer. We also check each df value against the
    // usedMargin5X threshold, and use that to set the iMin and iMax values
    // for the interval we'll create for that block axis value (b).

    // At the end of each row (or column in vertical writing modes),
    // if any of the other pixels had a value less than usedMargin5X,
    // we create an interval. Note: "bSize - kExpansionPerSide - 1" is the
    // index of the final row of pixels before the trailing expanded region.
    for (uint32_t b = bSize - kExpansionPerSide - 1; b >= kExpansionPerSide;
         --b) {
      // iMin tracks the first df pixel and iMax the last df pixel whose
      // df[] value is less than usedMargin5X. Set iMin and iMax in
      // preparation for this row or column.
      int32_t iMin = iSize;
      int32_t iMax = -1;

      // Note: "iSize - kExpansionPerSide - 1" is the index of the final row
      // of pixels before the trailing expanded region.
      for (uint32_t i = iSize - kExpansionPerSide - 1; i >= kExpansionPerSide;
           --i) {
        const uint32_t col = aWM.IsVertical() ? b : i;
        const uint32_t row = aWM.IsVertical() ? i : b;
        const uint32_t index = col + row * wEx;
        MOZ_ASSERT(index < (wEx * hEx),
                   "Our distance field index should be in-bounds.");

        // Only apply the chamfer calculation if the df value is not
        // already 0, since the chamfer can only reduce the value.
        if (df[index]) {
          if (aWM.IsVertical()) {
            // Column-by-column, starting at the right, each column
            // bottom-to-top.
            // Forward-looking neighborhood distance from target pixel X
            // with chamfer 5-7-11 looks like:
            //
            // +--+--+--+
            // |  |11|  |        +
            // +--+--+--+       /|
            // |  | 7|11|   A  / |
            // +--+--+--+   | /  |
            // | X| 5|  |   |/   |
            // +--+--+--+   +    |
            // | 5| 7|11|
            // +--+--+--+
            // |  |11|  |
            // +--+--+--+
            //
            // X should be set to the minimum of its current value and
            // the values of all of the numbered neighbors summed with
            // the value in that chamfer cell.
            MOZ_ASSERT(index + wEx + 2 < (wEx * hEx) &&
                           index + (wEx * 2) + 1 < (wEx * hEx) &&
                           index - (wEx * 2) + 1 < (wEx * hEx),
                       "Our distance field most extreme indices should be "
                       "in-bounds.");

            // clang-format off
            df[index] = std::min<dfType>(df[index],
                        std::min<dfType>(df[index + wEx + 2] + 11,
                        std::min<dfType>(df[index - wEx + 2] + 11,
                        std::min<dfType>(df[index + (wEx * 2) + 1] + 11,
                        std::min<dfType>(df[index + wEx + 1] + 7,
                        std::min<dfType>(df[index + 1] + 5,
                        std::min<dfType>(df[index - wEx + 1] + 7,
                        std::min<dfType>(df[index - (wEx * 2) + 1] + 11,
                                         df[index + wEx] + 5))))))));
            // clang-format on
          } else {
            // Row-by-row, starting at the bottom, each row right-to-left.
            // Forward-looking neighborhood distance from target pixel X
            // with chamfer 5-7-11 looks like:
            //
            // +--+--+--+--+--+
            // |  |  | X| 5|  |    <--+
            // +--+--+--+--+--+      /
            // |11| 7| 5| 7|11|     /
            // +--+--+--+--+--+    /
            // |  |11|  |11|  |   +----
            // +--+--+--+--+--+
            //
            // X should be set to the minimum of its current value and
            // the values of all of the numbered neighbors summed with
            // the value in that chamfer cell.
            MOZ_ASSERT(index + (wEx * 2) + 1 < (wEx * hEx) &&
                           index + wEx + 2 < (wEx * hEx),
                       "Our distance field most extreme indices should be "
                       "in-bounds.");

            // clang-format off
            df[index] = std::min<dfType>(df[index],
                        std::min<dfType>(df[index + (wEx * 2) + 1] + 11,
                        std::min<dfType>(df[index + (wEx * 2) - 1] + 11,
                        std::min<dfType>(df[index + wEx + 2] + 11,
                        std::min<dfType>(df[index + wEx + 1] + 7,
                        std::min<dfType>(df[index + wEx] + 5,
                        std::min<dfType>(df[index + wEx - 1] + 7,
                        std::min<dfType>(df[index + wEx - 2] + 11,
                                         df[index + 1] + 5))))))));
            // clang-format on
          }
        }

        // Finally, we can check the df value and see if it's less than
        // or equal to the usedMargin5X value.
        if (df[index] <= usedMargin5X) {
          if (iMax == -1) {
            iMax = i;
          }
          MOZ_ASSERT(iMin > (int32_t)i);
          iMin = i;
        }
      }

      if (iMax != -1) {
        // Our interval values, iMin, iMax, and b are all calculated from
        // the expanded region, which is based on the margin rect. To create
        // our interval, we have to subtract kExpansionPerSide from (iMin,
        // iMax, and b) to account for the expanded region edges. This
        // produces coords that are relative to our margin-rect, so we pass
        // in aMarginRect.TopLeft() to make CreateInterval convert to our
        // container's coordinate space.
        CreateInterval(iMin - kExpansionPerSide, iMax - kExpansionPerSide,
                       b - kExpansionPerSide, aAppUnitsPerDevPixel,
                       aMarginRect.TopLeft(), aWM, aContainerSize);
      }
    }

    if (!aWM.IsVerticalRL()) {
      // Anything other than vertical-rl or sideways-rl.
      // Because we assembled our intervals on the bottom-up pass,
      // they are reversed for most writing modes. Reverse them to
      // keep the array sorted on the block direction.
      mIntervals.Reverse();
    }
  }

  if (!mIntervals.IsEmpty()) {
    mBStart = mIntervals[0].Y();
    mBEnd = mIntervals.LastElement().YMost();
  }
}

void nsFloatManager::ImageShapeInfo::CreateInterval(
    int32_t aIMin, int32_t aIMax, int32_t aB, int32_t aAppUnitsPerDevPixel,
    const nsPoint& aOffsetFromContainer, WritingMode aWM,
    const nsSize& aContainerSize) {
  // Store an interval as an nsRect with our inline axis values stored in x
  // and our block axis values stored in y. The position is dependent on
  // the writing mode, but the size is the same for all writing modes.

  // Size is the difference in inline axis edges stored as x, and one
  // block axis pixel stored as y. For the inline axis, we add 1 to aIMax
  // because we want to capture the far edge of the last pixel.
  nsSize size(((aIMax + 1) - aIMin) * aAppUnitsPerDevPixel,
              aAppUnitsPerDevPixel);

  // Since we started our scanning of the image pixels from the top left,
  // the interval position starts from the origin of the content rect,
  // converted to logical coordinates.
  nsPoint origin =
      ConvertToFloatLogical(aOffsetFromContainer, aWM, aContainerSize);

  // Depending on the writing mode, we now move the origin.
  if (aWM.IsVerticalRL()) {
    // vertical-rl or sideways-rl.
    // These writing modes proceed from the top right, and each interval
    // moves in a positive inline direction and negative block direction.
    // That means that the intervals will be reversed after all have been
    // constructed. We add 1 to aB to capture the end of the block axis pixel.
    origin.MoveBy(aIMin * aAppUnitsPerDevPixel,
                  (aB + 1) * -aAppUnitsPerDevPixel);
  } else if (aWM.IsVerticalLR() && !aWM.IsLineInverted()) {
    // sideways-lr.
    // Checking IsLineInverted is the only reliable way to distinguish
    // vertical-lr from sideways-lr. IsSideways and IsInlineReversed are both
    // affected by bidi and text-direction, and so complicate detection.
    // These writing modes proceed from the bottom left, and each interval
    // moves in a negative inline direction and a positive block direction.
    // We add 1 to aIMax to capture the end of the inline axis pixel.
    origin.MoveBy((aIMax + 1) * -aAppUnitsPerDevPixel,
                  aB * aAppUnitsPerDevPixel);
  } else {
    // horizontal-tb or vertical-lr.
    // These writing modes proceed from the top left and each interval
    // moves in a positive step in both inline and block directions.
    origin.MoveBy(aIMin * aAppUnitsPerDevPixel, aB * aAppUnitsPerDevPixel);
  }

  mIntervals.AppendElement(nsRect(origin, size));
}

nscoord nsFloatManager::ImageShapeInfo::LineLeft(const nscoord aBStart,
                                                 const nscoord aBEnd) const {
  return LineEdge(mIntervals, aBStart, aBEnd, true);
}

nscoord nsFloatManager::ImageShapeInfo::LineRight(const nscoord aBStart,
                                                  const nscoord aBEnd) const {
  return LineEdge(mIntervals, aBStart, aBEnd, false);
}

void nsFloatManager::ImageShapeInfo::Translate(nscoord aLineLeft,
                                               nscoord aBlockStart) {
  for (nsRect& interval : mIntervals) {
    interval.MoveBy(aLineLeft, aBlockStart);
  }

  mBStart += aBlockStart;
  mBEnd += aBlockStart;
}

/////////////////////////////////////////////////////////////////////////////
// FloatInfo

nsFloatManager::FloatInfo::FloatInfo(nsIFrame* aFrame, nscoord aLineLeft,
                                     nscoord aBlockStart,
                                     const LogicalRect& aMarginRect,
                                     WritingMode aWM,
                                     const nsSize& aContainerSize)
    : mFrame(aFrame),
      mLeftBEnd(nscoord_MIN),
      mRightBEnd(nscoord_MIN),
      mRect(ShapeInfo::ConvertToFloatLogical(aMarginRect, aWM, aContainerSize) +
            nsPoint(aLineLeft, aBlockStart)) {
  MOZ_COUNT_CTOR(nsFloatManager::FloatInfo);

  if (IsEmpty()) {
    // Per spec, a float area defined by a shape is clipped to the float’s
    // margin box. Therefore, no need to create a shape info if the float's
    // margin box is empty, since a float area can only be smaller than the
    // margin box.

    // https://drafts.csswg.org/css-shapes/#relation-to-box-model-and-float-behavior
    return;
  }

  const nsStyleDisplay* styleDisplay = mFrame->StyleDisplay();
  const StyleShapeSource& shapeOutside = styleDisplay->mShapeOutside;

  nscoord shapeMargin = (shapeOutside.GetType() == StyleShapeSourceType::None)
                            ? 0
                            : nsLayoutUtils::ResolveToLength<true>(
                                  styleDisplay->mShapeMargin,
                                  LogicalSize(aWM, aContainerSize).ISize(aWM));

  switch (shapeOutside.GetType()) {
    case StyleShapeSourceType::None:
      // No need to create shape info.
      return;

    case StyleShapeSourceType::Path:
      MOZ_ASSERT_UNREACHABLE("shape-outside doesn't have Path source type!");
      return;

    case StyleShapeSourceType::Image: {
      float shapeImageThreshold = styleDisplay->mShapeImageThreshold;
      mShapeInfo = ShapeInfo::CreateImageShape(
          shapeOutside.ShapeImage(), shapeImageThreshold, shapeMargin, mFrame,
          aMarginRect, aWM, aContainerSize);
      if (!mShapeInfo) {
        // Image is not ready, or fails to load, etc.
        return;
      }

      break;
    }

    case StyleShapeSourceType::Box: {
      // Initialize <shape-box>'s reference rect.
      LogicalRect shapeBoxRect = ShapeInfo::ComputeShapeBoxRect(
          shapeOutside, mFrame, aMarginRect, aWM);
      mShapeInfo = ShapeInfo::CreateShapeBox(mFrame, shapeMargin, shapeBoxRect,
                                             aWM, aContainerSize);
      break;
    }

    case StyleShapeSourceType::Shape: {
      const StyleBasicShape& basicShape = shapeOutside.BasicShape();
      // Initialize <shape-box>'s reference rect.
      LogicalRect shapeBoxRect = ShapeInfo::ComputeShapeBoxRect(
          shapeOutside, mFrame, aMarginRect, aWM);
      mShapeInfo = ShapeInfo::CreateBasicShape(basicShape, shapeMargin, mFrame,
                                               shapeBoxRect, aMarginRect, aWM,
                                               aContainerSize);
      break;
    }
  }

  MOZ_ASSERT(mShapeInfo,
             "All shape-outside values except none should have mShapeInfo!");

  // Translate the shape to the same origin as nsFloatManager.
  mShapeInfo->Translate(aLineLeft, aBlockStart);
}

#ifdef NS_BUILD_REFCNT_LOGGING
nsFloatManager::FloatInfo::FloatInfo(FloatInfo&& aOther)
    : mFrame(std::move(aOther.mFrame)),
      mLeftBEnd(std::move(aOther.mLeftBEnd)),
      mRightBEnd(std::move(aOther.mRightBEnd)),
      mRect(std::move(aOther.mRect)),
      mShapeInfo(std::move(aOther.mShapeInfo)) {
  MOZ_COUNT_CTOR(nsFloatManager::FloatInfo);
}

nsFloatManager::FloatInfo::~FloatInfo() {
  MOZ_COUNT_DTOR(nsFloatManager::FloatInfo);
}
#endif

nscoord nsFloatManager::FloatInfo::LineLeft(ShapeType aShapeType,
                                            const nscoord aBStart,
                                            const nscoord aBEnd) const {
  if (aShapeType == ShapeType::Margin) {
    return LineLeft();
  }

  MOZ_ASSERT(aShapeType == ShapeType::ShapeOutside);
  if (!mShapeInfo) {
    return LineLeft();
  }
  // Clip the flow area to the margin-box because
  // https://drafts.csswg.org/css-shapes-1/#relation-to-box-model-and-float-behavior
  // says "When a shape is used to define a float area, the shape is clipped
  // to the float’s margin box."
  return std::max(LineLeft(), mShapeInfo->LineLeft(aBStart, aBEnd));
}

nscoord nsFloatManager::FloatInfo::LineRight(ShapeType aShapeType,
                                             const nscoord aBStart,
                                             const nscoord aBEnd) const {
  if (aShapeType == ShapeType::Margin) {
    return LineRight();
  }

  MOZ_ASSERT(aShapeType == ShapeType::ShapeOutside);
  if (!mShapeInfo) {
    return LineRight();
  }
  // Clip the flow area to the margin-box. See LineLeft().
  return std::min(LineRight(), mShapeInfo->LineRight(aBStart, aBEnd));
}

nscoord nsFloatManager::FloatInfo::BStart(ShapeType aShapeType) const {
  if (aShapeType == ShapeType::Margin) {
    return BStart();
  }

  MOZ_ASSERT(aShapeType == ShapeType::ShapeOutside);
  if (!mShapeInfo) {
    return BStart();
  }
  // Clip the flow area to the margin-box. See LineLeft().
  return std::max(BStart(), mShapeInfo->BStart());
}

nscoord nsFloatManager::FloatInfo::BEnd(ShapeType aShapeType) const {
  if (aShapeType == ShapeType::Margin) {
    return BEnd();
  }

  MOZ_ASSERT(aShapeType == ShapeType::ShapeOutside);
  if (!mShapeInfo) {
    return BEnd();
  }
  // Clip the flow area to the margin-box. See LineLeft().
  return std::min(BEnd(), mShapeInfo->BEnd());
}

bool nsFloatManager::FloatInfo::IsEmpty(ShapeType aShapeType) const {
  if (aShapeType == ShapeType::Margin) {
    return IsEmpty();
  }

  MOZ_ASSERT(aShapeType == ShapeType::ShapeOutside);
  if (!mShapeInfo) {
    return IsEmpty();
  }
  return mShapeInfo->IsEmpty();
}

bool nsFloatManager::FloatInfo::MayNarrowInBlockDirection(
    ShapeType aShapeType) const {
  // This function mirrors the cases of the three argument versions of
  // LineLeft() and LineRight(). This function returns true if and only if
  // either of those functions could possibly return "narrower" values with
  // increasing aBStart values. "Narrower" means closer to the far end of
  // the float shape.
  if (aShapeType == ShapeType::Margin) {
    return false;
  }

  MOZ_ASSERT(aShapeType == ShapeType::ShapeOutside);
  if (!mShapeInfo) {
    return false;
  }

  return mShapeInfo->MayNarrowInBlockDirection();
}

/////////////////////////////////////////////////////////////////////////////
// ShapeInfo

/* static */
LogicalRect nsFloatManager::ShapeInfo::ComputeShapeBoxRect(
    const StyleShapeSource& aShapeOutside, nsIFrame* const aFrame,
    const LogicalRect& aMarginRect, WritingMode aWM) {
  LogicalRect rect = aMarginRect;

  switch (aShapeOutside.GetReferenceBox()) {
    case StyleGeometryBox::ContentBox:
      rect.Deflate(aWM, aFrame->GetLogicalUsedPadding(aWM));
      MOZ_FALLTHROUGH;
    case StyleGeometryBox::PaddingBox:
      rect.Deflate(aWM, aFrame->GetLogicalUsedBorder(aWM));
      MOZ_FALLTHROUGH;
    case StyleGeometryBox::BorderBox:
      rect.Deflate(aWM, aFrame->GetLogicalUsedMargin(aWM));
      break;
    case StyleGeometryBox::MarginBox:
      // Do nothing. rect is already a margin rect.
      break;
    case StyleGeometryBox::NoBox:
    default:
      MOZ_ASSERT(aShapeOutside.GetType() != StyleShapeSourceType::Box,
                 "Box source type must have <shape-box> specified!");
      break;
  }

  return rect;
}

/* static */ UniquePtr<nsFloatManager::ShapeInfo>
nsFloatManager::ShapeInfo::CreateShapeBox(nsIFrame* const aFrame,
                                          nscoord aShapeMargin,
                                          const LogicalRect& aShapeBoxRect,
                                          WritingMode aWM,
                                          const nsSize& aContainerSize) {
  nsRect logicalShapeBoxRect =
      ConvertToFloatLogical(aShapeBoxRect, aWM, aContainerSize);

  // Inflate logicalShapeBoxRect by aShapeMargin.
  logicalShapeBoxRect.Inflate(aShapeMargin);

  nscoord physicalRadii[8];
  bool hasRadii = aFrame->GetShapeBoxBorderRadii(physicalRadii);
  if (!hasRadii) {
    return MakeUnique<RoundedBoxShapeInfo>(logicalShapeBoxRect,
                                           UniquePtr<nscoord[]>());
  }

  // Add aShapeMargin to each of the radii.
  for (nscoord& r : physicalRadii) {
    r += aShapeMargin;
  }

  return MakeUnique<RoundedBoxShapeInfo>(
      logicalShapeBoxRect, ConvertToFloatLogical(physicalRadii, aWM));
}

/* static */ UniquePtr<nsFloatManager::ShapeInfo>
nsFloatManager::ShapeInfo::CreateBasicShape(const StyleBasicShape& aBasicShape,
                                            nscoord aShapeMargin,
                                            nsIFrame* const aFrame,
                                            const LogicalRect& aShapeBoxRect,
                                            const LogicalRect& aMarginRect,
                                            WritingMode aWM,
                                            const nsSize& aContainerSize) {
  switch (aBasicShape.tag) {
    case StyleBasicShape::Tag::Polygon:
      return CreatePolygon(aBasicShape, aShapeMargin, aFrame, aShapeBoxRect,
                           aMarginRect, aWM, aContainerSize);
    case StyleBasicShape::Tag::Circle:
    case StyleBasicShape::Tag::Ellipse:
      return CreateCircleOrEllipse(aBasicShape, aShapeMargin, aFrame,
                                   aShapeBoxRect, aWM, aContainerSize);
    case StyleBasicShape::Tag::Inset:
      return CreateInset(aBasicShape, aShapeMargin, aFrame, aShapeBoxRect, aWM,
                         aContainerSize);
  }
  return nullptr;
}

/* static */ UniquePtr<nsFloatManager::ShapeInfo>
nsFloatManager::ShapeInfo::CreateInset(const StyleBasicShape& aBasicShape,
                                       nscoord aShapeMargin, nsIFrame* aFrame,
                                       const LogicalRect& aShapeBoxRect,
                                       WritingMode aWM,
                                       const nsSize& aContainerSize) {
  // Use physical coordinates to compute inset() because the top, right,
  // bottom and left offsets are physical.
  // https://drafts.csswg.org/css-shapes-1/#funcdef-inset
  nsRect physicalShapeBoxRect =
      aShapeBoxRect.GetPhysicalRect(aWM, aContainerSize);
  nsRect insetRect =
      ShapeUtils::ComputeInsetRect(aBasicShape, physicalShapeBoxRect);

  nsRect logicalInsetRect = ConvertToFloatLogical(
      LogicalRect(aWM, insetRect, aContainerSize), aWM, aContainerSize);
  nscoord physicalRadii[8];
  bool hasRadii = ShapeUtils::ComputeInsetRadii(
      aBasicShape, insetRect, physicalShapeBoxRect, physicalRadii);

  // With a zero shape-margin, we will be able to use the fast constructor.
  if (aShapeMargin == 0) {
    if (!hasRadii) {
      return MakeUnique<RoundedBoxShapeInfo>(logicalInsetRect,
                                             UniquePtr<nscoord[]>());
    }
    return MakeUnique<RoundedBoxShapeInfo>(
        logicalInsetRect, ConvertToFloatLogical(physicalRadii, aWM));
  }

  // With a positive shape-margin, we might still be able to use the fast
  // constructor. With no radii, we can build a rounded box by inflating
  // logicalInsetRect, and supplying aShapeMargin as the radius for all
  // corners.
  if (!hasRadii) {
    logicalInsetRect.Inflate(aShapeMargin);
    auto logicalRadii = MakeUnique<nscoord[]>(8);
    for (int32_t i = 0; i < 8; ++i) {
      logicalRadii[i] = aShapeMargin;
    }
    return MakeUnique<RoundedBoxShapeInfo>(logicalInsetRect,
                                           std::move(logicalRadii));
  }

  // If we have radii, and they have balanced/equal corners, we can inflate
  // both logicalInsetRect and all the radii and use the fast constructor.
  if (RoundedBoxShapeInfo::EachCornerHasBalancedRadii(physicalRadii)) {
    logicalInsetRect.Inflate(aShapeMargin);
    for (nscoord& r : physicalRadii) {
      r += aShapeMargin;
    }
    return MakeUnique<RoundedBoxShapeInfo>(
        logicalInsetRect, ConvertToFloatLogical(physicalRadii, aWM));
  }

  // With positive shape-margin and elliptical radii, we have to use the
  // slow constructor.
  nsDeviceContext* dc = aFrame->PresContext()->DeviceContext();
  int32_t appUnitsPerDevPixel = dc->AppUnitsPerDevPixel();
  return MakeUnique<RoundedBoxShapeInfo>(
      logicalInsetRect, ConvertToFloatLogical(physicalRadii, aWM), aShapeMargin,
      appUnitsPerDevPixel);
}

/* static */ UniquePtr<nsFloatManager::ShapeInfo>
nsFloatManager::ShapeInfo::CreateCircleOrEllipse(
    const StyleBasicShape& aBasicShape, nscoord aShapeMargin,
    nsIFrame* const aFrame, const LogicalRect& aShapeBoxRect, WritingMode aWM,
    const nsSize& aContainerSize) {
  // Use physical coordinates to compute the center of circle() or ellipse()
  // since the <position> keywords such as 'left', 'top', etc. are physical.
  // https://drafts.csswg.org/css-shapes-1/#funcdef-ellipse
  nsRect physicalShapeBoxRect =
      aShapeBoxRect.GetPhysicalRect(aWM, aContainerSize);
  nsPoint physicalCenter = ShapeUtils::ComputeCircleOrEllipseCenter(
      aBasicShape, physicalShapeBoxRect);
  nsPoint logicalCenter =
      ConvertToFloatLogical(physicalCenter, aWM, aContainerSize);

  // Compute the circle or ellipse radii.
  nsSize radii;
  if (aBasicShape.IsCircle()) {
    nscoord radius = ShapeUtils::ComputeCircleRadius(
        aBasicShape, physicalCenter, physicalShapeBoxRect);
    // Circles can use the three argument, math constructor for
    // EllipseShapeInfo.
    radii = nsSize(radius, radius);
    return MakeUnique<EllipseShapeInfo>(logicalCenter, radii, aShapeMargin);
  }

  MOZ_ASSERT(aBasicShape.IsEllipse());
  nsSize physicalRadii = ShapeUtils::ComputeEllipseRadii(
      aBasicShape, physicalCenter, physicalShapeBoxRect);
  LogicalSize logicalRadii(aWM, physicalRadii);
  radii = nsSize(logicalRadii.ISize(aWM), logicalRadii.BSize(aWM));

  // If radii are close to the same value, or if aShapeMargin is small
  // enough (as specified in css pixels), then we can use the three argument
  // constructor for EllipseShapeInfo, which uses math for a more efficient
  // method of float area computation.
  if (EllipseShapeInfo::ShapeMarginIsNegligible(aShapeMargin) ||
      EllipseShapeInfo::RadiiAreRoughlyEqual(radii)) {
    return MakeUnique<EllipseShapeInfo>(logicalCenter, radii, aShapeMargin);
  }

  // We have to use the full constructor for EllipseShapeInfo. This
  // computes the float area using a rasterization method.
  nsDeviceContext* dc = aFrame->PresContext()->DeviceContext();
  int32_t appUnitsPerDevPixel = dc->AppUnitsPerDevPixel();
  return MakeUnique<EllipseShapeInfo>(logicalCenter, radii, aShapeMargin,
                                      appUnitsPerDevPixel);
}

/* static */ UniquePtr<nsFloatManager::ShapeInfo>
nsFloatManager::ShapeInfo::CreatePolygon(const StyleBasicShape& aBasicShape,
                                         nscoord aShapeMargin,
                                         nsIFrame* const aFrame,
                                         const LogicalRect& aShapeBoxRect,
                                         const LogicalRect& aMarginRect,
                                         WritingMode aWM,
                                         const nsSize& aContainerSize) {
  // Use physical coordinates to compute each (xi, yi) vertex because CSS
  // represents them using physical coordinates.
  // https://drafts.csswg.org/css-shapes-1/#funcdef-polygon
  nsRect physicalShapeBoxRect =
      aShapeBoxRect.GetPhysicalRect(aWM, aContainerSize);

  // Get physical vertices.
  nsTArray<nsPoint> vertices =
      ShapeUtils::ComputePolygonVertices(aBasicShape, physicalShapeBoxRect);

  // Convert all the physical vertices to logical.
  for (nsPoint& vertex : vertices) {
    vertex = ConvertToFloatLogical(vertex, aWM, aContainerSize);
  }

  if (aShapeMargin == 0) {
    return MakeUnique<PolygonShapeInfo>(std::move(vertices));
  }

  nsRect marginRect = ConvertToFloatLogical(aMarginRect, aWM, aContainerSize);

  // We have to use the full constructor for PolygonShapeInfo. This
  // computes the float area using a rasterization method.
  int32_t appUnitsPerDevPixel = aFrame->PresContext()->AppUnitsPerDevPixel();
  return MakeUnique<PolygonShapeInfo>(std::move(vertices), aShapeMargin,
                                      appUnitsPerDevPixel, marginRect);
}

/* static */ UniquePtr<nsFloatManager::ShapeInfo>
nsFloatManager::ShapeInfo::CreateImageShape(const nsStyleImage& aShapeImage,
                                            float aShapeImageThreshold,
                                            nscoord aShapeMargin,
                                            nsIFrame* const aFrame,
                                            const LogicalRect& aMarginRect,
                                            WritingMode aWM,
                                            const nsSize& aContainerSize) {
  MOZ_ASSERT(
      &aShapeImage == &aFrame->StyleDisplay()->mShapeOutside.ShapeImage(),
      "aFrame should be the frame that we got aShapeImage from");

  nsImageRenderer imageRenderer(aFrame, &aShapeImage,
                                nsImageRenderer::FLAG_SYNC_DECODE_IMAGES);

  if (!imageRenderer.PrepareImage()) {
    // The image is not ready yet.  Boost its loading priority since it will
    // affect layout.
    if (aShapeImage.GetType() == eStyleImageType_Image) {
      if (imgRequestProxy* req = aShapeImage.GetImageData()) {
        req->BoostPriority(imgIRequest::CATEGORY_SIZE_QUERY);
      }
    }
    return nullptr;
  }

  nsRect contentRect = aFrame->GetContentRect();

  // Create a draw target and draw shape image on it.
  nsDeviceContext* dc = aFrame->PresContext()->DeviceContext();
  int32_t appUnitsPerDevPixel = dc->AppUnitsPerDevPixel();
  LayoutDeviceIntSize contentSizeInDevPixels =
      LayoutDeviceIntSize::FromAppUnitsRounded(contentRect.Size(),
                                               appUnitsPerDevPixel);

  // Use empty CSSSizeOrRatio to force set the preferred size as the frame's
  // content box size.
  imageRenderer.SetPreferredSize(CSSSizeOrRatio(), contentRect.Size());

  RefPtr<gfx::DrawTarget> drawTarget =
      gfxPlatform::GetPlatform()->CreateOffscreenCanvasDrawTarget(
          contentSizeInDevPixels.ToUnknownSize(), gfx::SurfaceFormat::A8);
  if (!drawTarget) {
    return nullptr;
  }

  RefPtr<gfxContext> context = gfxContext::CreateOrNull(drawTarget);
  MOZ_ASSERT(context);  // already checked the target above

  ImgDrawResult result =
      imageRenderer.DrawShapeImage(aFrame->PresContext(), *context);

  if (result != ImgDrawResult::SUCCESS) {
    return nullptr;
  }

  // Retrieve the pixel image buffer to create the image shape info.
  RefPtr<SourceSurface> sourceSurface = drawTarget->Snapshot();
  RefPtr<DataSourceSurface> dataSourceSurface = sourceSurface->GetDataSurface();
  DataSourceSurface::ScopedMap map(dataSourceSurface, DataSourceSurface::READ);

  if (!map.IsMapped()) {
    return nullptr;
  }

  MOZ_ASSERT(sourceSurface->GetSize() == contentSizeInDevPixels.ToUnknownSize(),
             "Who changes the size?");

  nsRect marginRect = aMarginRect.GetPhysicalRect(aWM, aContainerSize);

  uint8_t* alphaPixels = map.GetData();
  int32_t stride = map.GetStride();

  // NOTE: ImageShapeInfo constructor does not keep a persistent copy of
  // alphaPixels; it's only used during the constructor to compute pixel ranges.
  return MakeUnique<ImageShapeInfo>(alphaPixels, stride, contentSizeInDevPixels,
                                    appUnitsPerDevPixel, aShapeImageThreshold,
                                    aShapeMargin, contentRect, marginRect, aWM,
                                    aContainerSize);
}

/* static */
nscoord nsFloatManager::ShapeInfo::ComputeEllipseLineInterceptDiff(
    const nscoord aShapeBoxBStart, const nscoord aShapeBoxBEnd,
    const nscoord aBStartCornerRadiusL, const nscoord aBStartCornerRadiusB,
    const nscoord aBEndCornerRadiusL, const nscoord aBEndCornerRadiusB,
    const nscoord aBandBStart, const nscoord aBandBEnd) {
  // An example for the band intersecting with the top right corner of an
  // ellipse with writing-mode horizontal-tb.
  //
  //                             lineIntercept lineDiff
  //                                    |       |
  //  +---------------------------------|-------|-+---- aShapeBoxBStart
  //  |                ##########^      |       | |
  //  |            ##############|####  |       | |
  //  +---------#################|######|-------|-+---- aBandBStart
  //  |       ###################|######|##     | |
  //  |     aBStartCornerRadiusB |######|###    | |
  //  |    ######################|######|#####  | |
  //  +---#######################|<-----------><->^---- aBandBEnd
  //  |  ########################|##############  |
  //  |  ########################|##############  |---- b
  //  | #########################|############### |
  //  | ######################## v<-------------->v
  //  |###################### aBStartCornerRadiusL|
  //  |###########################################|
  //  |###########################################|
  //  |###########################################|
  //  |###########################################|
  //  | ######################################### |
  //  | ######################################### |
  //  |  #######################################  |
  //  |  #######################################  |
  //  |   #####################################   |
  //  |    ###################################    |
  //  |      ###############################      |
  //  |       #############################       |
  //  |         #########################         |
  //  |            ###################            |
  //  |                ###########                |
  //  +-------------------------------------------+----- aShapeBoxBEnd

  NS_ASSERTION(aShapeBoxBStart <= aShapeBoxBEnd, "Bad shape box coordinates!");
  NS_ASSERTION(aBandBStart <= aBandBEnd, "Bad band coordinates!");

  nscoord lineDiff = 0;

  // If the band intersects both the block-start and block-end corners, we
  // don't need to enter either branch because the correct lineDiff is 0.
  if (aBStartCornerRadiusB > 0 && aBandBEnd >= aShapeBoxBStart &&
      aBandBEnd <= aShapeBoxBStart + aBStartCornerRadiusB) {
    // The band intersects only the block-start corner.
    nscoord b = aBStartCornerRadiusB - (aBandBEnd - aShapeBoxBStart);
    nscoord lineIntercept =
        XInterceptAtY(b, aBStartCornerRadiusL, aBStartCornerRadiusB);
    lineDiff = aBStartCornerRadiusL - lineIntercept;
  } else if (aBEndCornerRadiusB > 0 &&
             aBandBStart >= aShapeBoxBEnd - aBEndCornerRadiusB &&
             aBandBStart <= aShapeBoxBEnd) {
    // The band intersects only the block-end corner.
    nscoord b = aBEndCornerRadiusB - (aShapeBoxBEnd - aBandBStart);
    nscoord lineIntercept =
        XInterceptAtY(b, aBEndCornerRadiusL, aBEndCornerRadiusB);
    lineDiff = aBEndCornerRadiusL - lineIntercept;
  }

  return lineDiff;
}

/* static */
nscoord nsFloatManager::ShapeInfo::XInterceptAtY(const nscoord aY,
                                                 const nscoord aRadiusX,
                                                 const nscoord aRadiusY) {
  // Solve for x in the ellipse equation (x/radiusX)^2 + (y/radiusY)^2 = 1.
  MOZ_ASSERT(aRadiusY > 0);
  return aRadiusX * std::sqrt(1 - (aY * aY) / double(aRadiusY * aRadiusY));
}

/* static */
nsPoint nsFloatManager::ShapeInfo::ConvertToFloatLogical(
    const nsPoint& aPoint, WritingMode aWM, const nsSize& aContainerSize) {
  LogicalPoint logicalPoint(aWM, aPoint, aContainerSize);
  return nsPoint(logicalPoint.LineRelative(aWM, aContainerSize),
                 logicalPoint.B(aWM));
}

/* static */ UniquePtr<nscoord[]>
nsFloatManager::ShapeInfo::ConvertToFloatLogical(const nscoord aRadii[8],
                                                 WritingMode aWM) {
  UniquePtr<nscoord[]> logicalRadii(new nscoord[8]);

  // Get the physical side for line-left and line-right since border radii
  // are on the physical axis.
  Side lineLeftSide =
      aWM.PhysicalSide(aWM.LogicalSideForLineRelativeDir(eLineRelativeDirLeft));
  logicalRadii[eCornerTopLeftX] =
      aRadii[SideToHalfCorner(lineLeftSide, true, false)];
  logicalRadii[eCornerTopLeftY] =
      aRadii[SideToHalfCorner(lineLeftSide, true, true)];
  logicalRadii[eCornerBottomLeftX] =
      aRadii[SideToHalfCorner(lineLeftSide, false, false)];
  logicalRadii[eCornerBottomLeftY] =
      aRadii[SideToHalfCorner(lineLeftSide, false, true)];

  Side lineRightSide = aWM.PhysicalSide(
      aWM.LogicalSideForLineRelativeDir(eLineRelativeDirRight));
  logicalRadii[eCornerTopRightX] =
      aRadii[SideToHalfCorner(lineRightSide, false, false)];
  logicalRadii[eCornerTopRightY] =
      aRadii[SideToHalfCorner(lineRightSide, false, true)];
  logicalRadii[eCornerBottomRightX] =
      aRadii[SideToHalfCorner(lineRightSide, true, false)];
  logicalRadii[eCornerBottomRightY] =
      aRadii[SideToHalfCorner(lineRightSide, true, true)];

  if (aWM.IsLineInverted()) {
    // When IsLineInverted() is true, i.e. aWM is vertical-lr,
    // line-over/line-under are inverted from block-start/block-end. So the
    // relationship reverses between which corner comes first going
    // clockwise, and which corner is block-start versus block-end. We need
    // to swap the values stored in top and bottom corners.
    std::swap(logicalRadii[eCornerTopLeftX], logicalRadii[eCornerBottomLeftX]);
    std::swap(logicalRadii[eCornerTopLeftY], logicalRadii[eCornerBottomLeftY]);
    std::swap(logicalRadii[eCornerTopRightX],
              logicalRadii[eCornerBottomRightX]);
    std::swap(logicalRadii[eCornerTopRightY],
              logicalRadii[eCornerBottomRightY]);
  }

  return logicalRadii;
}

/* static */
size_t nsFloatManager::ShapeInfo::MinIntervalIndexContainingY(
    const nsTArray<nsRect>& aIntervals, const nscoord aTargetY) {
  // Perform a binary search to find the minimum index of an interval
  // that contains aTargetY. If no such interval exists, return a value
  // equal to the number of intervals.
  size_t startIdx = 0;
  size_t endIdx = aIntervals.Length();
  while (startIdx < endIdx) {
    size_t midIdx = startIdx + (endIdx - startIdx) / 2;
    if (aIntervals[midIdx].ContainsY(aTargetY)) {
      return midIdx;
    }
    nscoord midY = aIntervals[midIdx].Y();
    if (midY < aTargetY) {
      startIdx = midIdx + 1;
    } else {
      endIdx = midIdx;
    }
  }

  return endIdx;
}

/* static */
nscoord nsFloatManager::ShapeInfo::LineEdge(const nsTArray<nsRect>& aIntervals,
                                            const nscoord aBStart,
                                            const nscoord aBEnd,
                                            bool aIsLineLeft) {
  MOZ_ASSERT(aBStart <= aBEnd,
             "The band's block start is greater than its block end?");

  // Find all the intervals whose rects overlap the aBStart to
  // aBEnd range, and find the most constraining inline edge
  // depending on the value of aLeft.

  // Since the intervals are stored in block-axis order, we need
  // to find the first interval that overlaps aBStart and check
  // succeeding intervals until we get past aBEnd.

  nscoord lineEdge = aIsLineLeft ? nscoord_MAX : nscoord_MIN;

  size_t intervalCount = aIntervals.Length();
  for (size_t i = MinIntervalIndexContainingY(aIntervals, aBStart);
       i < intervalCount; ++i) {
    // We can always get the bCoord from the intervals' mLineLeft,
    // since the y() coordinate is duplicated in both points in the
    // interval.
    auto& interval = aIntervals[i];
    nscoord bCoord = interval.Y();
    if (bCoord >= aBEnd) {
      break;
    }
    // Get the edge from the interval point indicated by aLeft.
    if (aIsLineLeft) {
      lineEdge = std::min(lineEdge, interval.X());
    } else {
      lineEdge = std::max(lineEdge, interval.XMost());
    }
  }

  return lineEdge;
}

/* static */ nsFloatManager::ShapeInfo::dfType
nsFloatManager::ShapeInfo::CalcUsedShapeMargin5X(nscoord aShapeMargin,
                                                 int32_t aAppUnitsPerDevPixel) {
  // Our distance field has to be able to hold values equal to the
  // maximum shape-margin value that we care about faithfully rendering,
  // times 5. A 16-bit unsigned int can represent up to ~ 65K which means
  // we can handle a margin up to ~ 13K device pixels. That's good enough
  // for practical usage. Any supplied shape-margin value higher than this
  // maximum will be clamped.
  static const float MAX_MARGIN_5X_FLOAT = (float)MAX_MARGIN_5X;

  // Convert aShapeMargin to dev pixels, convert that into 5x-dev-pixel
  // space, then clamp to MAX_MARGIN_5X_FLOAT.
  float shapeMarginDevPixels5X =
      5.0f * NSAppUnitsToFloatPixels(aShapeMargin, aAppUnitsPerDevPixel);
  NS_WARNING_ASSERTION(shapeMarginDevPixels5X <= MAX_MARGIN_5X_FLOAT,
                       "shape-margin is too large and is being clamped.");

  // We calculate a minimum in float space, which takes care of any overflow
  // or infinity that may have occurred earlier from multiplication of
  // too-large aShapeMargin values.
  float usedMargin5XFloat =
      std::min(shapeMarginDevPixels5X, MAX_MARGIN_5X_FLOAT);
  return (dfType)NSToIntRound(usedMargin5XFloat);
}

//----------------------------------------------------------------------

nsAutoFloatManager::~nsAutoFloatManager() {
  // Restore the old float manager in the reflow input if necessary.
  if (mNew) {
#ifdef DEBUG
    if (nsBlockFrame::gNoisyFloatManager) {
      printf("restoring old float manager %p\n", mOld);
    }
#endif

    mReflowInput.mFloatManager = mOld;

#ifdef DEBUG
    if (nsBlockFrame::gNoisyFloatManager) {
      if (mOld) {
        mReflowInput.mFrame->ListTag(stdout);
        printf(": float manager %p after reflow\n", mOld);
        mOld->List(stdout);
      }
    }
#endif
  }
}

void nsAutoFloatManager::CreateFloatManager(nsPresContext* aPresContext) {
  MOZ_ASSERT(!mNew, "Redundant call to CreateFloatManager!");

  // Create a new float manager and install it in the reflow
  // input. `Remember' the old float manager so we can restore it
  // later.
  mNew = MakeUnique<nsFloatManager>(aPresContext->PresShell(),
                                    mReflowInput.GetWritingMode());

#ifdef DEBUG
  if (nsBlockFrame::gNoisyFloatManager) {
    printf("constructed new float manager %p (replacing %p)\n", mNew.get(),
           mReflowInput.mFloatManager);
  }
#endif

  // Set the float manager in the existing reflow input.
  mOld = mReflowInput.mFloatManager;
  mReflowInput.mFloatManager = mNew.get();
}