DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Header

Mercurial (c68fe15a81fc)

VCS Links

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*-
 * vim: set ts=8 sts=2 et sw=2 tw=80:
 *
 * Copyright 2015 Mozilla Foundation
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#include "wasm/WasmGenerator.h"

#include "mozilla/CheckedInt.h"
#include "mozilla/EnumeratedRange.h"
#include "mozilla/SHA1.h"
#include "mozilla/Unused.h"

#include <algorithm>
#include <thread>

#include "util/Memory.h"
#include "util/Text.h"
#include "wasm/WasmBaselineCompile.h"
#include "wasm/WasmCompile.h"
#include "wasm/WasmCraneliftCompile.h"
#include "wasm/WasmIonCompile.h"
#include "wasm/WasmStubs.h"

#include "jit/MacroAssembler-inl.h"

using namespace js;
using namespace js::jit;
using namespace js::wasm;

using mozilla::CheckedInt;
using mozilla::MakeEnumeratedRange;
using mozilla::Unused;

bool CompiledCode::swap(MacroAssembler& masm) {
  MOZ_ASSERT(bytes.empty());
  if (!masm.swapBuffer(bytes)) {
    return false;
  }

  callSites.swap(masm.callSites());
  callSiteTargets.swap(masm.callSiteTargets());
  trapSites.swap(masm.trapSites());
  symbolicAccesses.swap(masm.symbolicAccesses());
  codeLabels.swap(masm.codeLabels());
  return true;
}

bool CompiledCode::swapCranelift(MacroAssembler& masm,
                                 CraneliftReusableData& data) {
  if (!swap(masm)) {
    return false;
  }
  std::swap(data, craneliftReusableData);
  return true;
}

// ****************************************************************************
// ModuleGenerator

static const unsigned GENERATOR_LIFO_DEFAULT_CHUNK_SIZE = 4 * 1024;
static const unsigned COMPILATION_LIFO_DEFAULT_CHUNK_SIZE = 64 * 1024;
static const uint32_t BAD_CODE_RANGE = UINT32_MAX;

ModuleGenerator::ModuleGenerator(const CompileArgs& args,
                                 ModuleEnvironment* env,
                                 const Atomic<bool>* cancelled,
                                 UniqueChars* error)
    : compileArgs_(&args),
      error_(error),
      cancelled_(cancelled),
      env_(env),
      linkData_(nullptr),
      metadataTier_(nullptr),
      taskState_(mutexid::WasmCompileTaskState),
      lifo_(GENERATOR_LIFO_DEFAULT_CHUNK_SIZE),
      masmAlloc_(&lifo_),
      masm_(masmAlloc_, /* limitedSize= */ false),
      debugTrapCodeOffset_(),
      lastPatchedCallSite_(0),
      startOfUnpatchedCallsites_(0),
      parallel_(false),
      outstanding_(0),
      currentTask_(nullptr),
      batchedBytecode_(0),
      finishedFuncDefs_(false) {
  MOZ_ASSERT(IsCompilingWasm());
}

ModuleGenerator::~ModuleGenerator() {
  MOZ_ASSERT_IF(finishedFuncDefs_, !batchedBytecode_);
  MOZ_ASSERT_IF(finishedFuncDefs_, !currentTask_);

  if (parallel_) {
    if (outstanding_) {
      // Remove any pending compilation tasks from the worklist.
      {
        AutoLockHelperThreadState lock;
        CompileTaskPtrFifo& worklist =
            HelperThreadState().wasmWorklist(lock, mode());
        auto pred = [this](CompileTask* task) {
          return &task->state == &taskState_;
        };
        size_t removed = worklist.eraseIf(pred);
        MOZ_ASSERT(outstanding_ >= removed);
        outstanding_ -= removed;
      }

      // Wait until all active compilation tasks have finished.
      {
        auto taskState = taskState_.lock();
        while (true) {
          MOZ_ASSERT(outstanding_ >= taskState->finished.length());
          outstanding_ -= taskState->finished.length();
          taskState->finished.clear();

          MOZ_ASSERT(outstanding_ >= taskState->numFailed);
          outstanding_ -= taskState->numFailed;
          taskState->numFailed = 0;

          if (!outstanding_) {
            break;
          }

          taskState.wait(/* failed or finished */);
        }
      }
    }
  } else {
    MOZ_ASSERT(!outstanding_);
  }

  // Propagate error state.
  if (error_ && !*error_) {
    *error_ = std::move(taskState_.lock()->errorMessage);
  }
}

bool ModuleGenerator::allocateGlobalBytes(uint32_t bytes, uint32_t align,
                                          uint32_t* globalDataOffset) {
  CheckedInt<uint32_t> newGlobalDataLength(metadata_->globalDataLength);

  newGlobalDataLength +=
      ComputeByteAlignment(newGlobalDataLength.value(), align);
  if (!newGlobalDataLength.isValid()) {
    return false;
  }

  *globalDataOffset = newGlobalDataLength.value();
  newGlobalDataLength += bytes;

  if (!newGlobalDataLength.isValid()) {
    return false;
  }

  metadata_->globalDataLength = newGlobalDataLength.value();
  return true;
}

bool ModuleGenerator::init(Metadata* maybeAsmJSMetadata) {
  // Perform fallible metadata, linkdata, assumption allocations.

  MOZ_ASSERT(isAsmJS() == !!maybeAsmJSMetadata);
  if (maybeAsmJSMetadata) {
    metadata_ = maybeAsmJSMetadata;
  } else {
    metadata_ = js_new<Metadata>();
    if (!metadata_) {
      return false;
    }
  }

  if (compileArgs_->scriptedCaller.filename) {
    metadata_->filename =
        DuplicateString(compileArgs_->scriptedCaller.filename.get());
    if (!metadata_->filename) {
      return false;
    }

    metadata_->filenameIsURL = compileArgs_->scriptedCaller.filenameIsURL;
  } else {
    MOZ_ASSERT(!compileArgs_->scriptedCaller.filenameIsURL);
  }

  if (compileArgs_->sourceMapURL) {
    metadata_->sourceMapURL = DuplicateString(compileArgs_->sourceMapURL.get());
    if (!metadata_->sourceMapURL) {
      return false;
    }
  }

  linkData_ = js::MakeUnique<LinkData>(tier());
  if (!linkData_) {
    return false;
  }

  metadataTier_ = js::MakeUnique<MetadataTier>(tier());
  if (!metadataTier_) {
    return false;
  }

  // funcToCodeRange maps function indices to code-range indices and all
  // elements will be initialized by the time module generation is finished.

  if (!metadataTier_->funcToCodeRange.appendN(BAD_CODE_RANGE,
                                              env_->funcTypes.length())) {
    return false;
  }

  // Pre-reserve space for large Vectors to avoid the significant cost of the
  // final reallocs. In particular, the MacroAssembler can be enormous, so be
  // extra conservative. Since large over-reservations may fail when the
  // actual allocations will succeed, ignore OOM failures. Note,
  // shrinkStorageToFit calls at the end will trim off unneeded capacity.

  size_t codeSectionSize = env_->codeSection ? env_->codeSection->size : 0;

  size_t estimatedCodeSize =
      1.2 * EstimateCompiledCodeSize(tier(), codeSectionSize);
  Unused << masm_.reserve(std::min(estimatedCodeSize, MaxCodeBytesPerProcess));

  Unused << metadataTier_->codeRanges.reserve(2 * env_->numFuncDefs());

  const size_t ByteCodesPerCallSite = 50;
  Unused << metadataTier_->callSites.reserve(codeSectionSize /
                                             ByteCodesPerCallSite);

  const size_t ByteCodesPerOOBTrap = 10;
  Unused << metadataTier_->trapSites[Trap::OutOfBounds].reserve(
      codeSectionSize / ByteCodesPerOOBTrap);

  // Allocate space in TlsData for declarations that need it.

  MOZ_ASSERT(metadata_->globalDataLength == 0);

  for (size_t i = 0; i < env_->funcImportGlobalDataOffsets.length(); i++) {
    uint32_t globalDataOffset;
    if (!allocateGlobalBytes(sizeof(FuncImportTls), sizeof(void*),
                             &globalDataOffset)) {
      return false;
    }

    env_->funcImportGlobalDataOffsets[i] = globalDataOffset;

    FuncType copy;
    if (!copy.clone(*env_->funcTypes[i])) {
      return false;
    }
    if (!metadataTier_->funcImports.emplaceBack(std::move(copy),
                                                globalDataOffset)) {
      return false;
    }
  }

  for (TableDesc& table : env_->tables) {
    if (!allocateGlobalBytes(sizeof(TableTls), sizeof(void*),
                             &table.globalDataOffset)) {
      return false;
    }
  }

  if (!isAsmJS()) {
    for (TypeDef& td : env_->types) {
      if (!td.isFuncType()) {
        continue;
      }

      FuncTypeWithId& funcType = td.funcType();
      if (FuncTypeIdDesc::isGlobal(funcType)) {
        uint32_t globalDataOffset;
        if (!allocateGlobalBytes(sizeof(void*), sizeof(void*),
                                 &globalDataOffset)) {
          return false;
        }

        funcType.id = FuncTypeIdDesc::global(funcType, globalDataOffset);

        FuncType copy;
        if (!copy.clone(funcType)) {
          return false;
        }

        if (!metadata_->funcTypeIds.emplaceBack(std::move(copy), funcType.id)) {
          return false;
        }
      } else {
        funcType.id = FuncTypeIdDesc::immediate(funcType);
      }
    }
  }

  for (GlobalDesc& global : env_->globals) {
    if (global.isConstant()) {
      continue;
    }

    uint32_t width =
        global.isIndirect() ? sizeof(void*) : SizeOf(global.type());

    uint32_t globalDataOffset;
    if (!allocateGlobalBytes(width, width, &globalDataOffset)) {
      return false;
    }

    global.setOffset(globalDataOffset);
  }

  // Accumulate all exported functions:
  // - explicitly marked as such;
  // - implicitly exported by being an element of function tables;
  // - implicitly exported by being the start function;
  // The FuncExportVector stored in Metadata needs to be sorted (to allow
  // O(log(n)) lookup at runtime) and deduplicated. Use a vector with invalid
  // entries for every single function, that we'll fill as we go through the
  // exports, and in which we'll remove invalid entries after the fact.

  static_assert(((uint64_t(MaxFuncs) << 1) | 1) < uint64_t(UINT32_MAX),
                "bit packing won't work in ExportedFunc");

  class ExportedFunc {
    uint32_t value;

   public:
    ExportedFunc() : value(UINT32_MAX) {}
    ExportedFunc(uint32_t index, bool isExplicit)
        : value((index << 1) | (isExplicit ? 1 : 0)) {}
    uint32_t index() const { return value >> 1; }
    bool isExplicit() const { return value & 0x1; }
    bool operator<(const ExportedFunc& other) const {
      return index() < other.index();
    }
    bool operator==(const ExportedFunc& other) const {
      return index() == other.index();
    }
    bool isInvalid() const { return value == UINT32_MAX; }
    void mergeExplicit(bool explicitBit) {
      if (!isExplicit() && explicitBit) {
        value |= 0x1;
      }
    }
  };

  Vector<ExportedFunc, 8, SystemAllocPolicy> exportedFuncs;
  if (!exportedFuncs.resize(env_->numFuncs())) {
    return false;
  }

  auto addOrMerge = [&exportedFuncs](ExportedFunc newEntry) {
    uint32_t index = newEntry.index();
    if (exportedFuncs[index].isInvalid()) {
      exportedFuncs[index] = newEntry;
    } else {
      exportedFuncs[index].mergeExplicit(newEntry.isExplicit());
    }
  };

  for (const Export& exp : env_->exports) {
    if (exp.kind() == DefinitionKind::Function) {
      addOrMerge(ExportedFunc(exp.funcIndex(), true));
    }
  }

  if (env_->startFuncIndex) {
    addOrMerge(ExportedFunc(*env_->startFuncIndex, true));
  }

  for (const ElemSegment* seg : env_->elemSegments) {
    // For now, the segments always carry function indices regardless of the
    // segment's declared element type; this works because the only legal
    // element types are funcref and anyref and the only legal values are
    // functions and null.  We always add functions in segments as exported
    // functions, regardless of the segment's type.  In the future, if we make
    // the representation of AnyRef segments different, we will have to consider
    // function values in those segments specially.
    bool isAsmJS =
        seg->active() && env_->tables[seg->tableIndex].kind == TableKind::AsmJS;
    if (!isAsmJS) {
      for (uint32_t funcIndex : seg->elemFuncIndices) {
        if (funcIndex != NullFuncIndex) {
          addOrMerge(ExportedFunc(funcIndex, false));
        }
      }
    }
  }

  for (const GlobalDesc& global : env_->globals) {
    if (global.isVariable() &&
        global.initExpr().kind() == InitExpr::Kind::RefFunc) {
      addOrMerge(ExportedFunc(global.initExpr().refFuncIndex(), false));
    }
  }

  auto* newEnd =
      std::remove_if(exportedFuncs.begin(), exportedFuncs.end(),
                     [](const ExportedFunc& exp) { return exp.isInvalid(); });
  exportedFuncs.erase(newEnd, exportedFuncs.end());

  if (!metadataTier_->funcExports.reserve(exportedFuncs.length())) {
    return false;
  }

  for (const ExportedFunc& funcIndex : exportedFuncs) {
    FuncType funcType;
    if (!funcType.clone(*env_->funcTypes[funcIndex.index()])) {
      return false;
    }
    metadataTier_->funcExports.infallibleEmplaceBack(
        std::move(funcType), funcIndex.index(), funcIndex.isExplicit());
  }

  // Determine whether parallel or sequential compilation is to be used and
  // initialize the CompileTasks that will be used in either mode.

  GlobalHelperThreadState& threads = HelperThreadState();
  MOZ_ASSERT(threads.threadCount > 1);

  uint32_t numTasks;
  if (CanUseExtraThreads() && threads.cpuCount > 1) {
    parallel_ = true;
    numTasks = 2 * threads.maxWasmCompilationThreads();
  } else {
    numTasks = 1;
  }

  if (!tasks_.initCapacity(numTasks)) {
    return false;
  }
  for (size_t i = 0; i < numTasks; i++) {
    tasks_.infallibleEmplaceBack(*env_, taskState_,
                                 COMPILATION_LIFO_DEFAULT_CHUNK_SIZE);
  }

  if (!freeTasks_.reserve(numTasks)) {
    return false;
  }
  for (size_t i = 0; i < numTasks; i++) {
    freeTasks_.infallibleAppend(&tasks_[i]);
  }

  // Fill in function stubs for each import so that imported functions can be
  // used in all the places that normal function definitions can (table
  // elements, export calls, etc).

  CompiledCode& importCode = tasks_[0].output;
  MOZ_ASSERT(importCode.empty());

  if (!GenerateImportFunctions(*env_, metadataTier_->funcImports,
                               &importCode)) {
    return false;
  }

  if (!linkCompiledCode(importCode)) {
    return false;
  }

  importCode.clear();
  return true;
}

bool ModuleGenerator::funcIsCompiled(uint32_t funcIndex) const {
  return metadataTier_->funcToCodeRange[funcIndex] != BAD_CODE_RANGE;
}

const CodeRange& ModuleGenerator::funcCodeRange(uint32_t funcIndex) const {
  MOZ_ASSERT(funcIsCompiled(funcIndex));
  const CodeRange& cr =
      metadataTier_->codeRanges[metadataTier_->funcToCodeRange[funcIndex]];
  MOZ_ASSERT(cr.isFunction());
  return cr;
}

static bool InRange(uint32_t caller, uint32_t callee) {
  // We assume JumpImmediateRange is defined conservatively enough that the
  // slight difference between 'caller' (which is really the return address
  // offset) and the actual base of the relative displacement computation
  // isn't significant.
  uint32_t range = std::min(JitOptions.jumpThreshold, JumpImmediateRange);
  if (caller < callee) {
    return callee - caller < range;
  }
  return caller - callee < range;
}

typedef HashMap<uint32_t, uint32_t, DefaultHasher<uint32_t>, SystemAllocPolicy>
    OffsetMap;
typedef EnumeratedArray<Trap, Trap::Limit, Maybe<uint32_t>>
    TrapMaybeOffsetArray;

bool ModuleGenerator::linkCallSites() {
  masm_.haltingAlign(CodeAlignment);

  // Create far jumps for calls that have relative offsets that may otherwise
  // go out of range. This method is called both between function bodies (at a
  // frequency determined by the ISA's jump range) and once at the very end of
  // a module's codegen after all possible calls/traps have been emitted.

  OffsetMap existingCallFarJumps;
  for (; lastPatchedCallSite_ < metadataTier_->callSites.length();
       lastPatchedCallSite_++) {
    const CallSite& callSite = metadataTier_->callSites[lastPatchedCallSite_];
    const CallSiteTarget& target = callSiteTargets_[lastPatchedCallSite_];
    uint32_t callerOffset = callSite.returnAddressOffset();
    switch (callSite.kind()) {
      case CallSiteDesc::Dynamic:
      case CallSiteDesc::Symbolic:
        break;
      case CallSiteDesc::Func: {
        if (funcIsCompiled(target.funcIndex())) {
          uint32_t calleeOffset =
              funcCodeRange(target.funcIndex()).funcUncheckedCallEntry();
          if (InRange(callerOffset, calleeOffset)) {
            masm_.patchCall(callerOffset, calleeOffset);
            break;
          }
        }

        OffsetMap::AddPtr p =
            existingCallFarJumps.lookupForAdd(target.funcIndex());
        if (!p) {
          Offsets offsets;
          offsets.begin = masm_.currentOffset();
          if (!callFarJumps_.emplaceBack(target.funcIndex(),
                                         masm_.farJumpWithPatch())) {
            return false;
          }
          offsets.end = masm_.currentOffset();
          if (masm_.oom()) {
            return false;
          }
          if (!metadataTier_->codeRanges.emplaceBack(CodeRange::FarJumpIsland,
                                                     offsets)) {
            return false;
          }
          if (!existingCallFarJumps.add(p, target.funcIndex(), offsets.begin)) {
            return false;
          }
        }

        masm_.patchCall(callerOffset, p->value());
        break;
      }
      case CallSiteDesc::Breakpoint:
      case CallSiteDesc::EnterFrame:
      case CallSiteDesc::LeaveFrame: {
        Uint32Vector& jumps = metadataTier_->debugTrapFarJumpOffsets;
        if (jumps.empty() || !InRange(jumps.back(), callerOffset)) {
          // See BaseCompiler::insertBreakablePoint for why we must
          // reload the TLS register on this path.
          Offsets offsets;
          offsets.begin = masm_.currentOffset();
          masm_.loadPtr(Address(FramePointer, offsetof(Frame, tls)),
                        WasmTlsReg);
          CodeOffset jumpOffset = masm_.farJumpWithPatch();
          offsets.end = masm_.currentOffset();
          if (masm_.oom()) {
            return false;
          }
          if (!metadataTier_->codeRanges.emplaceBack(CodeRange::FarJumpIsland,
                                                     offsets)) {
            return false;
          }
          if (!debugTrapFarJumps_.emplaceBack(jumpOffset)) {
            return false;
          }
          if (!jumps.emplaceBack(offsets.begin)) {
            return false;
          }
        }
        break;
      }
    }
  }

  masm_.flushBuffer();
  return !masm_.oom();
}

void ModuleGenerator::noteCodeRange(uint32_t codeRangeIndex,
                                    const CodeRange& codeRange) {
  switch (codeRange.kind()) {
    case CodeRange::Function:
      MOZ_ASSERT(metadataTier_->funcToCodeRange[codeRange.funcIndex()] ==
                 BAD_CODE_RANGE);
      metadataTier_->funcToCodeRange[codeRange.funcIndex()] = codeRangeIndex;
      break;
    case CodeRange::InterpEntry:
      metadataTier_->lookupFuncExport(codeRange.funcIndex())
          .initEagerInterpEntryOffset(codeRange.begin());
      break;
    case CodeRange::JitEntry:
      // Nothing to do: jit entries are linked in the jump tables.
      break;
    case CodeRange::ImportJitExit:
      metadataTier_->funcImports[codeRange.funcIndex()].initJitExitOffset(
          codeRange.begin());
      break;
    case CodeRange::ImportInterpExit:
      metadataTier_->funcImports[codeRange.funcIndex()].initInterpExitOffset(
          codeRange.begin());
      break;
    case CodeRange::DebugTrap:
      MOZ_ASSERT(!debugTrapCodeOffset_);
      debugTrapCodeOffset_ = codeRange.begin();
      break;
    case CodeRange::TrapExit:
      MOZ_ASSERT(!linkData_->trapOffset);
      linkData_->trapOffset = codeRange.begin();
      break;
    case CodeRange::Throw:
      // Jumped to by other stubs, so nothing to do.
      break;
    case CodeRange::FarJumpIsland:
    case CodeRange::BuiltinThunk:
      MOZ_CRASH("Unexpected CodeRange kind");
  }
}

template <class Vec, class Op>
static bool AppendForEach(Vec* dstVec, const Vec& srcVec, Op op) {
  if (!dstVec->growByUninitialized(srcVec.length())) {
    return false;
  }

  using T = typename Vec::ElementType;

  const T* src = srcVec.begin();

  T* dstBegin = dstVec->begin();
  T* dstEnd = dstVec->end();
  T* dstStart = dstEnd - srcVec.length();

  for (T* dst = dstStart; dst != dstEnd; dst++, src++) {
    new (dst) T(*src);
    op(dst - dstBegin, dst);
  }

  return true;
}

bool ModuleGenerator::linkCompiledCode(CompiledCode& code) {
  // Before merging in new code, if calls in a prior code range might go out of
  // range, insert far jumps to extend the range.

  if (!InRange(startOfUnpatchedCallsites_,
               masm_.size() + code.bytes.length())) {
    startOfUnpatchedCallsites_ = masm_.size();
    if (!linkCallSites()) {
      return false;
    }
  }

  // All code offsets in 'code' must be incremented by their position in the
  // overall module when the code was appended.

  masm_.haltingAlign(CodeAlignment);
  const size_t offsetInModule = masm_.size();
  if (!masm_.appendRawCode(code.bytes.begin(), code.bytes.length())) {
    return false;
  }

  auto codeRangeOp = [=](uint32_t codeRangeIndex, CodeRange* codeRange) {
    codeRange->offsetBy(offsetInModule);
    noteCodeRange(codeRangeIndex, *codeRange);
  };
  if (!AppendForEach(&metadataTier_->codeRanges, code.codeRanges,
                     codeRangeOp)) {
    return false;
  }

  auto callSiteOp = [=](uint32_t, CallSite* cs) {
    cs->offsetBy(offsetInModule);
  };
  if (!AppendForEach(&metadataTier_->callSites, code.callSites, callSiteOp)) {
    return false;
  }

  if (!callSiteTargets_.appendAll(code.callSiteTargets)) {
    return false;
  }

  for (Trap trap : MakeEnumeratedRange(Trap::Limit)) {
    auto trapSiteOp = [=](uint32_t, TrapSite* ts) {
      ts->offsetBy(offsetInModule);
    };
    if (!AppendForEach(&metadataTier_->trapSites[trap], code.trapSites[trap],
                       trapSiteOp)) {
      return false;
    }
  }

  for (const SymbolicAccess& access : code.symbolicAccesses) {
    uint32_t patchAt = offsetInModule + access.patchAt.offset();
    if (!linkData_->symbolicLinks[access.target].append(patchAt)) {
      return false;
    }
  }

  for (const CodeLabel& codeLabel : code.codeLabels) {
    LinkData::InternalLink link;
    link.patchAtOffset = offsetInModule + codeLabel.patchAt().offset();
    link.targetOffset = offsetInModule + codeLabel.target().offset();
#ifdef JS_CODELABEL_LINKMODE
    link.mode = codeLabel.linkMode();
#endif
    if (!linkData_->internalLinks.append(link)) {
      return false;
    }
  }

  for (size_t i = 0; i < code.stackMaps.length(); i++) {
    StackMaps::Maplet maplet = code.stackMaps.move(i);
    maplet.offsetBy(offsetInModule);
    if (!metadataTier_->stackMaps.add(maplet)) {
      // This function is now the only owner of maplet.map, so we'd better
      // free it right now.
      maplet.map->destroy();
      return false;
    }
  }

  return true;
}

static bool ExecuteCompileTask(CompileTask* task, UniqueChars* error) {
  MOZ_ASSERT(task->lifo.isEmpty());
  MOZ_ASSERT(task->output.empty());

  switch (task->env.tier()) {
    case Tier::Optimized:
      switch (task->env.optimizedBackend()) {
        case OptimizedBackend::Cranelift:
          if (!CraneliftCompileFunctions(task->env, task->lifo, task->inputs,
                                         &task->output, error)) {
            return false;
          }
          break;
        case OptimizedBackend::Ion:
          if (!IonCompileFunctions(task->env, task->lifo, task->inputs,
                                   &task->output, error)) {
            return false;
          }
          break;
      }
      break;
    case Tier::Baseline:
      if (!BaselineCompileFunctions(task->env, task->lifo, task->inputs,
                                    &task->output, error)) {
        return false;
      }
      break;
  }

  MOZ_ASSERT(task->lifo.isEmpty());
  MOZ_ASSERT(task->inputs.length() == task->output.codeRanges.length());
  task->inputs.clear();
  return true;
}

void wasm::ExecuteCompileTaskFromHelperThread(CompileTask* task) {
  TraceLoggerThread* logger = TraceLoggerForCurrentThread();
  AutoTraceLog logCompile(logger, TraceLogger_WasmCompilation);

  UniqueChars error;
  bool ok = ExecuteCompileTask(task, &error);

  auto taskState = task->state.lock();

  if (!ok || !taskState->finished.append(task)) {
    taskState->numFailed++;
    if (!taskState->errorMessage) {
      taskState->errorMessage = std::move(error);
    }
  }

  taskState.notify_one(/* failed or finished */);
}

bool ModuleGenerator::locallyCompileCurrentTask() {
  if (!ExecuteCompileTask(currentTask_, error_)) {
    return false;
  }
  if (!finishTask(currentTask_)) {
    return false;
  }
  currentTask_ = nullptr;
  batchedBytecode_ = 0;
  return true;
}

bool ModuleGenerator::finishTask(CompileTask* task) {
  masm_.haltingAlign(CodeAlignment);

  if (!linkCompiledCode(task->output)) {
    return false;
  }

  task->output.clear();

  MOZ_ASSERT(task->inputs.empty());
  MOZ_ASSERT(task->output.empty());
  MOZ_ASSERT(task->lifo.isEmpty());
  freeTasks_.infallibleAppend(task);
  return true;
}

bool ModuleGenerator::launchBatchCompile() {
  MOZ_ASSERT(currentTask_);

  if (cancelled_ && *cancelled_) {
    return false;
  }

  if (!parallel_) {
    return locallyCompileCurrentTask();
  }

  if (!StartOffThreadWasmCompile(currentTask_, mode())) {
    return false;
  }
  outstanding_++;
  currentTask_ = nullptr;
  batchedBytecode_ = 0;
  return true;
}

bool ModuleGenerator::finishOutstandingTask() {
  MOZ_ASSERT(parallel_);

  CompileTask* task = nullptr;
  {
    auto taskState = taskState_.lock();
    while (true) {
      MOZ_ASSERT(outstanding_ > 0);

      if (taskState->numFailed > 0) {
        return false;
      }

      if (!taskState->finished.empty()) {
        outstanding_--;
        task = taskState->finished.popCopy();
        break;
      }

      taskState.wait(/* failed or finished */);
    }
  }

  // Call outside of the compilation lock.
  return finishTask(task);
}

bool ModuleGenerator::compileFuncDef(uint32_t funcIndex,
                                     uint32_t lineOrBytecode,
                                     const uint8_t* begin, const uint8_t* end,
                                     Uint32Vector&& lineNums) {
  MOZ_ASSERT(!finishedFuncDefs_);
  MOZ_ASSERT(funcIndex < env_->numFuncs());

  uint32_t threshold;
  switch (tier()) {
    case Tier::Baseline:
      threshold = JitOptions.wasmBatchBaselineThreshold;
      break;
    case Tier::Optimized:
      switch (env_->optimizedBackend()) {
        case OptimizedBackend::Ion:
          threshold = JitOptions.wasmBatchIonThreshold;
          break;
        case OptimizedBackend::Cranelift:
          threshold = JitOptions.wasmBatchCraneliftThreshold;
          break;
        default:
          MOZ_CRASH("Invalid optimizedBackend value");
      }
      break;
    default:
      MOZ_CRASH("Invalid tier value");
      break;
  }

  uint32_t funcBytecodeLength = end - begin;

  // Do not go over the threshold if we can avoid it: spin off the compilation
  // before appending the function if we would go over.  (Very large single
  // functions may still exceed the threshold but this is fine; it'll be very
  // uncommon and is in any case safely handled by the MacroAssembler's buffer
  // limit logic.)

  if (currentTask_ && currentTask_->inputs.length() &&
      batchedBytecode_ + funcBytecodeLength > threshold) {
    if (!launchBatchCompile()) {
      return false;
    }
  }

  if (!currentTask_) {
    if (freeTasks_.empty() && !finishOutstandingTask()) {
      return false;
    }
    currentTask_ = freeTasks_.popCopy();
  }

  if (!currentTask_->inputs.emplaceBack(funcIndex, lineOrBytecode, begin, end,
                                        std::move(lineNums))) {
    return false;
  }

  batchedBytecode_ += funcBytecodeLength;
  MOZ_ASSERT(batchedBytecode_ <= MaxCodeSectionBytes);
  return true;
}

bool ModuleGenerator::finishFuncDefs() {
  MOZ_ASSERT(!finishedFuncDefs_);

  if (currentTask_ && !locallyCompileCurrentTask()) {
    return false;
  }

  finishedFuncDefs_ = true;
  return true;
}

bool ModuleGenerator::finishCodegen() {
  // Now that all functions and stubs are generated and their CodeRanges
  // known, patch all calls (which can emit far jumps) and far jumps. Linking
  // can emit tiny far-jump stubs, so there is an ordering dependency here.

  if (!linkCallSites()) {
    return false;
  }

  for (CallFarJump far : callFarJumps_) {
    masm_.patchFarJump(far.jump,
                       funcCodeRange(far.funcIndex).funcUncheckedCallEntry());
  }

  for (CodeOffset farJump : debugTrapFarJumps_) {
    masm_.patchFarJump(farJump, debugTrapCodeOffset_);
  }

  // None of the linking or far-jump operations should emit masm metadata.

  MOZ_ASSERT(masm_.callSites().empty());
  MOZ_ASSERT(masm_.callSiteTargets().empty());
  MOZ_ASSERT(masm_.trapSites().empty());
  MOZ_ASSERT(masm_.symbolicAccesses().empty());
  MOZ_ASSERT(masm_.codeLabels().empty());

  masm_.finish();
  return !masm_.oom();
}

bool ModuleGenerator::finishMetadataTier() {
  // The stack maps aren't yet sorted.  Do so now, since we'll need to
  // binary-search them at GC time.
  metadataTier_->stackMaps.sort();

#ifdef DEBUG
  // Check that the stack map contains no duplicates, since that could lead to
  // ambiguities about stack slot pointerness.
  uint8_t* previousNextInsnAddr = nullptr;
  for (size_t i = 0; i < metadataTier_->stackMaps.length(); i++) {
    const StackMaps::Maplet& maplet = metadataTier_->stackMaps.get(i);
    MOZ_ASSERT_IF(i > 0, uintptr_t(maplet.nextInsnAddr) >
                             uintptr_t(previousNextInsnAddr));
    previousNextInsnAddr = maplet.nextInsnAddr;
  }

  // Assert all sorted metadata is sorted.
  uint32_t last = 0;
  for (const CodeRange& codeRange : metadataTier_->codeRanges) {
    MOZ_ASSERT(codeRange.begin() >= last);
    last = codeRange.end();
  }

  last = 0;
  for (const CallSite& callSite : metadataTier_->callSites) {
    MOZ_ASSERT(callSite.returnAddressOffset() >= last);
    last = callSite.returnAddressOffset();
  }

  for (Trap trap : MakeEnumeratedRange(Trap::Limit)) {
    last = 0;
    for (const TrapSite& trapSite : metadataTier_->trapSites[trap]) {
      MOZ_ASSERT(trapSite.pcOffset >= last);
      last = trapSite.pcOffset;
    }
  }

  last = 0;
  for (uint32_t debugTrapFarJumpOffset :
       metadataTier_->debugTrapFarJumpOffsets) {
    MOZ_ASSERT(debugTrapFarJumpOffset >= last);
    last = debugTrapFarJumpOffset;
  }
#endif

  // These Vectors can get large and the excess capacity can be significant,
  // so realloc them down to size.

  metadataTier_->funcToCodeRange.shrinkStorageToFit();
  metadataTier_->codeRanges.shrinkStorageToFit();
  metadataTier_->callSites.shrinkStorageToFit();
  metadataTier_->trapSites.shrinkStorageToFit();
  metadataTier_->debugTrapFarJumpOffsets.shrinkStorageToFit();
  for (Trap trap : MakeEnumeratedRange(Trap::Limit)) {
    metadataTier_->trapSites[trap].shrinkStorageToFit();
  }

  return true;
}

UniqueCodeTier ModuleGenerator::finishCodeTier() {
  MOZ_ASSERT(finishedFuncDefs_);

  while (outstanding_ > 0) {
    if (!finishOutstandingTask()) {
      return nullptr;
    }
  }

#ifdef DEBUG
  for (uint32_t codeRangeIndex : metadataTier_->funcToCodeRange) {
    MOZ_ASSERT(codeRangeIndex != BAD_CODE_RANGE);
  }
#endif

  // Now that all imports/exports are known, we can generate a special
  // CompiledCode containing stubs.

  CompiledCode& stubCode = tasks_[0].output;
  MOZ_ASSERT(stubCode.empty());

  if (!GenerateStubs(*env_, metadataTier_->funcImports,
                     metadataTier_->funcExports, &stubCode)) {
    return nullptr;
  }

  if (!linkCompiledCode(stubCode)) {
    return nullptr;
  }

  // Finish linking and metadata.

  if (!finishCodegen()) {
    return nullptr;
  }

  if (!finishMetadataTier()) {
    return nullptr;
  }

  UniqueModuleSegment segment =
      ModuleSegment::create(tier(), masm_, *linkData_);
  if (!segment) {
    return nullptr;
  }

  metadataTier_->stackMaps.offsetBy(uintptr_t(segment->base()));

#ifdef DEBUG
  // Check that each stack map is associated with a plausible instruction.
  for (size_t i = 0; i < metadataTier_->stackMaps.length(); i++) {
    MOZ_ASSERT(IsValidStackMapKey(env_->debugEnabled(),
                                  metadataTier_->stackMaps.get(i).nextInsnAddr),
               "wasm stack map does not reference a valid insn");
  }
#endif

  return js::MakeUnique<CodeTier>(std::move(metadataTier_), std::move(segment));
}

SharedMetadata ModuleGenerator::finishMetadata(const Bytes& bytecode) {
  // Finish initialization of Metadata, which is only needed for constructing
  // the initial Module, not for tier-2 compilation.
  MOZ_ASSERT(mode() != CompileMode::Tier2);

  // Copy over data from the ModuleEnvironment.

  metadata_->memoryUsage = env_->memoryUsage;
  metadata_->minMemoryLength = env_->minMemoryLength;
  metadata_->maxMemoryLength = env_->maxMemoryLength;
  metadata_->startFuncIndex = env_->startFuncIndex;
  metadata_->tables = std::move(env_->tables);
  metadata_->globals = std::move(env_->globals);
  metadata_->nameCustomSectionIndex = env_->nameCustomSectionIndex;
  metadata_->moduleName = env_->moduleName;
  metadata_->funcNames = std::move(env_->funcNames);
  metadata_->omitsBoundsChecks = env_->hugeMemoryEnabled();
  metadata_->v128Enabled = env_->v128Enabled();

  // Copy over additional debug information.

  if (env_->debugEnabled()) {
    metadata_->debugEnabled = true;

    const size_t numFuncTypes = env_->funcTypes.length();
    if (!metadata_->debugFuncArgTypes.resize(numFuncTypes)) {
      return nullptr;
    }
    if (!metadata_->debugFuncReturnTypes.resize(numFuncTypes)) {
      return nullptr;
    }
    for (size_t i = 0; i < numFuncTypes; i++) {
      if (!metadata_->debugFuncArgTypes[i].appendAll(
              env_->funcTypes[i]->args())) {
        return nullptr;
      }
      if (!metadata_->debugFuncReturnTypes[i].appendAll(
              env_->funcTypes[i]->results())) {
        return nullptr;
      }
    }

    static_assert(sizeof(ModuleHash) <= sizeof(mozilla::SHA1Sum::Hash),
                  "The ModuleHash size shall not exceed the SHA1 hash size.");
    mozilla::SHA1Sum::Hash hash;
    mozilla::SHA1Sum sha1Sum;
    sha1Sum.update(bytecode.begin(), bytecode.length());
    sha1Sum.finish(hash);
    memcpy(metadata_->debugHash, hash, sizeof(ModuleHash));
  }

  MOZ_ASSERT_IF(env_->nameCustomSectionIndex, !!metadata_->namePayload);

  // Metadata shouldn't be mutably modified after finishMetadata().
  SharedMetadata metadata = metadata_;
  metadata_ = nullptr;
  return metadata;
}

SharedModule ModuleGenerator::finishModule(
    const ShareableBytes& bytecode,
    JS::OptimizedEncodingListener* maybeTier2Listener) {
  MOZ_ASSERT(mode() == CompileMode::Once || mode() == CompileMode::Tier1);

  UniqueCodeTier codeTier = finishCodeTier();
  if (!codeTier) {
    return nullptr;
  }

  JumpTables jumpTables;
  if (!jumpTables.init(mode(), codeTier->segment(),
                       codeTier->metadata().codeRanges)) {
    return nullptr;
  }

  // Copy over data from the Bytecode, which is going away at the end of
  // compilation.

  DataSegmentVector dataSegments;
  if (!dataSegments.reserve(env_->dataSegments.length())) {
    return nullptr;
  }
  for (const DataSegmentEnv& srcSeg : env_->dataSegments) {
    MutableDataSegment dstSeg = js_new<DataSegment>(srcSeg);
    if (!dstSeg) {
      return nullptr;
    }
    if (!dstSeg->bytes.append(bytecode.begin() + srcSeg.bytecodeOffset,
                              srcSeg.length)) {
      return nullptr;
    }
    dataSegments.infallibleAppend(std::move(dstSeg));
  }

  CustomSectionVector customSections;
  if (!customSections.reserve(env_->customSections.length())) {
    return nullptr;
  }
  for (const CustomSectionEnv& srcSec : env_->customSections) {
    CustomSection sec;
    if (!sec.name.append(bytecode.begin() + srcSec.nameOffset,
                         srcSec.nameLength)) {
      return nullptr;
    }
    MutableBytes payload = js_new<ShareableBytes>();
    if (!payload) {
      return nullptr;
    }
    if (!payload->append(bytecode.begin() + srcSec.payloadOffset,
                         srcSec.payloadLength)) {
      return nullptr;
    }
    sec.payload = std::move(payload);
    customSections.infallibleAppend(std::move(sec));
  }

  if (env_->nameCustomSectionIndex) {
    metadata_->namePayload =
        customSections[*env_->nameCustomSectionIndex].payload;
  }

  SharedMetadata metadata = finishMetadata(bytecode.bytes);
  if (!metadata) {
    return nullptr;
  }

  StructTypeVector structTypes;
  for (TypeDef& td : env_->types) {
    if (td.isStructType() && !structTypes.append(std::move(td.structType()))) {
      return nullptr;
    }
  }

  MutableCode code =
      js_new<Code>(std::move(codeTier), *metadata, std::move(jumpTables),
                   std::move(structTypes));
  if (!code || !code->initialize(*linkData_)) {
    return nullptr;
  }

  // See Module debugCodeClaimed_ comments for why we need to make a separate
  // debug copy.

  UniqueBytes debugUnlinkedCode;
  UniqueLinkData debugLinkData;
  const ShareableBytes* debugBytecode = nullptr;
  if (env_->debugEnabled()) {
    MOZ_ASSERT(mode() == CompileMode::Once);
    MOZ_ASSERT(tier() == Tier::Debug);

    debugUnlinkedCode = js::MakeUnique<Bytes>();
    if (!debugUnlinkedCode || !debugUnlinkedCode->resize(masm_.bytesNeeded())) {
      return nullptr;
    }

    masm_.executableCopy(debugUnlinkedCode->begin());

    debugLinkData = std::move(linkData_);
    debugBytecode = &bytecode;
  }

  // All the components are finished, so create the complete Module and start
  // tier-2 compilation if requested.

  MutableModule module =
      js_new<Module>(*code, std::move(env_->imports), std::move(env_->exports),
                     std::move(dataSegments), std::move(env_->elemSegments),
                     std::move(customSections), std::move(debugUnlinkedCode),
                     std::move(debugLinkData), debugBytecode);
  if (!module) {
    return nullptr;
  }

  if (mode() == CompileMode::Tier1) {
    module->startTier2(*compileArgs_, bytecode, maybeTier2Listener);
  } else if (tier() == Tier::Serialized && maybeTier2Listener) {
    module->serialize(*linkData_, *maybeTier2Listener);
  }

  return module;
}

bool ModuleGenerator::finishTier2(const Module& module) {
  MOZ_ASSERT(mode() == CompileMode::Tier2);
  MOZ_ASSERT(tier() == Tier::Optimized);
  MOZ_ASSERT(!env_->debugEnabled());

  if (cancelled_ && *cancelled_) {
    return false;
  }

  UniqueCodeTier codeTier = finishCodeTier();
  if (!codeTier) {
    return false;
  }

  if (MOZ_UNLIKELY(JitOptions.wasmDelayTier2)) {
    // Introduce an artificial delay when testing wasmDelayTier2, since we
    // want to exercise both tier1 and tier2 code in this case.
    std::this_thread::sleep_for(std::chrono::milliseconds(500));
  }

  return module.finishTier2(*linkData_, std::move(codeTier));
}

void CompileTask::runTask() { ExecuteCompileTaskFromHelperThread(this); }

size_t CompiledCode::sizeOfExcludingThis(
    mozilla::MallocSizeOf mallocSizeOf) const {
  size_t trapSitesSize = 0;
  for (const TrapSiteVector& vec : trapSites) {
    trapSitesSize += vec.sizeOfExcludingThis(mallocSizeOf);
  }

  return bytes.sizeOfExcludingThis(mallocSizeOf) +
         codeRanges.sizeOfExcludingThis(mallocSizeOf) +
         callSites.sizeOfExcludingThis(mallocSizeOf) +
         callSiteTargets.sizeOfExcludingThis(mallocSizeOf) + trapSitesSize +
         symbolicAccesses.sizeOfExcludingThis(mallocSizeOf) +
         codeLabels.sizeOfExcludingThis(mallocSizeOf);
}

size_t CompileTask::sizeOfExcludingThis(
    mozilla::MallocSizeOf mallocSizeOf) const {
  return lifo.sizeOfExcludingThis(mallocSizeOf) +
         inputs.sizeOfExcludingThis(mallocSizeOf) +
         output.sizeOfExcludingThis(mallocSizeOf);
}