DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Implementation

Mercurial (c68fe15a81fc)

VCS Links

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*-
 * vim: set ts=8 sts=2 et sw=2 tw=80:
 * This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */

#ifndef jit_mips_shared_Assembler_mips_shared_h
#define jit_mips_shared_Assembler_mips_shared_h

#include "mozilla/ArrayUtils.h"
#include "mozilla/Attributes.h"
#include "mozilla/MathAlgorithms.h"
#include "mozilla/Sprintf.h"

#include "jit/CompactBuffer.h"
#include "jit/JitCode.h"
#include "jit/JitRealm.h"
#include "jit/JitSpewer.h"
#include "jit/mips-shared/Architecture-mips-shared.h"
#include "jit/shared/Assembler-shared.h"
#include "jit/shared/IonAssemblerBuffer.h"

namespace js {
namespace jit {

static constexpr Register zero{Registers::zero};
static constexpr Register at{Registers::at};
static constexpr Register v0{Registers::v0};
static constexpr Register v1{Registers::v1};
static constexpr Register a0{Registers::a0};
static constexpr Register a1{Registers::a1};
static constexpr Register a2{Registers::a2};
static constexpr Register a3{Registers::a3};
static constexpr Register a4{Registers::ta0};
static constexpr Register a5{Registers::ta1};
static constexpr Register a6{Registers::ta2};
static constexpr Register a7{Registers::ta3};
static constexpr Register t0{Registers::t0};
static constexpr Register t1{Registers::t1};
static constexpr Register t2{Registers::t2};
static constexpr Register t3{Registers::t3};
static constexpr Register t4{Registers::ta0};
static constexpr Register t5{Registers::ta1};
static constexpr Register t6{Registers::ta2};
static constexpr Register t7{Registers::ta3};
static constexpr Register s0{Registers::s0};
static constexpr Register s1{Registers::s1};
static constexpr Register s2{Registers::s2};
static constexpr Register s3{Registers::s3};
static constexpr Register s4{Registers::s4};
static constexpr Register s5{Registers::s5};
static constexpr Register s6{Registers::s6};
static constexpr Register s7{Registers::s7};
static constexpr Register t8{Registers::t8};
static constexpr Register t9{Registers::t9};
static constexpr Register k0{Registers::k0};
static constexpr Register k1{Registers::k1};
static constexpr Register gp{Registers::gp};
static constexpr Register sp{Registers::sp};
static constexpr Register fp{Registers::fp};
static constexpr Register ra{Registers::ra};

static constexpr Register ScratchRegister = at;
static constexpr Register SecondScratchReg = t8;

// Helper classes for ScratchRegister usage. Asserts that only one piece
// of code thinks it has exclusive ownership of each scratch register.
struct ScratchRegisterScope : public AutoRegisterScope {
  explicit ScratchRegisterScope(MacroAssembler& masm)
      : AutoRegisterScope(masm, ScratchRegister) {}
};
struct SecondScratchRegisterScope : public AutoRegisterScope {
  explicit SecondScratchRegisterScope(MacroAssembler& masm)
      : AutoRegisterScope(masm, SecondScratchReg) {}
};

// Use arg reg from EnterJIT function as OsrFrameReg.
static constexpr Register OsrFrameReg = a3;
static constexpr Register CallTempReg0 = t0;
static constexpr Register CallTempReg1 = t1;
static constexpr Register CallTempReg2 = t2;
static constexpr Register CallTempReg3 = t3;

static constexpr Register IntArgReg0 = a0;
static constexpr Register IntArgReg1 = a1;
static constexpr Register IntArgReg2 = a2;
static constexpr Register IntArgReg3 = a3;
static constexpr Register IntArgReg4 = a4;
static constexpr Register IntArgReg5 = a5;
static constexpr Register IntArgReg6 = a6;
static constexpr Register IntArgReg7 = a7;
static constexpr Register GlobalReg = s6;  // used by Odin
static constexpr Register HeapReg = s7;    // used by Odin

static constexpr Register PreBarrierReg = a1;

static constexpr Register InvalidReg{Registers::invalid_reg};
static constexpr FloatRegister InvalidFloatReg;

static constexpr Register StackPointer = sp;
static constexpr Register FramePointer = fp;
static constexpr Register ReturnReg = v0;
static constexpr FloatRegister ReturnSimd128Reg = InvalidFloatReg;
static constexpr FloatRegister ScratchSimd128Reg = InvalidFloatReg;

// A bias applied to the GlobalReg to allow the use of instructions with small
// negative immediate offsets which doubles the range of global data that can be
// accessed with a single instruction.
static const int32_t WasmGlobalRegBias = 32768;

// Registerd used in RegExpMatcher instruction (do not use JSReturnOperand).
static constexpr Register RegExpMatcherRegExpReg = CallTempReg0;
static constexpr Register RegExpMatcherStringReg = CallTempReg1;
static constexpr Register RegExpMatcherLastIndexReg = CallTempReg2;

// Registerd used in RegExpTester instruction (do not use ReturnReg).
static constexpr Register RegExpTesterRegExpReg = CallTempReg0;
static constexpr Register RegExpTesterStringReg = CallTempReg1;
static constexpr Register RegExpTesterLastIndexReg = CallTempReg2;

static constexpr uint32_t CodeAlignment = 8;

/* clang-format off */
// MIPS instruction types
//                +---------------------------------------------------------------+
//                |    6      |    5    |    5    |    5    |    5    |    6      |
//                +---------------------------------------------------------------+
// Register type  |  Opcode   |    Rs   |    Rt   |    Rd   |    Sa   | Function  |
//                +---------------------------------------------------------------+
//                |    6      |    5    |    5    |               16              |
//                +---------------------------------------------------------------+
// Immediate type |  Opcode   |    Rs   |    Rt   |    2's complement constant    |
//                +---------------------------------------------------------------+
//                |    6      |                        26                         |
//                +---------------------------------------------------------------+
// Jump type      |  Opcode   |                    jump_target                    |
//                +---------------------------------------------------------------+
//                31 bit                                                      bit 0
/* clang-format on */

// MIPS instruction encoding constants.
static const uint32_t OpcodeShift = 26;
static const uint32_t OpcodeBits = 6;
static const uint32_t RSShift = 21;
static const uint32_t RSBits = 5;
static const uint32_t RTShift = 16;
static const uint32_t RTBits = 5;
static const uint32_t RDShift = 11;
static const uint32_t RDBits = 5;
static const uint32_t RZShift = 0;
static const uint32_t RZBits = 5;
static const uint32_t SAShift = 6;
static const uint32_t SABits = 5;
static const uint32_t FunctionShift = 0;
static const uint32_t FunctionBits = 6;
static const uint32_t Imm16Shift = 0;
static const uint32_t Imm16Bits = 16;
static const uint32_t Imm26Shift = 0;
static const uint32_t Imm26Bits = 26;
static const uint32_t Imm28Shift = 0;
static const uint32_t Imm28Bits = 28;
static const uint32_t ImmFieldShift = 2;
static const uint32_t FRBits = 5;
static const uint32_t FRShift = 21;
static const uint32_t FSShift = 11;
static const uint32_t FSBits = 5;
static const uint32_t FTShift = 16;
static const uint32_t FTBits = 5;
static const uint32_t FDShift = 6;
static const uint32_t FDBits = 5;
static const uint32_t FCccShift = 8;
static const uint32_t FCccBits = 3;
static const uint32_t FBccShift = 18;
static const uint32_t FBccBits = 3;
static const uint32_t FBtrueShift = 16;
static const uint32_t FBtrueBits = 1;
static const uint32_t FccMask = 0x7;
static const uint32_t FccShift = 2;

// MIPS instruction  field bit masks.
static const uint32_t OpcodeMask = ((1 << OpcodeBits) - 1) << OpcodeShift;
static const uint32_t Imm16Mask = ((1 << Imm16Bits) - 1) << Imm16Shift;
static const uint32_t Imm26Mask = ((1 << Imm26Bits) - 1) << Imm26Shift;
static const uint32_t Imm28Mask = ((1 << Imm28Bits) - 1) << Imm28Shift;
static const uint32_t RSMask = ((1 << RSBits) - 1) << RSShift;
static const uint32_t RTMask = ((1 << RTBits) - 1) << RTShift;
static const uint32_t RDMask = ((1 << RDBits) - 1) << RDShift;
static const uint32_t SAMask = ((1 << SABits) - 1) << SAShift;
static const uint32_t FunctionMask = ((1 << FunctionBits) - 1) << FunctionShift;
static const uint32_t RegMask = Registers::Total - 1;

static const uint32_t BREAK_STACK_UNALIGNED = 1;
static const uint32_t MAX_BREAK_CODE = 1024 - 1;
static const uint32_t WASM_TRAP = 6;  // BRK_OVERFLOW

class Instruction;
class InstReg;
class InstImm;
class InstJump;

uint32_t RS(Register r);
uint32_t RT(Register r);
uint32_t RT(FloatRegister r);
uint32_t RD(Register r);
uint32_t RD(FloatRegister r);
uint32_t RZ(Register r);
uint32_t RZ(FloatRegister r);
uint32_t SA(uint32_t value);
uint32_t SA(FloatRegister r);
uint32_t FS(uint32_t value);

Register toRS(Instruction& i);
Register toRT(Instruction& i);
Register toRD(Instruction& i);
Register toR(Instruction& i);

// MIPS enums for instruction fields
enum OpcodeField {
  op_special = 0 << OpcodeShift,
  op_regimm = 1 << OpcodeShift,

  op_j = 2 << OpcodeShift,
  op_jal = 3 << OpcodeShift,
  op_beq = 4 << OpcodeShift,
  op_bne = 5 << OpcodeShift,
  op_blez = 6 << OpcodeShift,
  op_bgtz = 7 << OpcodeShift,

  op_addi = 8 << OpcodeShift,
  op_addiu = 9 << OpcodeShift,
  op_slti = 10 << OpcodeShift,
  op_sltiu = 11 << OpcodeShift,
  op_andi = 12 << OpcodeShift,
  op_ori = 13 << OpcodeShift,
  op_xori = 14 << OpcodeShift,
  op_lui = 15 << OpcodeShift,

  op_cop1 = 17 << OpcodeShift,
  op_cop1x = 19 << OpcodeShift,

  op_beql = 20 << OpcodeShift,
  op_bnel = 21 << OpcodeShift,
  op_blezl = 22 << OpcodeShift,
  op_bgtzl = 23 << OpcodeShift,

  op_daddi = 24 << OpcodeShift,
  op_daddiu = 25 << OpcodeShift,

  op_ldl = 26 << OpcodeShift,
  op_ldr = 27 << OpcodeShift,

  op_special2 = 28 << OpcodeShift,
  op_special3 = 31 << OpcodeShift,

  op_lb = 32 << OpcodeShift,
  op_lh = 33 << OpcodeShift,
  op_lwl = 34 << OpcodeShift,
  op_lw = 35 << OpcodeShift,
  op_lbu = 36 << OpcodeShift,
  op_lhu = 37 << OpcodeShift,
  op_lwr = 38 << OpcodeShift,
  op_lwu = 39 << OpcodeShift,
  op_sb = 40 << OpcodeShift,
  op_sh = 41 << OpcodeShift,
  op_swl = 42 << OpcodeShift,
  op_sw = 43 << OpcodeShift,
  op_sdl = 44 << OpcodeShift,
  op_sdr = 45 << OpcodeShift,
  op_swr = 46 << OpcodeShift,

  op_ll = 48 << OpcodeShift,
  op_lwc1 = 49 << OpcodeShift,
  op_lwc2 = 50 << OpcodeShift,
  op_lld = 52 << OpcodeShift,
  op_ldc1 = 53 << OpcodeShift,
  op_ldc2 = 54 << OpcodeShift,
  op_ld = 55 << OpcodeShift,

  op_sc = 56 << OpcodeShift,
  op_swc1 = 57 << OpcodeShift,
  op_swc2 = 58 << OpcodeShift,
  op_scd = 60 << OpcodeShift,
  op_sdc1 = 61 << OpcodeShift,
  op_sdc2 = 62 << OpcodeShift,
  op_sd = 63 << OpcodeShift,
};

enum RSField {
  rs_zero = 0 << RSShift,
  // cop1 encoding of RS field.
  rs_mfc1 = 0 << RSShift,
  rs_one = 1 << RSShift,
  rs_dmfc1 = 1 << RSShift,
  rs_cfc1 = 2 << RSShift,
  rs_mfhc1 = 3 << RSShift,
  rs_mtc1 = 4 << RSShift,
  rs_dmtc1 = 5 << RSShift,
  rs_ctc1 = 6 << RSShift,
  rs_mthc1 = 7 << RSShift,
  rs_bc1 = 8 << RSShift,
  rs_f = 0x9 << RSShift,
  rs_t = 0xd << RSShift,
  rs_s_r6 = 20 << RSShift,
  rs_d_r6 = 21 << RSShift,
  rs_s = 16 << RSShift,
  rs_d = 17 << RSShift,
  rs_w = 20 << RSShift,
  rs_l = 21 << RSShift,
  rs_ps = 22 << RSShift
};

enum RTField {
  rt_zero = 0 << RTShift,
  // regimm  encoding of RT field.
  rt_bltz = 0 << RTShift,
  rt_bgez = 1 << RTShift,
  rt_bltzal = 16 << RTShift,
  rt_bgezal = 17 << RTShift
};

enum FunctionField {
  // special encoding of function field.
  ff_sll = 0,
  ff_movci = 1,
  ff_srl = 2,
  ff_sra = 3,
  ff_sllv = 4,
  ff_srlv = 6,
  ff_srav = 7,

  ff_jr = 8,
  ff_jalr = 9,
  ff_movz = 10,
  ff_movn = 11,
  ff_break = 13,
  ff_sync = 15,

  ff_mfhi = 16,
  ff_mflo = 18,

  ff_dsllv = 20,
  ff_dsrlv = 22,
  ff_dsrav = 23,

  ff_mult = 24,
  ff_multu = 25,

  ff_mulu = 25,
  ff_muh = 24,
  ff_muhu = 25,
  ff_dmul = 28,
  ff_dmulu = 29,
  ff_dmuh = 28,
  ff_dmuhu = 29,

  ff_div = 26,
  ff_mod = 26,
  ff_divu = 27,
  ff_modu = 27,
  ff_dmult = 28,
  ff_dmultu = 29,
  ff_ddiv = 30,
  ff_dmod = 30,
  ff_ddivu = 31,
  ff_dmodu = 31,

  ff_add = 32,
  ff_addu = 33,
  ff_sub = 34,
  ff_subu = 35,
  ff_and = 36,
  ff_or = 37,
  ff_xor = 38,
  ff_nor = 39,

  ff_slt = 42,
  ff_sltu = 43,
  ff_dadd = 44,
  ff_daddu = 45,
  ff_dsub = 46,
  ff_dsubu = 47,

  ff_tge = 48,
  ff_tgeu = 49,
  ff_tlt = 50,
  ff_tltu = 51,
  ff_teq = 52,
  ff_seleqz = 53,
  ff_tne = 54,
  ff_selnez = 55,
  ff_dsll = 56,
  ff_dsrl = 58,
  ff_dsra = 59,
  ff_dsll32 = 60,
  ff_dsrl32 = 62,
  ff_dsra32 = 63,

  // special2 encoding of function field.
  ff_madd = 0,
  ff_maddu = 1,
#ifdef MIPSR6
  ff_clz = 16,
  ff_dclz = 18,
  ff_mul = 24,
#else
  ff_mul = 2,
  ff_clz = 32,
  ff_dclz = 36,
#endif
  ff_clo = 33,

  // special3 encoding of function field.
  ff_ext = 0,
  ff_dextm = 1,
  ff_dextu = 2,
  ff_dext = 3,
  ff_ins = 4,
  ff_dinsm = 5,
  ff_dinsu = 6,
  ff_dins = 7,
  ff_bshfl = 32,
  ff_dbshfl = 36,
  ff_sc = 38,
  ff_scd = 39,
  ff_ll = 54,
  ff_lld = 55,

  // cop1 encoding of function field.
  ff_add_fmt = 0,
  ff_sub_fmt = 1,
  ff_mul_fmt = 2,
  ff_div_fmt = 3,
  ff_sqrt_fmt = 4,
  ff_abs_fmt = 5,
  ff_mov_fmt = 6,
  ff_neg_fmt = 7,

  ff_round_l_fmt = 8,
  ff_trunc_l_fmt = 9,
  ff_ceil_l_fmt = 10,
  ff_floor_l_fmt = 11,

  ff_round_w_fmt = 12,
  ff_trunc_w_fmt = 13,
  ff_ceil_w_fmt = 14,
  ff_floor_w_fmt = 15,

  ff_movf_fmt = 17,
  ff_movz_fmt = 18,
  ff_movn_fmt = 19,

  ff_min = 28,
  ff_max = 30,

  ff_cvt_s_fmt = 32,
  ff_cvt_d_fmt = 33,
  ff_cvt_w_fmt = 36,
  ff_cvt_l_fmt = 37,
  ff_cvt_ps_s = 38,

#ifdef MIPSR6
  ff_c_f_fmt = 0,
  ff_c_un_fmt = 1,
  ff_c_eq_fmt = 2,
  ff_c_ueq_fmt = 3,
  ff_c_olt_fmt = 4,
  ff_c_ult_fmt = 5,
  ff_c_ole_fmt = 6,
  ff_c_ule_fmt = 7,
#else
  ff_c_f_fmt = 48,
  ff_c_un_fmt = 49,
  ff_c_eq_fmt = 50,
  ff_c_ueq_fmt = 51,
  ff_c_olt_fmt = 52,
  ff_c_ult_fmt = 53,
  ff_c_ole_fmt = 54,
  ff_c_ule_fmt = 55,
#endif

  ff_madd_s = 32,
  ff_madd_d = 33,

  // Loongson encoding of function field.
  ff_gsxbx = 0,
  ff_gsxhx = 1,
  ff_gsxwx = 2,
  ff_gsxdx = 3,
  ff_gsxwlc1 = 4,
  ff_gsxwrc1 = 5,
  ff_gsxdlc1 = 6,
  ff_gsxdrc1 = 7,
  ff_gsxwxc1 = 6,
  ff_gsxdxc1 = 7,
  ff_gsxq = 0x20,
  ff_gsxqc1 = 0x8020,

  ff_null = 0
};

class Operand;

// A BOffImm16 is a 16 bit immediate that is used for branches.
class BOffImm16 {
  uint32_t data;

 public:
  uint32_t encode() {
    MOZ_ASSERT(!isInvalid());
    return data;
  }
  int32_t decode() {
    MOZ_ASSERT(!isInvalid());
    return (int32_t(data << 18) >> 16) + 4;
  }

  explicit BOffImm16(int offset) : data((offset - 4) >> 2 & Imm16Mask) {
    MOZ_ASSERT((offset & 0x3) == 0);
    MOZ_ASSERT(IsInRange(offset));
  }
  static bool IsInRange(int offset) {
    if ((offset - 4) < int(unsigned(INT16_MIN) << 2)) {
      return false;
    }
    if ((offset - 4) > (INT16_MAX << 2)) {
      return false;
    }
    return true;
  }
  static const uint32_t INVALID = 0x00020000;
  BOffImm16() : data(INVALID) {}

  bool isInvalid() { return data == INVALID; }
  Instruction* getDest(Instruction* src) const;

  BOffImm16(InstImm inst);
};

// A JOffImm26 is a 26 bit immediate that is used for unconditional jumps.
class JOffImm26 {
  uint32_t data;

 public:
  uint32_t encode() {
    MOZ_ASSERT(!isInvalid());
    return data;
  }
  int32_t decode() {
    MOZ_ASSERT(!isInvalid());
    return (int32_t(data << 8) >> 6) + 4;
  }

  explicit JOffImm26(int offset) : data((offset - 4) >> 2 & Imm26Mask) {
    MOZ_ASSERT((offset & 0x3) == 0);
    MOZ_ASSERT(IsInRange(offset));
  }
  static bool IsInRange(int offset) {
    if ((offset - 4) < -536870912) {
      return false;
    }
    if ((offset - 4) > 536870908) {
      return false;
    }
    return true;
  }
  static const uint32_t INVALID = 0x20000000;
  JOffImm26() : data(INVALID) {}

  bool isInvalid() { return data == INVALID; }
  Instruction* getDest(Instruction* src);
};

class Imm16 {
  uint16_t value;

 public:
  Imm16();
  Imm16(uint32_t imm) : value(imm) {}
  uint32_t encode() { return value; }
  int32_t decodeSigned() { return value; }
  uint32_t decodeUnsigned() { return value; }
  static bool IsInSignedRange(int32_t imm) {
    return imm >= INT16_MIN && imm <= INT16_MAX;
  }
  static bool IsInUnsignedRange(uint32_t imm) { return imm <= UINT16_MAX; }
  static Imm16 Lower(Imm32 imm) { return Imm16(imm.value & 0xffff); }
  static Imm16 Upper(Imm32 imm) { return Imm16((imm.value >> 16) & 0xffff); }
};

class Imm8 {
  uint8_t value;

 public:
  Imm8();
  Imm8(uint32_t imm) : value(imm) {}
  uint32_t encode(uint32_t shift) { return value << shift; }
  int32_t decodeSigned() { return value; }
  uint32_t decodeUnsigned() { return value; }
  static bool IsInSignedRange(int32_t imm) {
    return imm >= INT8_MIN && imm <= INT8_MAX;
  }
  static bool IsInUnsignedRange(uint32_t imm) { return imm <= UINT8_MAX; }
  static Imm8 Lower(Imm16 imm) { return Imm8(imm.decodeSigned() & 0xff); }
  static Imm8 Upper(Imm16 imm) {
    return Imm8((imm.decodeSigned() >> 8) & 0xff);
  }
};

class GSImm13 {
  uint16_t value;

 public:
  GSImm13();
  GSImm13(uint32_t imm) : value(imm & ~0xf) {}
  uint32_t encode(uint32_t shift) { return ((value >> 4) & 0x1ff) << shift; }
  int32_t decodeSigned() { return value; }
  uint32_t decodeUnsigned() { return value; }
  static bool IsInRange(int32_t imm) {
    return imm >= int32_t(uint32_t(-256) << 4) && imm <= (255 << 4);
  }
};

class Operand {
 public:
  enum Tag { REG, FREG, MEM };

 private:
  Tag tag : 3;
  uint32_t reg : 5;
  int32_t offset;

 public:
  Operand(Register reg_) : tag(REG), reg(reg_.code()) {}

  Operand(FloatRegister freg) : tag(FREG), reg(freg.code()) {}

  Operand(Register base, Imm32 off)
      : tag(MEM), reg(base.code()), offset(off.value) {}

  Operand(Register base, int32_t off)
      : tag(MEM), reg(base.code()), offset(off) {}

  Operand(const Address& addr)
      : tag(MEM), reg(addr.base.code()), offset(addr.offset) {}

  Tag getTag() const { return tag; }

  Register toReg() const {
    MOZ_ASSERT(tag == REG);
    return Register::FromCode(reg);
  }

  FloatRegister toFReg() const {
    MOZ_ASSERT(tag == FREG);
    return FloatRegister::FromCode(reg);
  }

  void toAddr(Register* r, Imm32* dest) const {
    MOZ_ASSERT(tag == MEM);
    *r = Register::FromCode(reg);
    *dest = Imm32(offset);
  }
  Address toAddress() const {
    MOZ_ASSERT(tag == MEM);
    return Address(Register::FromCode(reg), offset);
  }
  int32_t disp() const {
    MOZ_ASSERT(tag == MEM);
    return offset;
  }

  int32_t base() const {
    MOZ_ASSERT(tag == MEM);
    return reg;
  }
  Register baseReg() const {
    MOZ_ASSERT(tag == MEM);
    return Register::FromCode(reg);
  }
};

inline Imm32 Imm64::firstHalf() const { return low(); }

inline Imm32 Imm64::secondHalf() const { return hi(); }

static constexpr int32_t SliceSize = 1024;
typedef js::jit::AssemblerBuffer<SliceSize, Instruction> MIPSBuffer;

class MIPSBufferWithExecutableCopy : public MIPSBuffer {
 public:
  void executableCopy(uint8_t* buffer) {
    if (this->oom()) {
      return;
    }

    for (Slice* cur = head; cur != nullptr; cur = cur->getNext()) {
      memcpy(buffer, &cur->instructions, cur->length());
      buffer += cur->length();
    }
  }

  bool appendRawCode(const uint8_t* code, size_t numBytes) {
    if (this->oom()) {
      return false;
    }
    while (numBytes > SliceSize) {
      this->putBytes(SliceSize, code);
      numBytes -= SliceSize;
      code += SliceSize;
    }
    this->putBytes(numBytes, code);
    return !this->oom();
  }
};

class AssemblerMIPSShared : public AssemblerShared {
 public:
  enum Condition {
    Equal,
    NotEqual,
    Above,
    AboveOrEqual,
    Below,
    BelowOrEqual,
    GreaterThan,
    GreaterThanOrEqual,
    LessThan,
    LessThanOrEqual,
    Overflow,
    CarrySet,
    CarryClear,
    Signed,
    NotSigned,
    Zero,
    NonZero,
    Always,
  };

  enum DoubleCondition {
    // These conditions will only evaluate to true if the comparison is ordered
    // - i.e. neither operand is NaN.
    DoubleOrdered,
    DoubleEqual,
    DoubleNotEqual,
    DoubleGreaterThan,
    DoubleGreaterThanOrEqual,
    DoubleLessThan,
    DoubleLessThanOrEqual,
    // If either operand is NaN, these conditions always evaluate to true.
    DoubleUnordered,
    DoubleEqualOrUnordered,
    DoubleNotEqualOrUnordered,
    DoubleGreaterThanOrUnordered,
    DoubleGreaterThanOrEqualOrUnordered,
    DoubleLessThanOrUnordered,
    DoubleLessThanOrEqualOrUnordered
  };

  enum FPConditionBit { FCC0 = 0, FCC1, FCC2, FCC3, FCC4, FCC5, FCC6, FCC7 };

  enum FPControl {
    FIR = 0,
    UFR,
    UNFR = 4,
    FCCR = 25,
    FEXR,
    FENR = 28,
    FCSR = 31
  };

  enum FCSRBit { CauseI = 12, CauseU, CauseO, CauseZ, CauseV };

  enum FloatFormat { SingleFloat, DoubleFloat };

  enum JumpOrCall { BranchIsJump, BranchIsCall };

  enum FloatTestKind { TestForTrue, TestForFalse };

  // :( this should be protected, but since CodeGenerator
  // wants to use it, It needs to go out here :(

  BufferOffset nextOffset() { return m_buffer.nextOffset(); }

 protected:
  Instruction* editSrc(BufferOffset bo) { return m_buffer.getInst(bo); }

  // structure for fixing up pc-relative loads/jumps when a the machine code
  // gets moved (executable copy, gc, etc.)
  struct RelativePatch {
    // the offset within the code buffer where the value is loaded that
    // we want to fix-up
    BufferOffset offset;
    void* target;
    RelocationKind kind;

    RelativePatch(BufferOffset offset, void* target, RelocationKind kind)
        : offset(offset), target(target), kind(kind) {}
  };

  js::Vector<RelativePatch, 8, SystemAllocPolicy> jumps_;

  CompactBufferWriter jumpRelocations_;
  CompactBufferWriter dataRelocations_;

  MIPSBufferWithExecutableCopy m_buffer;

#ifdef JS_JITSPEW
  Sprinter* printer;
#endif

 public:
  AssemblerMIPSShared()
      : m_buffer(),
#ifdef JS_JITSPEW
        printer(nullptr),
#endif
        isFinished(false) {
  }

  static Condition InvertCondition(Condition cond);
  static DoubleCondition InvertCondition(DoubleCondition cond);

  void writeRelocation(BufferOffset src) {
    jumpRelocations_.writeUnsigned(src.getOffset());
  }

  // As opposed to x86/x64 version, the data relocation has to be executed
  // before to recover the pointer, and not after.
  void writeDataRelocation(ImmGCPtr ptr) {
    // Raw GC pointer relocations and Value relocations both end up in
    // TraceOneDataRelocation.
    if (ptr.value) {
      if (gc::IsInsideNursery(ptr.value)) {
        embedsNurseryPointers_ = true;
      }
      dataRelocations_.writeUnsigned(nextOffset().getOffset());
    }
  }

  void assertNoGCThings() const {
#ifdef DEBUG
    MOZ_ASSERT(dataRelocations_.length() == 0);
    for (auto& j : jumps_) {
      MOZ_ASSERT(j.kind == RelocationKind::HARDCODED);
    }
#endif
  }

 public:
  void setUnlimitedBuffer() { m_buffer.setUnlimited(); }
  bool oom() const;

  void setPrinter(Sprinter* sp) {
#ifdef JS_JITSPEW
    printer = sp;
#endif
  }

#ifdef JS_JITSPEW
  inline void spew(const char* fmt, ...) MOZ_FORMAT_PRINTF(2, 3) {
    if (MOZ_UNLIKELY(printer || JitSpewEnabled(JitSpew_Codegen))) {
      va_list va;
      va_start(va, fmt);
      spew(fmt, va);
      va_end(va);
    }
  }

  void decodeBranchInstAndSpew(InstImm branch);
#else
  MOZ_ALWAYS_INLINE void spew(const char* fmt, ...) MOZ_FORMAT_PRINTF(2, 3) {}
#endif

#ifdef JS_JITSPEW
  MOZ_COLD void spew(const char* fmt, va_list va) MOZ_FORMAT_PRINTF(2, 0) {
    // Buffer to hold the formatted string. Note that this may contain
    // '%' characters, so do not pass it directly to printf functions.
    char buf[200];

    int i = VsprintfLiteral(buf, fmt, va);
    if (i > -1) {
      if (printer) {
        printer->printf("%s\n", buf);
      }
      js::jit::JitSpew(js::jit::JitSpew_Codegen, "%s", buf);
    }
  }
#endif

  Register getStackPointer() const { return StackPointer; }

 protected:
  bool isFinished;

 public:
  void finish();
  bool appendRawCode(const uint8_t* code, size_t numBytes);
  bool reserve(size_t size);
  bool swapBuffer(wasm::Bytes& bytes);
  void executableCopy(void* buffer);
  void copyJumpRelocationTable(uint8_t* dest);
  void copyDataRelocationTable(uint8_t* dest);

  // Size of the instruction stream, in bytes.
  size_t size() const;
  // Size of the jump relocation table, in bytes.
  size_t jumpRelocationTableBytes() const;
  size_t dataRelocationTableBytes() const;

  // Size of the data table, in bytes.
  size_t bytesNeeded() const;

  // Write a blob of binary into the instruction stream *OR*
  // into a destination address. If dest is nullptr (the default), then the
  // instruction gets written into the instruction stream. If dest is not null
  // it is interpreted as a pointer to the location that we want the
  // instruction to be written.
  BufferOffset writeInst(uint32_t x, uint32_t* dest = nullptr);
  // A static variant for the cases where we don't want to have an assembler
  // object at all. Normally, you would use the dummy (nullptr) object.
  static void WriteInstStatic(uint32_t x, uint32_t* dest);

 public:
  BufferOffset haltingAlign(int alignment);
  BufferOffset nopAlign(int alignment);
  BufferOffset as_nop();

  // Branch and jump instructions
  BufferOffset as_bal(BOffImm16 off);
  BufferOffset as_b(BOffImm16 off);

  InstImm getBranchCode(JumpOrCall jumpOrCall);
  InstImm getBranchCode(Register s, Register t, Condition c);
  InstImm getBranchCode(Register s, Condition c);
  InstImm getBranchCode(FloatTestKind testKind, FPConditionBit fcc);

  BufferOffset as_j(JOffImm26 off);
  BufferOffset as_jal(JOffImm26 off);

  BufferOffset as_jr(Register rs);
  BufferOffset as_jalr(Register rs);

  // Arithmetic instructions
  BufferOffset as_addu(Register rd, Register rs, Register rt);
  BufferOffset as_addiu(Register rd, Register rs, int32_t j);
  BufferOffset as_daddu(Register rd, Register rs, Register rt);
  BufferOffset as_daddiu(Register rd, Register rs, int32_t j);
  BufferOffset as_subu(Register rd, Register rs, Register rt);
  BufferOffset as_dsubu(Register rd, Register rs, Register rt);
  BufferOffset as_mult(Register rs, Register rt);
  BufferOffset as_multu(Register rs, Register rt);
  BufferOffset as_dmult(Register rs, Register rt);
  BufferOffset as_dmultu(Register rs, Register rt);
  BufferOffset as_div(Register rs, Register rt);
  BufferOffset as_divu(Register rs, Register rt);
  BufferOffset as_mul(Register rd, Register rs, Register rt);
  BufferOffset as_madd(Register rs, Register rt);
  BufferOffset as_maddu(Register rs, Register rt);
  BufferOffset as_ddiv(Register rs, Register rt);
  BufferOffset as_ddivu(Register rs, Register rt);

  BufferOffset as_muh(Register rd, Register rs, Register rt);
  BufferOffset as_muhu(Register rd, Register rs, Register rt);
  BufferOffset as_mulu(Register rd, Register rs, Register rt);
  BufferOffset as_dmuh(Register rd, Register rs, Register rt);
  BufferOffset as_dmuhu(Register rd, Register rs, Register rt);
  BufferOffset as_dmul(Register rd, Register rs, Register rt);
  BufferOffset as_dmulu(Register rd, Register rs, Register rt);
  BufferOffset as_div(Register rd, Register rs, Register rt);
  BufferOffset as_divu(Register rd, Register rs, Register rt);
  BufferOffset as_mod(Register rd, Register rs, Register rt);
  BufferOffset as_modu(Register rd, Register rs, Register rt);
  BufferOffset as_ddiv(Register rd, Register rs, Register rt);
  BufferOffset as_ddivu(Register rd, Register rs, Register rt);
  BufferOffset as_dmod(Register rd, Register rs, Register rt);
  BufferOffset as_dmodu(Register rd, Register rs, Register rt);

  // Logical instructions
  BufferOffset as_and(Register rd, Register rs, Register rt);
  BufferOffset as_or(Register rd, Register rs, Register rt);
  BufferOffset as_xor(Register rd, Register rs, Register rt);
  BufferOffset as_nor(Register rd, Register rs, Register rt);

  BufferOffset as_andi(Register rd, Register rs, int32_t j);
  BufferOffset as_ori(Register rd, Register rs, int32_t j);
  BufferOffset as_xori(Register rd, Register rs, int32_t j);
  BufferOffset as_lui(Register rd, int32_t j);

  // Shift instructions
  // as_sll(zero, zero, x) instructions are reserved as nop
  BufferOffset as_sll(Register rd, Register rt, uint16_t sa);
  BufferOffset as_dsll(Register rd, Register rt, uint16_t sa);
  BufferOffset as_dsll32(Register rd, Register rt, uint16_t sa);
  BufferOffset as_sllv(Register rd, Register rt, Register rs);
  BufferOffset as_dsllv(Register rd, Register rt, Register rs);
  BufferOffset as_srl(Register rd, Register rt, uint16_t sa);
  BufferOffset as_dsrl(Register rd, Register rt, uint16_t sa);
  BufferOffset as_dsrl32(Register rd, Register rt, uint16_t sa);
  BufferOffset as_srlv(Register rd, Register rt, Register rs);
  BufferOffset as_dsrlv(Register rd, Register rt, Register rs);
  BufferOffset as_sra(Register rd, Register rt, uint16_t sa);
  BufferOffset as_dsra(Register rd, Register rt, uint16_t sa);
  BufferOffset as_dsra32(Register rd, Register rt, uint16_t sa);
  BufferOffset as_srav(Register rd, Register rt, Register rs);
  BufferOffset as_rotr(Register rd, Register rt, uint16_t sa);
  BufferOffset as_rotrv(Register rd, Register rt, Register rs);
  BufferOffset as_dsrav(Register rd, Register rt, Register rs);
  BufferOffset as_drotr(Register rd, Register rt, uint16_t sa);
  BufferOffset as_drotr32(Register rd, Register rt, uint16_t sa);
  BufferOffset as_drotrv(Register rd, Register rt, Register rs);

  // Load and store instructions
  BufferOffset as_lb(Register rd, Register rs, int16_t off);
  BufferOffset as_lbu(Register rd, Register rs, int16_t off);
  BufferOffset as_lh(Register rd, Register rs, int16_t off);
  BufferOffset as_lhu(Register rd, Register rs, int16_t off);
  BufferOffset as_lw(Register rd, Register rs, int16_t off);
  BufferOffset as_lwu(Register rd, Register rs, int16_t off);
  BufferOffset as_lwl(Register rd, Register rs, int16_t off);
  BufferOffset as_lwr(Register rd, Register rs, int16_t off);
  BufferOffset as_ll(Register rd, Register rs, int16_t off);
  BufferOffset as_lld(Register rd, Register rs, int16_t off);
  BufferOffset as_ld(Register rd, Register rs, int16_t off);
  BufferOffset as_ldl(Register rd, Register rs, int16_t off);
  BufferOffset as_ldr(Register rd, Register rs, int16_t off);
  BufferOffset as_sb(Register rd, Register rs, int16_t off);
  BufferOffset as_sh(Register rd, Register rs, int16_t off);
  BufferOffset as_sw(Register rd, Register rs, int16_t off);
  BufferOffset as_swl(Register rd, Register rs, int16_t off);
  BufferOffset as_swr(Register rd, Register rs, int16_t off);
  BufferOffset as_sc(Register rd, Register rs, int16_t off);
  BufferOffset as_scd(Register rd, Register rs, int16_t off);
  BufferOffset as_sd(Register rd, Register rs, int16_t off);
  BufferOffset as_sdl(Register rd, Register rs, int16_t off);
  BufferOffset as_sdr(Register rd, Register rs, int16_t off);

  // Loongson-specific load and store instructions
  BufferOffset as_gslbx(Register rd, Register rs, Register ri, int16_t off);
  BufferOffset as_gssbx(Register rd, Register rs, Register ri, int16_t off);
  BufferOffset as_gslhx(Register rd, Register rs, Register ri, int16_t off);
  BufferOffset as_gsshx(Register rd, Register rs, Register ri, int16_t off);
  BufferOffset as_gslwx(Register rd, Register rs, Register ri, int16_t off);
  BufferOffset as_gsswx(Register rd, Register rs, Register ri, int16_t off);
  BufferOffset as_gsldx(Register rd, Register rs, Register ri, int16_t off);
  BufferOffset as_gssdx(Register rd, Register rs, Register ri, int16_t off);
  BufferOffset as_gslq(Register rh, Register rl, Register rs, int16_t off);
  BufferOffset as_gssq(Register rh, Register rl, Register rs, int16_t off);

  // Move from HI/LO register.
  BufferOffset as_mfhi(Register rd);
  BufferOffset as_mflo(Register rd);

  // Set on less than.
  BufferOffset as_slt(Register rd, Register rs, Register rt);
  BufferOffset as_sltu(Register rd, Register rs, Register rt);
  BufferOffset as_slti(Register rd, Register rs, int32_t j);
  BufferOffset as_sltiu(Register rd, Register rs, uint32_t j);

  // Conditional move.
  BufferOffset as_movz(Register rd, Register rs, Register rt);
  BufferOffset as_movn(Register rd, Register rs, Register rt);
  BufferOffset as_movt(Register rd, Register rs, uint16_t cc = 0);
  BufferOffset as_movf(Register rd, Register rs, uint16_t cc = 0);
  BufferOffset as_seleqz(Register rd, Register rs, Register rt);
  BufferOffset as_selnez(Register rd, Register rs, Register rt);

  // Bit twiddling.
  BufferOffset as_clz(Register rd, Register rs);
  BufferOffset as_dclz(Register rd, Register rs);
  BufferOffset as_wsbh(Register rd, Register rt);
  BufferOffset as_dsbh(Register rd, Register rt);
  BufferOffset as_dshd(Register rd, Register rt);
  BufferOffset as_ins(Register rt, Register rs, uint16_t pos, uint16_t size);
  BufferOffset as_dins(Register rt, Register rs, uint16_t pos, uint16_t size);
  BufferOffset as_dinsm(Register rt, Register rs, uint16_t pos, uint16_t size);
  BufferOffset as_dinsu(Register rt, Register rs, uint16_t pos, uint16_t size);
  BufferOffset as_ext(Register rt, Register rs, uint16_t pos, uint16_t size);
  BufferOffset as_dext(Register rt, Register rs, uint16_t pos, uint16_t size);
  BufferOffset as_dextm(Register rt, Register rs, uint16_t pos, uint16_t size);
  BufferOffset as_dextu(Register rt, Register rs, uint16_t pos, uint16_t size);

  // Sign extend
  BufferOffset as_seb(Register rd, Register rt);
  BufferOffset as_seh(Register rd, Register rt);

  // FP instructions

  BufferOffset as_ldc1(FloatRegister ft, Register base, int32_t off);
  BufferOffset as_sdc1(FloatRegister ft, Register base, int32_t off);

  BufferOffset as_lwc1(FloatRegister ft, Register base, int32_t off);
  BufferOffset as_swc1(FloatRegister ft, Register base, int32_t off);

  // Loongson-specific FP load and store instructions
  BufferOffset as_gsldl(FloatRegister fd, Register base, int32_t off);
  BufferOffset as_gsldr(FloatRegister fd, Register base, int32_t off);
  BufferOffset as_gssdl(FloatRegister fd, Register base, int32_t off);
  BufferOffset as_gssdr(FloatRegister fd, Register base, int32_t off);
  BufferOffset as_gslsl(FloatRegister fd, Register base, int32_t off);
  BufferOffset as_gslsr(FloatRegister fd, Register base, int32_t off);
  BufferOffset as_gsssl(FloatRegister fd, Register base, int32_t off);
  BufferOffset as_gsssr(FloatRegister fd, Register base, int32_t off);
  BufferOffset as_gslsx(FloatRegister fd, Register rs, Register ri,
                        int16_t off);
  BufferOffset as_gsssx(FloatRegister fd, Register rs, Register ri,
                        int16_t off);
  BufferOffset as_gsldx(FloatRegister fd, Register rs, Register ri,
                        int16_t off);
  BufferOffset as_gssdx(FloatRegister fd, Register rs, Register ri,
                        int16_t off);
  BufferOffset as_gslq(FloatRegister rh, FloatRegister rl, Register rs,
                       int16_t off);
  BufferOffset as_gssq(FloatRegister rh, FloatRegister rl, Register rs,
                       int16_t off);

  BufferOffset as_movs(FloatRegister fd, FloatRegister fs);
  BufferOffset as_movd(FloatRegister fd, FloatRegister fs);

  BufferOffset as_ctc1(Register rt, FPControl fc);
  BufferOffset as_cfc1(Register rt, FPControl fc);

  BufferOffset as_mtc1(Register rt, FloatRegister fs);
  BufferOffset as_mfc1(Register rt, FloatRegister fs);

  BufferOffset as_mthc1(Register rt, FloatRegister fs);
  BufferOffset as_mfhc1(Register rt, FloatRegister fs);
  BufferOffset as_dmtc1(Register rt, FloatRegister fs);
  BufferOffset as_dmfc1(Register rt, FloatRegister fs);

 public:
  // FP convert instructions
  BufferOffset as_ceilws(FloatRegister fd, FloatRegister fs);
  BufferOffset as_floorws(FloatRegister fd, FloatRegister fs);
  BufferOffset as_roundws(FloatRegister fd, FloatRegister fs);
  BufferOffset as_truncws(FloatRegister fd, FloatRegister fs);
  BufferOffset as_truncls(FloatRegister fd, FloatRegister fs);

  BufferOffset as_ceilwd(FloatRegister fd, FloatRegister fs);
  BufferOffset as_floorwd(FloatRegister fd, FloatRegister fs);
  BufferOffset as_roundwd(FloatRegister fd, FloatRegister fs);
  BufferOffset as_truncwd(FloatRegister fd, FloatRegister fs);
  BufferOffset as_truncld(FloatRegister fd, FloatRegister fs);

  BufferOffset as_cvtdl(FloatRegister fd, FloatRegister fs);
  BufferOffset as_cvtds(FloatRegister fd, FloatRegister fs);
  BufferOffset as_cvtdw(FloatRegister fd, FloatRegister fs);
  BufferOffset as_cvtld(FloatRegister fd, FloatRegister fs);
  BufferOffset as_cvtls(FloatRegister fd, FloatRegister fs);
  BufferOffset as_cvtsd(FloatRegister fd, FloatRegister fs);
  BufferOffset as_cvtsl(FloatRegister fd, FloatRegister fs);
  BufferOffset as_cvtsw(FloatRegister fd, FloatRegister fs);
  BufferOffset as_cvtwd(FloatRegister fd, FloatRegister fs);
  BufferOffset as_cvtws(FloatRegister fd, FloatRegister fs);

  // FP arithmetic instructions
  BufferOffset as_adds(FloatRegister fd, FloatRegister fs, FloatRegister ft);
  BufferOffset as_addd(FloatRegister fd, FloatRegister fs, FloatRegister ft);
  BufferOffset as_subs(FloatRegister fd, FloatRegister fs, FloatRegister ft);
  BufferOffset as_subd(FloatRegister fd, FloatRegister fs, FloatRegister ft);

  BufferOffset as_abss(FloatRegister fd, FloatRegister fs);
  BufferOffset as_absd(FloatRegister fd, FloatRegister fs);
  BufferOffset as_negs(FloatRegister fd, FloatRegister fs);
  BufferOffset as_negd(FloatRegister fd, FloatRegister fs);

  BufferOffset as_muls(FloatRegister fd, FloatRegister fs, FloatRegister ft);
  BufferOffset as_muld(FloatRegister fd, FloatRegister fs, FloatRegister ft);
  BufferOffset as_divs(FloatRegister fd, FloatRegister fs, FloatRegister ft);
  BufferOffset as_divd(FloatRegister fd, FloatRegister fs, FloatRegister ft);
  BufferOffset as_sqrts(FloatRegister fd, FloatRegister fs);
  BufferOffset as_sqrtd(FloatRegister fd, FloatRegister fs);

  BufferOffset as_max(FloatFormat fmt, FloatRegister fd, FloatRegister fs,
                      FloatRegister ft);
  BufferOffset as_min(FloatFormat fmt, FloatRegister fd, FloatRegister fs,
                      FloatRegister ft);

  // FP compare instructions
  BufferOffset as_cf(FloatFormat fmt, FloatRegister fs, FloatRegister ft,
                     FPConditionBit fcc = FCC0);
  BufferOffset as_cun(FloatFormat fmt, FloatRegister fs, FloatRegister ft,
                      FPConditionBit fcc = FCC0);
  BufferOffset as_ceq(FloatFormat fmt, FloatRegister fs, FloatRegister ft,
                      FPConditionBit fcc = FCC0);
  BufferOffset as_cueq(FloatFormat fmt, FloatRegister fs, FloatRegister ft,
                       FPConditionBit fcc = FCC0);
  BufferOffset as_colt(FloatFormat fmt, FloatRegister fs, FloatRegister ft,
                       FPConditionBit fcc = FCC0);
  BufferOffset as_cult(FloatFormat fmt, FloatRegister fs, FloatRegister ft,
                       FPConditionBit fcc = FCC0);
  BufferOffset as_cole(FloatFormat fmt, FloatRegister fs, FloatRegister ft,
                       FPConditionBit fcc = FCC0);
  BufferOffset as_cule(FloatFormat fmt, FloatRegister fs, FloatRegister ft,
                       FPConditionBit fcc = FCC0);

  // FP conditional move.
  BufferOffset as_movt(FloatFormat fmt, FloatRegister fd, FloatRegister fs,
                       FPConditionBit fcc = FCC0);
  BufferOffset as_movf(FloatFormat fmt, FloatRegister fd, FloatRegister fs,
                       FPConditionBit fcc = FCC0);
  BufferOffset as_movz(FloatFormat fmt, FloatRegister fd, FloatRegister fs,
                       Register rt);
  BufferOffset as_movn(FloatFormat fmt, FloatRegister fd, FloatRegister fs,
                       Register rt);

  // Conditional trap operations
  BufferOffset as_tge(Register rs, Register rt, uint32_t code = 0);
  BufferOffset as_tgeu(Register rs, Register rt, uint32_t code = 0);
  BufferOffset as_tlt(Register rs, Register rt, uint32_t code = 0);
  BufferOffset as_tltu(Register rs, Register rt, uint32_t code = 0);
  BufferOffset as_teq(Register rs, Register rt, uint32_t code = 0);
  BufferOffset as_tne(Register rs, Register rt, uint32_t code = 0);

  // label operations
  void bind(Label* label, BufferOffset boff = BufferOffset());
  virtual void bind(InstImm* inst, uintptr_t branch, uintptr_t target) = 0;
  void bind(CodeLabel* label) { label->target()->bind(currentOffset()); }
  uint32_t currentOffset() { return nextOffset().getOffset(); }
  void retarget(Label* label, Label* target);

  void call(Label* label);
  void call(void* target);

  void as_break(uint32_t code);
  void as_sync(uint32_t stype = 0);

 public:
  static bool SupportsFloatingPoint() {
#if (defined(__mips_hard_float) && !defined(__mips_single_float)) || \
    defined(JS_SIMULATOR_MIPS32) || defined(JS_SIMULATOR_MIPS64)
    return true;
#else
    return false;
#endif
  }
  static bool SupportsUnalignedAccesses() { return true; }
  static bool SupportsFastUnalignedAccesses() { return false; }

  static bool HasRoundInstruction(RoundingMode mode) { return false; }

 protected:
  InstImm invertBranch(InstImm branch, BOffImm16 skipOffset);
  void addPendingJump(BufferOffset src, ImmPtr target, RelocationKind kind) {
    enoughMemory_ &= jumps_.append(RelativePatch(src, target.value, kind));
    if (kind == RelocationKind::JITCODE) {
      writeRelocation(src);
    }
  }

  void addLongJump(BufferOffset src, BufferOffset dst) {
    CodeLabel cl;
    cl.patchAt()->bind(src.getOffset());
    cl.target()->bind(dst.getOffset());
    cl.setLinkMode(CodeLabel::JumpImmediate);
    addCodeLabel(std::move(cl));
  }

 public:
  void flushBuffer() {}

  void comment(const char* msg) { spew("; %s", msg); }

  static uint32_t NopSize() { return 4; }

  static void PatchWrite_Imm32(CodeLocationLabel label, Imm32 imm);

  static uint32_t AlignDoubleArg(uint32_t offset) {
    return (offset + 1U) & ~1U;
  }

  static uint8_t* NextInstruction(uint8_t* instruction,
                                  uint32_t* count = nullptr);

  static void ToggleToJmp(CodeLocationLabel inst_);
  static void ToggleToCmp(CodeLocationLabel inst_);

  static void UpdateLuiOriValue(Instruction* inst0, Instruction* inst1,
                                uint32_t value);

  void verifyHeapAccessDisassembly(uint32_t begin, uint32_t end,
                                   const Disassembler::HeapAccess& heapAccess) {
    // Implement this if we implement a disassembler.
  }
};  // AssemblerMIPSShared

// sll zero, zero, 0
const uint32_t NopInst = 0x00000000;

// An Instruction is a structure for both encoding and decoding any and all
// MIPS instructions.
class Instruction {
 protected:
  uint32_t data;

  // Standard constructor
  Instruction(uint32_t data_) : data(data_) {}

  // You should never create an instruction directly.  You should create a
  // more specific instruction which will eventually call one of these
  // constructors for you.
 public:
  uint32_t encode() const { return data; }

  void makeNop() { data = NopInst; }

  void setData(uint32_t data) { this->data = data; }

  const Instruction& operator=(const Instruction& src) {
    data = src.data;
    return *this;
  }

  // Extract the one particular bit.
  uint32_t extractBit(uint32_t bit) { return (encode() >> bit) & 1; }
  // Extract a bit field out of the instruction
  uint32_t extractBitField(uint32_t hi, uint32_t lo) {
    return (encode() >> lo) & ((2 << (hi - lo)) - 1);
  }
  // Since all MIPS instructions have opcode, the opcode
  // extractor resides in the base class.
  uint32_t extractOpcode() {
    return extractBitField(OpcodeShift + OpcodeBits - 1, OpcodeShift);
  }
  // Return the fields at their original place in the instruction encoding.
  OpcodeField OpcodeFieldRaw() const {
    return static_cast<OpcodeField>(encode() & OpcodeMask);
  }

  // Get the next instruction in the instruction stream.
  // This does neat things like ignoreconstant pools and their guards.
  Instruction* next();

  // Sometimes, an api wants a uint32_t (or a pointer to it) rather than
  // an instruction.  raw() just coerces this into a pointer to a uint32_t
  const uint32_t* raw() const { return &data; }
  uint32_t size() const { return 4; }
};  // Instruction

// make sure that it is the right size
static_assert(sizeof(Instruction) == 4,
              "Size of Instruction class has to be 4 bytes.");

class InstNOP : public Instruction {
 public:
  InstNOP() : Instruction(NopInst) {}
};

// Class for register type instructions.
class InstReg : public Instruction {
 public:
  InstReg(OpcodeField op, Register rd, FunctionField ff)
      : Instruction(op | RD(rd) | ff) {}
  InstReg(OpcodeField op, Register rs, Register rt, FunctionField ff)
      : Instruction(op | RS(rs) | RT(rt) | ff) {}
  InstReg(OpcodeField op, Register rs, Register rt, Register rd,
          FunctionField ff)
      : Instruction(op | RS(rs) | RT(rt) | RD(rd) | ff) {}
  InstReg(OpcodeField op, Register rs, Register rt, Register rd, uint32_t sa,
          FunctionField ff)
      : Instruction(op | RS(rs) | RT(rt) | RD(rd) | SA(sa) | ff) {}
  InstReg(OpcodeField op, RSField rs, Register rt, Register rd, uint32_t sa,
          FunctionField ff)
      : Instruction(op | rs | RT(rt) | RD(rd) | SA(sa) | ff) {}
  InstReg(OpcodeField op, Register rs, RTField rt, Register rd, uint32_t sa,
          FunctionField ff)
      : Instruction(op | RS(rs) | rt | RD(rd) | SA(sa) | ff) {}
  InstReg(OpcodeField op, Register rs, uint32_t cc, Register rd, uint32_t sa,
          FunctionField ff)
      : Instruction(op | RS(rs) | cc | RD(rd) | SA(sa) | ff) {}
  InstReg(OpcodeField op, uint32_t code, FunctionField ff)
      : Instruction(op | code | ff) {}
  // for float point
  InstReg(OpcodeField op, RSField rs, Register rt, uint32_t fs)
      : Instruction(op | rs | RT(rt) | FS(fs)) {}
  InstReg(OpcodeField op, RSField rs, Register rt, FloatRegister rd)
      : Instruction(op | rs | RT(rt) | RD(rd)) {}
  InstReg(OpcodeField op, RSField rs, Register rt, FloatRegister rd,
          uint32_t sa, FunctionField ff)
      : Instruction(op | rs | RT(rt) | RD(rd) | SA(sa) | ff) {}
  InstReg(OpcodeField op, RSField rs, Register rt, FloatRegister fs,
          FloatRegister fd, FunctionField ff)
      : Instruction(op | rs | RT(rt) | RD(fs) | SA(fd) | ff) {}
  InstReg(OpcodeField op, RSField rs, FloatRegister ft, FloatRegister fs,
          FloatRegister fd, FunctionField ff)
      : Instruction(op | rs | RT(ft) | RD(fs) | SA(fd) | ff) {}
  InstReg(OpcodeField op, RSField rs, FloatRegister ft, FloatRegister fd,
          uint32_t sa, FunctionField ff)
      : Instruction(op | rs | RT(ft) | RD(fd) | SA(sa) | ff) {}

  uint32_t extractRS() {
    return extractBitField(RSShift + RSBits - 1, RSShift);
  }
  uint32_t extractRT() {
    return extractBitField(RTShift + RTBits - 1, RTShift);
  }
  uint32_t extractRD() {
    return extractBitField(RDShift + RDBits - 1, RDShift);
  }
  uint32_t extractSA() {
    return extractBitField(SAShift + SABits - 1, SAShift);
  }
  uint32_t extractFunctionField() {
    return extractBitField(FunctionShift + FunctionBits - 1, FunctionShift);
  }
};

// Class for branch, load and store instructions with immediate offset.
class InstImm : public Instruction {
 public:
  void extractImm16(BOffImm16* dest);

  InstImm(OpcodeField op, Register rs, Register rt, BOffImm16 off)
      : Instruction(op | RS(rs) | RT(rt) | off.encode()) {}
  InstImm(OpcodeField op, Register rs, RTField rt, BOffImm16 off)
      : Instruction(op | RS(rs) | rt | off.encode()) {}
  InstImm(OpcodeField op, RSField rs, uint32_t cc, BOffImm16 off)
      : Instruction(op | rs | cc | off.encode()) {}
  InstImm(OpcodeField op, Register rs, Register rt, Imm16 off)
      : Instruction(op | RS(rs) | RT(rt) | off.encode()) {}
  InstImm(uint32_t raw) : Instruction(raw) {}
  // For floating-point loads and stores.
  InstImm(OpcodeField op, Register rs, FloatRegister rt, Imm16 off)
      : Instruction(op | RS(rs) | RT(rt) | off.encode()) {}

  uint32_t extractOpcode() {
    return extractBitField(OpcodeShift + OpcodeBits - 1, OpcodeShift);
  }
  void setOpcode(OpcodeField op) { data = (data & ~OpcodeMask) | op; }
  uint32_t extractRS() {
    return extractBitField(RSShift + RSBits - 1, RSShift);
  }
  uint32_t extractRT() {
    return extractBitField(RTShift + RTBits - 1, RTShift);
  }
  void setRT(RTField rt) { data = (data & ~RTMask) | rt; }
  uint32_t extractImm16Value() {
    return extractBitField(Imm16Shift + Imm16Bits - 1, Imm16Shift);
  }
  void setBOffImm16(BOffImm16 off) {
    // Reset immediate field and replace it
    data = (data & ~Imm16Mask) | off.encode();
  }
  void setImm16(Imm16 off) {
    // Reset immediate field and replace it
    data = (data & ~Imm16Mask) | off.encode();
  }
};

// Class for Jump type instructions.
class InstJump : public Instruction {
 public:
  InstJump(OpcodeField op, JOffImm26 off) : Instruction(op | off.encode()) {}

  uint32_t extractImm26Value() {
    return extractBitField(Imm26Shift + Imm26Bits - 1, Imm26Shift);
  }
};

// Class for Loongson-specific instructions
class InstGS : public Instruction {
 public:
  // For indexed loads and stores.
  InstGS(OpcodeField op, Register rs, Register rt, Register rd, Imm8 off,
         FunctionField ff)
      : Instruction(op | RS(rs) | RT(rt) | RD(rd) | off.encode(3) | ff) {}
  InstGS(OpcodeField op, Register rs, FloatRegister rt, Register rd, Imm8 off,
         FunctionField ff)
      : Instruction(op | RS(rs) | RT(rt) | RD(rd) | off.encode(3) | ff) {}
  // For quad-word loads and stores.
  InstGS(OpcodeField op, Register rs, Register rt, Register rz, GSImm13 off,
         FunctionField ff)
      : Instruction(op | RS(rs) | RT(rt) | RZ(rz) | off.encode(6) | ff) {}
  InstGS(OpcodeField op, Register rs, FloatRegister rt, FloatRegister rz,
         GSImm13 off, FunctionField ff)
      : Instruction(op | RS(rs) | RT(rt) | RZ(rz) | off.encode(6) | ff) {}
  InstGS(uint32_t raw) : Instruction(raw) {}
  // For floating-point unaligned loads and stores.
  InstGS(OpcodeField op, Register rs, FloatRegister rt, Imm8 off,
         FunctionField ff)
      : Instruction(op | RS(rs) | RT(rt) | off.encode(6) | ff) {}
};

inline bool IsUnaligned(const wasm::MemoryAccessDesc& access) {
  if (!access.align()) {
    return false;
  }

#ifdef JS_CODEGEN_MIPS32
  if (access.type() == Scalar::Int64 && access.align() >= 4) {
    return false;
  }
#endif

  return access.align() < access.byteSize();
}

}  // namespace jit
}  // namespace js

#endif /* jit_mips_shared_Assembler_mips_shared_h */