Source code

Revision control

Copy as Markdown

Other Tools

/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*-
* vim: set ts=8 sts=2 et sw=2 tw=80:
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#ifndef jit_VMFunctions_h
#define jit_VMFunctions_h
#include "mozilla/Assertions.h"
#include "mozilla/HashFunctions.h"
#include <stddef.h>
#include <stdint.h>
#include "jstypes.h"
#include "NamespaceImports.h"
#include "gc/AllocKind.h"
#include "js/ScalarType.h"
#include "js/TypeDecls.h"
class JSJitInfo;
class JSLinearString;
namespace js {
class AbstractGeneratorObject;
class ArrayObject;
class GlobalObject;
class InterpreterFrame;
class LexicalScope;
class ClassBodyScope;
class MapObject;
class NativeObject;
class PlainObject;
class PropertyName;
class SetObject;
class Shape;
class TypedArrayObject;
class WithScope;
class MegamorphicCacheEntry;
namespace gc {
struct Cell;
} // namespace gc
namespace wasm {
class AnyRef;
} // namespace wasm
namespace jit {
class BaselineFrame;
class InterpreterStubExitFrameLayout;
enum DataType : uint8_t {
Type_Void,
Type_Bool,
Type_Int32,
Type_Double,
Type_Pointer,
Type_Cell,
Type_Value,
Type_Handle
};
// [SMDOC] JIT-to-C++ Function Calls. (callVM)
//
// Sometimes it is easier to reuse C++ code by calling VM's functions. Calling a
// function from the VM can be achieved with the use of callWithABI but this is
// discouraged when the called functions might trigger exceptions and/or
// garbage collections which are expecting to walk the stack. VMFunctions and
// callVM are interfaces provided to handle the exception handling and register
// the stack end (JITActivation) such that walking the stack is made possible.
//
// VMFunctionData is a structure which contains the necessary information needed
// for generating a trampoline function to make a call (with generateVMWrapper)
// and to root the arguments of the function (in TraceJitExitFrame).
// VMFunctionData is created with the VMFunctionDataHelper template, which
// infers the VMFunctionData fields from the function signature. The rooting and
// trampoline code is therefore determined by the arguments of a function and
// their locations in the signature of a function.
//
// VM functions all expect a JSContext* as first argument. This argument is
// implicitly provided by the trampoline code (in generateVMWrapper) and used
// for creating new objects or reporting errors. If your function does not make
// use of a JSContext* argument, then you might probably use a callWithABI
// call.
//
// Functions described using the VMFunction system must conform to a simple
// protocol: the return type must have a special "failure" value (for example,
// false for bool, or nullptr for Objects). If the function is designed to
// return a value that does not meet this requirement - such as
// object-or-nullptr, or an integer, an optional, final outParam can be
// specified. In this case, the return type must be boolean to indicate
// failure.
//
// JIT Code usage:
//
// Different JIT compilers in SpiderMonkey have their own implementations of
// callVM to call VM functions. However, the general shape of them is that
// arguments (excluding the JSContext or trailing out-param) are pushed on to
// the stack from right to left (rightmost argument is pushed first).
//
// Regardless of return value protocol being used (final outParam, or return
// value) the generated trampolines ensure the return value ends up in
// JSReturnOperand, ReturnReg or ReturnDoubleReg.
//
// Example:
//
// The details will differ slightly between the different compilers in
// SpiderMonkey, but the general shape of our usage looks like this:
//
// Suppose we have a function Foo:
//
// bool Foo(JSContext* cx, HandleObject x, HandleId y,
// MutableHandleValue z);
//
// This function returns true on success, and z is the outparam return value.
//
// A VM function wrapper for this can be created by adding an entry to
// VM_FUNCTION_LIST in VMFunctionList-inl.h:
//
// _(Foo, js::Foo)
//
// In the compiler code the call would then be issued like this:
//
// masm.Push(id);
// masm.Push(obj);
//
// using Fn = bool (*)(JSContext*, HandleObject, HandleId,
// MutableHandleValue);
// if (!callVM<Fn, js::Foo>()) {
// return false;
// }
//
// After this, the result value is in the return value register.
// Data for a VM function. All VMFunctionDatas are stored in a constexpr array.
struct VMFunctionData {
#if defined(DEBUG) || defined(JS_JITSPEW) || defined(JS_ION_PERF)
// Informative name of the wrapped function. The name should not be present
// in release builds in order to save memory.
const char* name_;
#endif
// Note: a maximum of seven root types is supported.
enum RootType : uint8_t {
RootNone = 0,
RootObject,
RootString,
RootId,
RootValue,
RootCell,
RootBigInt
};
// Contains an combination of enumerated types used by the gc for marking
// arguments of the VM wrapper.
uint64_t argumentRootTypes;
enum ArgProperties {
WordByValue = 0,
DoubleByValue = 1,
WordByRef = 2,
DoubleByRef = 3,
// BitMask version.
Word = 0,
Double = 1,
ByRef = 2
};
// Contains properties about the first 16 arguments.
uint32_t argumentProperties;
// Which arguments should be passed in float register on platforms that
// have them.
uint32_t argumentPassedInFloatRegs;
// Number of arguments expected, excluding JSContext * as an implicit
// first argument and an outparam as a possible implicit final argument.
uint8_t explicitArgs;
// The root type of the out param if outParam == Type_Handle.
RootType outParamRootType;
// The outparam may be any Type_*, and must be the final argument to the
// function, if not Void. outParam != Void implies that the return type
// has a boolean failure mode.
DataType outParam;
// Type returned by the C function and used by the VMFunction wrapper to
// check for failures of the C function. Valid failure/return types are
// boolean and object pointers which are asserted inside the VMFunction
// constructor. If the C function use an outparam (!= Type_Void), then
// the only valid failure/return type is boolean -- object pointers are
// pointless because the wrapper will only use it to compare it against
// nullptr before discarding its value.
DataType returnType;
// Number of Values the VM wrapper should pop from the stack when it returns.
// Used by baseline IC stubs so that they can use tail calls to call the VM
// wrapper.
uint8_t extraValuesToPop;
uint32_t argc() const {
// JSContext * + args + (OutParam? *)
return 1 + explicitArgc() + ((outParam == Type_Void) ? 0 : 1);
}
DataType failType() const { return returnType; }
// Whether this function returns anything more than a boolean flag for
// failures.
bool returnsData() const {
return returnType == Type_Cell || outParam != Type_Void;
}
ArgProperties argProperties(uint32_t explicitArg) const {
return ArgProperties((argumentProperties >> (2 * explicitArg)) & 3);
}
RootType argRootType(uint32_t explicitArg) const {
return RootType((argumentRootTypes >> (3 * explicitArg)) & 7);
}
bool argPassedInFloatReg(uint32_t explicitArg) const {
return ((argumentPassedInFloatRegs >> explicitArg) & 1) == 1;
}
#if defined(DEBUG) || defined(JS_JITSPEW) || defined(JS_ION_PERF)
const char* name() const { return name_; }
#endif
// Return the stack size consumed by explicit arguments.
size_t explicitStackSlots() const {
size_t stackSlots = explicitArgs;
// Fetch all double-word flags of explicit arguments.
uint32_t n = ((1 << (explicitArgs * 2)) - 1) // = Explicit argument mask.
& 0x55555555 // = Mask double-size args.
& argumentProperties;
// Add the number of double-word flags. (expect a few loop
// iteration)
while (n) {
stackSlots++;
n &= n - 1;
}
return stackSlots;
}
// Double-size argument which are passed by value are taking the space
// of 2 C arguments. This function is used to compute the number of
// argument expected by the C function. This is not the same as
// explicitStackSlots because reference to stack slots may take one less
// register in the total count.
size_t explicitArgc() const {
size_t stackSlots = explicitArgs;
// Fetch all explicit arguments.
uint32_t n = ((1 << (explicitArgs * 2)) - 1) // = Explicit argument mask.
& argumentProperties;
// Filter double-size arguments (0x5 = 0b0101) and remove (& ~)
// arguments passed by reference (0b1010 >> 1 == 0b0101).
n = (n & 0x55555555) & ~(n >> 1);
// Add the number of double-word transfered by value. (expect a few
// loop iteration)
while (n) {
stackSlots++;
n &= n - 1;
}
return stackSlots;
}
size_t doubleByRefArgs() const {
size_t count = 0;
// Fetch all explicit arguments.
uint32_t n = ((1 << (explicitArgs * 2)) - 1) // = Explicit argument mask.
& argumentProperties;
// Filter double-size arguments (0x5 = 0b0101) and take (&) only
// arguments passed by reference (0b1010 >> 1 == 0b0101).
n = (n & 0x55555555) & (n >> 1);
// Add the number of double-word transfered by refference. (expect a
// few loop iterations)
while (n) {
count++;
n &= n - 1;
}
return count;
}
size_t sizeOfOutParamStackSlot() const;
constexpr VMFunctionData(const char* name, uint32_t explicitArgs,
uint32_t argumentProperties,
uint32_t argumentPassedInFloatRegs,
uint64_t argRootTypes, DataType outParam,
RootType outParamRootType, DataType returnType,
uint8_t extraValuesToPop = 0)
:
#if defined(DEBUG) || defined(JS_JITSPEW) || defined(JS_ION_PERF)
name_(name),
#endif
argumentRootTypes(argRootTypes),
argumentProperties(argumentProperties),
argumentPassedInFloatRegs(argumentPassedInFloatRegs),
explicitArgs(explicitArgs),
outParamRootType(outParamRootType),
outParam(outParam),
returnType(returnType),
extraValuesToPop(extraValuesToPop) {
// Check for valid failure/return type.
MOZ_ASSERT_IF(outParam != Type_Void,
returnType == Type_Void || returnType == Type_Bool);
MOZ_ASSERT(returnType == Type_Void || returnType == Type_Bool ||
returnType == Type_Cell);
}
constexpr VMFunctionData(const VMFunctionData& o) = default;
};
// Extract the last element of a list of types.
template <typename... ArgTypes>
struct LastArg;
template <>
struct LastArg<> {
using Type = void;
};
template <typename HeadType>
struct LastArg<HeadType> {
using Type = HeadType;
};
template <typename HeadType, typename... TailTypes>
struct LastArg<HeadType, TailTypes...> {
using Type = typename LastArg<TailTypes...>::Type;
};
[[nodiscard]] bool InvokeFunction(JSContext* cx, HandleObject obj0,
bool constructing, bool ignoresReturnValue,
uint32_t argc, Value* argv,
MutableHandleValue rval);
bool InvokeFromInterpreterStub(JSContext* cx,
InterpreterStubExitFrameLayout* frame);
void* GetContextSensitiveInterpreterStub();
bool CheckOverRecursed(JSContext* cx);
bool CheckOverRecursedBaseline(JSContext* cx, BaselineFrame* frame);
[[nodiscard]] bool MutatePrototype(JSContext* cx, Handle<PlainObject*> obj,
HandleValue value);
enum class EqualityKind : bool { NotEqual, Equal };
template <EqualityKind Kind>
bool StringsEqual(JSContext* cx, HandleString lhs, HandleString rhs, bool* res);
enum class ComparisonKind : bool { GreaterThanOrEqual, LessThan };
template <ComparisonKind Kind>
bool StringsCompare(JSContext* cx, HandleString lhs, HandleString rhs,
bool* res);
JSString* ArrayJoin(JSContext* cx, HandleObject array, HandleString sep);
[[nodiscard]] bool SetArrayLength(JSContext* cx, HandleObject obj,
HandleValue value, bool strict);
[[nodiscard]] bool CharCodeAt(JSContext* cx, HandleString str, int32_t index,
uint32_t* code);
[[nodiscard]] bool CodePointAt(JSContext* cx, HandleString str, int32_t index,
uint32_t* code);
JSLinearString* StringFromCharCodeNoGC(JSContext* cx, int32_t code);
JSLinearString* LinearizeForCharAccessPure(JSString* str);
JSLinearString* LinearizeForCharAccess(JSContext* cx, JSString* str);
int32_t StringTrimStartIndex(const JSString* str);
int32_t StringTrimEndIndex(const JSString* str, int32_t start);
JSString* CharCodeToLowerCase(JSContext* cx, int32_t code);
JSString* CharCodeToUpperCase(JSContext* cx, int32_t code);
[[nodiscard]] bool SetProperty(JSContext* cx, HandleObject obj,
Handle<PropertyName*> name, HandleValue value,
bool strict, jsbytecode* pc);
[[nodiscard]] bool InterruptCheck(JSContext* cx);
JSObject* NewStringObject(JSContext* cx, HandleString str);
bool OperatorIn(JSContext* cx, HandleValue key, HandleObject obj, bool* out);
[[nodiscard]] bool GetIntrinsicValue(JSContext* cx, Handle<PropertyName*> name,
MutableHandleValue rval);
[[nodiscard]] bool CreateThisFromIC(JSContext* cx, HandleObject callee,
HandleObject newTarget,
MutableHandleValue rval);
[[nodiscard]] bool CreateThisFromIon(JSContext* cx, HandleObject callee,
HandleObject newTarget,
MutableHandleValue rval);
void PostWriteBarrier(JSRuntime* rt, js::gc::Cell* cell);
void PostGlobalWriteBarrier(JSRuntime* rt, GlobalObject* obj);
void PostWriteElementBarrier(JSRuntime* rt, JSObject* obj, int32_t index);
// If |str| represents an int32, assign it to |result| and return true.
// Otherwise return false.
bool GetInt32FromStringPure(JSContext* cx, JSString* str, int32_t* result);
// If |str| is an index in the range [0, INT32_MAX], return it. If the string
// is not an index in this range, return -1.
int32_t GetIndexFromString(JSString* str);
JSObject* WrapObjectPure(JSContext* cx, JSObject* obj);
[[nodiscard]] bool DebugPrologue(JSContext* cx, BaselineFrame* frame);
[[nodiscard]] bool DebugEpilogue(JSContext* cx, BaselineFrame* frame,
const jsbytecode* pc, bool ok);
[[nodiscard]] bool DebugEpilogueOnBaselineReturn(JSContext* cx,
BaselineFrame* frame,
const jsbytecode* pc);
void FrameIsDebuggeeCheck(BaselineFrame* frame);
JSObject* CreateGeneratorFromFrame(JSContext* cx, BaselineFrame* frame);
JSObject* CreateGenerator(JSContext* cx, HandleFunction, HandleScript,
HandleObject, HandleObject);
[[nodiscard]] bool NormalSuspend(JSContext* cx, HandleObject obj,
BaselineFrame* frame, uint32_t frameSize,
const jsbytecode* pc);
[[nodiscard]] bool FinalSuspend(JSContext* cx, HandleObject obj,
const jsbytecode* pc);
[[nodiscard]] bool InterpretResume(JSContext* cx, HandleObject obj,
Value* stackValues, MutableHandleValue rval);
[[nodiscard]] bool DebugAfterYield(JSContext* cx, BaselineFrame* frame);
[[nodiscard]] bool GeneratorThrowOrReturn(
JSContext* cx, BaselineFrame* frame,
Handle<AbstractGeneratorObject*> genObj, HandleValue arg,
int32_t resumeKindArg);
[[nodiscard]] bool GlobalDeclInstantiationFromIon(JSContext* cx,
HandleScript script,
const jsbytecode* pc);
[[nodiscard]] bool InitFunctionEnvironmentObjects(JSContext* cx,
BaselineFrame* frame);
[[nodiscard]] bool NewArgumentsObject(JSContext* cx, BaselineFrame* frame,
MutableHandleValue res);
ArrayObject* NewArrayObjectEnsureDenseInitLength(JSContext* cx, int32_t count);
ArrayObject* InitRestParameter(JSContext* cx, uint32_t length, Value* rest,
Handle<ArrayObject*> arrRes);
[[nodiscard]] bool HandleDebugTrap(JSContext* cx, BaselineFrame* frame,
const uint8_t* retAddr);
[[nodiscard]] bool OnDebuggerStatement(JSContext* cx, BaselineFrame* frame);
[[nodiscard]] bool GlobalHasLiveOnDebuggerStatement(JSContext* cx);
[[nodiscard]] bool EnterWith(JSContext* cx, BaselineFrame* frame,
HandleValue val, Handle<WithScope*> templ);
[[nodiscard]] bool LeaveWith(JSContext* cx, BaselineFrame* frame);
[[nodiscard]] bool PushLexicalEnv(JSContext* cx, BaselineFrame* frame,
Handle<LexicalScope*> scope);
[[nodiscard]] bool PushClassBodyEnv(JSContext* cx, BaselineFrame* frame,
Handle<ClassBodyScope*> scope);
[[nodiscard]] bool DebugLeaveThenPopLexicalEnv(JSContext* cx,
BaselineFrame* frame,
const jsbytecode* pc);
[[nodiscard]] bool FreshenLexicalEnv(JSContext* cx, BaselineFrame* frame);
[[nodiscard]] bool DebuggeeFreshenLexicalEnv(JSContext* cx,
BaselineFrame* frame,
const jsbytecode* pc);
[[nodiscard]] bool RecreateLexicalEnv(JSContext* cx, BaselineFrame* frame);
[[nodiscard]] bool DebuggeeRecreateLexicalEnv(JSContext* cx,
BaselineFrame* frame,
const jsbytecode* pc);
[[nodiscard]] bool DebugLeaveLexicalEnv(JSContext* cx, BaselineFrame* frame,
const jsbytecode* pc);
[[nodiscard]] bool PushVarEnv(JSContext* cx, BaselineFrame* frame,
Handle<Scope*> scope);
[[nodiscard]] bool InitBaselineFrameForOsr(BaselineFrame* frame,
InterpreterFrame* interpFrame,
uint32_t numStackValues);
JSString* StringReplace(JSContext* cx, HandleString string,
HandleString pattern, HandleString repl);
void AssertValidBigIntPtr(JSContext* cx, JS::BigInt* bi);
void AssertValidObjectPtr(JSContext* cx, JSObject* obj);
void AssertValidStringPtr(JSContext* cx, JSString* str);
void AssertValidSymbolPtr(JSContext* cx, JS::Symbol* sym);
void AssertValidValue(JSContext* cx, Value* v);
void JitValuePreWriteBarrier(JSRuntime* rt, Value* vp);
void JitStringPreWriteBarrier(JSRuntime* rt, JSString** stringp);
void JitObjectPreWriteBarrier(JSRuntime* rt, JSObject** objp);
void JitShapePreWriteBarrier(JSRuntime* rt, Shape** shapep);
void JitWasmAnyRefPreWriteBarrier(JSRuntime* rt, wasm::AnyRef* refp);
bool ObjectIsCallable(JSObject* obj);
bool ObjectIsConstructor(JSObject* obj);
JSObject* ObjectKeys(JSContext* cx, HandleObject obj);
bool ObjectKeysLength(JSContext* cx, HandleObject obj, int32_t* length);
[[nodiscard]] bool ThrowRuntimeLexicalError(JSContext* cx,
unsigned errorNumber);
[[nodiscard]] bool ThrowBadDerivedReturnOrUninitializedThis(JSContext* cx,
HandleValue v);
[[nodiscard]] bool BaselineGetFunctionThis(JSContext* cx, BaselineFrame* frame,
MutableHandleValue res);
[[nodiscard]] bool CallNativeGetter(JSContext* cx, HandleFunction callee,
HandleValue receiver,
MutableHandleValue result);
bool CallDOMGetter(JSContext* cx, const JSJitInfo* jitInfo, HandleObject obj,
MutableHandleValue result);
bool CallDOMSetter(JSContext* cx, const JSJitInfo* jitInfo, HandleObject obj,
HandleValue value);
[[nodiscard]] bool CallNativeSetter(JSContext* cx, HandleFunction callee,
HandleObject obj, HandleValue rhs);
[[nodiscard]] bool EqualStringsHelperPure(JSString* str1, JSString* str2);
void HandleCodeCoverageAtPC(BaselineFrame* frame, jsbytecode* pc);
void HandleCodeCoverageAtPrologue(BaselineFrame* frame);
bool CheckProxyGetByValueResult(JSContext* cx, HandleObject obj, HandleValue id,
HandleValue value, MutableHandleValue result);
bool GetNativeDataPropertyPure(JSContext* cx, JSObject* obj, PropertyKey id,
MegamorphicCacheEntry* entry, Value* vp);
bool GetNativeDataPropertyPureWithCacheLookup(JSContext* cx, JSObject* obj,
PropertyKey id,
MegamorphicCacheEntry* entry,
Value* vp);
bool GetNativeDataPropertyByValuePure(JSContext* cx, JSObject* obj,
MegamorphicCacheEntry* cacheEntry,
Value* vp);
template <bool HasOwn>
bool HasNativeDataPropertyPure(JSContext* cx, JSObject* obj,
MegamorphicCacheEntry* cacheEntry, Value* vp);
bool HasNativeElementPure(JSContext* cx, NativeObject* obj, int32_t index,
Value* vp);
bool ObjectHasGetterSetterPure(JSContext* cx, JSObject* objArg, jsid id,
GetterSetter* getterSetter);
template <bool Cached>
bool SetElementMegamorphic(JSContext* cx, HandleObject obj, HandleValue index,
HandleValue value, bool strict);
template <bool Cached>
bool SetPropertyMegamorphic(JSContext* cx, HandleObject obj, HandleId id,
HandleValue value, bool strict);
JSString* TypeOfNameObject(JSObject* obj, JSRuntime* rt);
bool GetPrototypeOf(JSContext* cx, HandleObject target,
MutableHandleValue rval);
bool DoConcatStringObject(JSContext* cx, HandleValue lhs, HandleValue rhs,
MutableHandleValue res);
bool IsPossiblyWrappedTypedArray(JSContext* cx, JSObject* obj, bool* result);
void* AllocateDependentString(JSContext* cx);
void* AllocateFatInlineString(JSContext* cx);
void* AllocateBigIntNoGC(JSContext* cx, bool requestMinorGC);
void AllocateAndInitTypedArrayBuffer(JSContext* cx, TypedArrayObject* obj,
int32_t count);
#ifdef JS_GC_PROBES
void TraceCreateObject(JSObject* obj);
#endif
bool DoStringToInt64(JSContext* cx, HandleString str, uint64_t* res);
#if JS_BITS_PER_WORD == 32
BigInt* CreateBigIntFromInt64(JSContext* cx, uint32_t low, uint32_t high);
BigInt* CreateBigIntFromUint64(JSContext* cx, uint32_t low, uint32_t high);
#else
BigInt* CreateBigIntFromInt64(JSContext* cx, uint64_t i64);
BigInt* CreateBigIntFromUint64(JSContext* cx, uint64_t i64);
#endif
template <EqualityKind Kind>
bool BigIntEqual(BigInt* x, BigInt* y);
template <ComparisonKind Kind>
bool BigIntCompare(BigInt* x, BigInt* y);
template <EqualityKind Kind>
bool BigIntNumberEqual(BigInt* x, double y);
template <ComparisonKind Kind>
bool BigIntNumberCompare(BigInt* x, double y);
template <ComparisonKind Kind>
bool NumberBigIntCompare(double x, BigInt* y);
template <EqualityKind Kind>
bool BigIntStringEqual(JSContext* cx, HandleBigInt x, HandleString y,
bool* res);
template <ComparisonKind Kind>
bool BigIntStringCompare(JSContext* cx, HandleBigInt x, HandleString y,
bool* res);
template <ComparisonKind Kind>
bool StringBigIntCompare(JSContext* cx, HandleString x, HandleBigInt y,
bool* res);
BigInt* BigIntAsIntN(JSContext* cx, HandleBigInt x, int32_t bits);
BigInt* BigIntAsUintN(JSContext* cx, HandleBigInt x, int32_t bits);
using AtomicsCompareExchangeFn = int32_t (*)(TypedArrayObject*, size_t, int32_t,
int32_t);
using AtomicsReadWriteModifyFn = int32_t (*)(TypedArrayObject*, size_t,
int32_t);
AtomicsCompareExchangeFn AtomicsCompareExchange(Scalar::Type elementType);
AtomicsReadWriteModifyFn AtomicsExchange(Scalar::Type elementType);
AtomicsReadWriteModifyFn AtomicsAdd(Scalar::Type elementType);
AtomicsReadWriteModifyFn AtomicsSub(Scalar::Type elementType);
AtomicsReadWriteModifyFn AtomicsAnd(Scalar::Type elementType);
AtomicsReadWriteModifyFn AtomicsOr(Scalar::Type elementType);
AtomicsReadWriteModifyFn AtomicsXor(Scalar::Type elementType);
BigInt* AtomicsLoad64(JSContext* cx, TypedArrayObject* typedArray,
size_t index);
void AtomicsStore64(TypedArrayObject* typedArray, size_t index,
const BigInt* value);
BigInt* AtomicsCompareExchange64(JSContext* cx, TypedArrayObject* typedArray,
size_t index, const BigInt* expected,
const BigInt* replacement);
BigInt* AtomicsExchange64(JSContext* cx, TypedArrayObject* typedArray,
size_t index, const BigInt* value);
BigInt* AtomicsAdd64(JSContext* cx, TypedArrayObject* typedArray, size_t index,
const BigInt* value);
BigInt* AtomicsAnd64(JSContext* cx, TypedArrayObject* typedArray, size_t index,
const BigInt* value);
BigInt* AtomicsOr64(JSContext* cx, TypedArrayObject* typedArray, size_t index,
const BigInt* value);
BigInt* AtomicsSub64(JSContext* cx, TypedArrayObject* typedArray, size_t index,
const BigInt* value);
BigInt* AtomicsXor64(JSContext* cx, TypedArrayObject* typedArray, size_t index,
const BigInt* value);
JSAtom* AtomizeStringNoGC(JSContext* cx, JSString* str);
bool SetObjectHas(JSContext* cx, HandleObject obj, HandleValue key, bool* rval);
bool MapObjectHas(JSContext* cx, HandleObject obj, HandleValue key, bool* rval);
bool MapObjectGet(JSContext* cx, HandleObject obj, HandleValue key,
MutableHandleValue rval);
void AssertSetObjectHash(JSContext* cx, SetObject* obj, const Value* value,
mozilla::HashNumber actualHash);
void AssertMapObjectHash(JSContext* cx, MapObject* obj, const Value* value,
mozilla::HashNumber actualHash);
void AssertPropertyLookup(NativeObject* obj, PropertyKey id, uint32_t slot);
// Functions used when JS_MASM_VERBOSE is enabled.
void AssumeUnreachable(const char* output);
void Printf0(const char* output);
void Printf1(const char* output, uintptr_t value);
enum class VMFunctionId;
extern const VMFunctionData& GetVMFunction(VMFunctionId id);
extern size_t NumVMFunctions();
} // namespace jit
} // namespace js
#if defined(JS_CODEGEN_ARM)
extern "C" {
extern MOZ_EXPORT int64_t __aeabi_idivmod(int, int);
extern MOZ_EXPORT int64_t __aeabi_uidivmod(int, int);
}
#endif
#endif /* jit_VMFunctions_h */