DXR will be turned off on Tuesday, December 29th. It will redirect to Searchfox.
See the announcement on Discourse.

DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Header

Mercurial (c68fe15a81fc)

VCS Links

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*-
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*-
 * vim: set ts=8 sts=2 et sw=2 tw=80:
 * This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */


#include "ds/LifoAlloc.h"

#include "mozilla/Likely.h"
#include "mozilla/MathAlgorithms.h"


#include <algorithm>

#include "ds/MemoryProtectionExceptionHandler.h"

#ifdef LIFO_CHUNK_PROTECT
#ifdef LIFO_CHUNK_PROTECT
#  include "gc/Memory.h"
#endif

using namespace js;
using namespace js;

using mozilla::RoundUpPow2;
using mozilla::tl::BitSize;

namespace js {
namespace js {
namespace detail {

/* static */
UniquePtr<BumpChunk> BumpChunk::newWithCapacity(size_t size) {
  MOZ_DIAGNOSTIC_ASSERT(size >= sizeof(BumpChunk));
  MOZ_DIAGNOSTIC_ASSERT(size >= sizeof(BumpChunk));
  void* mem = js_malloc(size);
  void* mem = js_malloc(size);
  if (!mem) {
    return nullptr;
  }

  UniquePtr<BumpChunk> result(new (mem) BumpChunk(size));
  UniquePtr<BumpChunk> result(new (mem) BumpChunk(size));

  // We assume that the alignment of LIFO_ALLOC_ALIGN is less than that of the
  // underlying memory allocator -- creating a new BumpChunk should always
  // satisfy the LIFO_ALLOC_ALIGN alignment constraint.
  MOZ_ASSERT(AlignPtr(result->begin()) == result->begin());
  MOZ_ASSERT(AlignPtr(result->begin()) == result->begin());
  return result;
}

#ifdef LIFO_CHUNK_PROTECT


static uint8_t* AlignPtrUp(uint8_t* ptr, uintptr_t align) {
  MOZ_ASSERT(mozilla::IsPowerOfTwo(align));
  uintptr_t uptr = uintptr_t(ptr);
  uintptr_t diff = uptr & (align - 1);
  diff = (align - diff) & (align - 1);
  uptr = uptr + diff;
  return (uint8_t*)uptr;
}


static uint8_t* AlignPtrDown(uint8_t* ptr, uintptr_t align) {
  MOZ_ASSERT(mozilla::IsPowerOfTwo(align));
  uintptr_t uptr = uintptr_t(ptr);
  uptr = uptr & ~(align - 1);
  return (uint8_t*)uptr;
  return (uint8_t*)uptr;
}

void BumpChunk::setReadOnly() {
  uintptr_t pageSize = gc::SystemPageSize();
  // The allocated chunks might not be aligned on page boundaries. This code
  // The allocated chunks might not be aligned on page boundaries. This code
  // is used to ensure that we are changing the memory protection of pointers
  // which are within the range of the BumpChunk, or that the range formed by
  // which are within the range of the BumpChunk, or that the range formed by
  // [b .. e] is empty.
  uint8_t* b = base();
  uint8_t* e = capacity_;
  b = AlignPtrUp(b, pageSize);
  e = AlignPtrDown(e, pageSize);
  e = AlignPtrDown(e, pageSize);
  if (e <= b) {
    return;
  }
  js::MemoryProtectionExceptionHandler::addRegion(base(), capacity_ - base());
  gc::MakePagesReadOnly(b, e - b);
}


void BumpChunk::setReadWrite() {
  uintptr_t pageSize = gc::SystemPageSize();
  // The allocated chunks might not be aligned on page boundaries. This code
  // is used to ensure that we are changing the memory protection of pointers
  // which are within the range of the BumpChunk, or that the range formed by
  // which are within the range of the BumpChunk, or that the range formed by
  // [b .. e] is empty.
  uint8_t* b = base();
  uint8_t* e = capacity_;
  b = AlignPtrUp(b, pageSize);
  e = AlignPtrDown(e, pageSize);
  e = AlignPtrDown(e, pageSize);
  if (e <= b) {
    return;
  }
  gc::UnprotectPages(b, e - b);
  js::MemoryProtectionExceptionHandler::removeRegion(base());
  js::MemoryProtectionExceptionHandler::removeRegion(base());
}

#endif

}  // namespace detail
}  // namespace detail
}  // namespace js

void LifoAlloc::reset(size_t defaultChunkSize) {
  MOZ_ASSERT(mozilla::IsPowerOfTwo(defaultChunkSize));

  while (!chunks_.empty()) {
  while (!chunks_.empty()) {
    chunks_.popFirst();
  }
  while (!oversize_.empty()) {
    oversize_.popFirst();
  }
  }
  while (!unused_.empty()) {
    unused_.popFirst();
  }
  defaultChunkSize_ = defaultChunkSize;
  oversizeThreshold_ = defaultChunkSize;
  oversizeThreshold_ = defaultChunkSize;
  markCount = 0;
  curSize_ = 0;
  smallAllocsSize_ = 0;
}


void LifoAlloc::freeAll() {
  // When free-ing all chunks, we can no longer determine which chunks were
  // transferred and which were not, so simply clear the heuristic to zero
  // right away.
  smallAllocsSize_ = 0;
  smallAllocsSize_ = 0;

  while (!chunks_.empty()) {
    UniqueBumpChunk bc = chunks_.popFirst();
    decrementCurSize(bc->computedSizeOfIncludingThis());
  }
  }
  while (!oversize_.empty()) {
    UniqueBumpChunk bc = oversize_.popFirst();
    decrementCurSize(bc->computedSizeOfIncludingThis());
  }
  while (!unused_.empty()) {
    UniqueBumpChunk bc = unused_.popFirst();
    decrementCurSize(bc->computedSizeOfIncludingThis());
    decrementCurSize(bc->computedSizeOfIncludingThis());
  }

  // Nb: maintaining curSize_ correctly isn't easy.  Fortunately, this is an
  // excellent sanity check.
  MOZ_ASSERT(curSize_ == 0);
  MOZ_ASSERT(curSize_ == 0);
}

// Round at the same page granularity used by malloc.
static size_t MallocGoodSize(size_t aSize) {
#if defined(MOZ_MEMORY)
#if defined(MOZ_MEMORY)
  return malloc_good_size(aSize);
#else
  return aSize;
#endif
}
}

// Heuristic to choose the size of the next BumpChunk for small allocations.
// `start` is the size of the first chunk. `used` is the total size of all
// BumpChunks in this LifoAlloc so far.
// BumpChunks in this LifoAlloc so far.
static size_t NextSize(size_t start, size_t used) {
  // Double the size, up to 1 MB.
  const size_t mb = 1 * 1024 * 1024;
  if (used < mb) {
    return std::max(start, used);
    return std::max(start, used);
  }

  // After 1 MB, grow more gradually, to waste less memory.
  // The sequence (in megabytes) begins:
  // 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 4, 4, 5, ...
  // 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 4, 4, 5, ...
  return RoundUp(used / 8, mb);
}

LifoAlloc::UniqueBumpChunk LifoAlloc::newChunkWithCapacity(size_t n,
                                                           bool oversize) {
                                                           bool oversize) {
  MOZ_ASSERT(fallibleScope_,
             "[OOM] Cannot allocate a new chunk in an infallible scope.");

  // Compute the size which should be requested in order to be able to fit |n|
  // bytes in a newly allocated chunk, or default to |defaultChunkSize_|.
  // bytes in a newly allocated chunk, or default to |defaultChunkSize_|.

  size_t minSize;
  if (MOZ_UNLIKELY(!detail::BumpChunk::allocSizeWithRedZone(n, &minSize) ||
                   (minSize & (size_t(1) << (BitSize<size_t>::value - 1))))) {
    return nullptr;
  }


  // Note: When computing chunkSize growth, we only are interested in chunks
  // used for small allocations. This excludes unused chunks, oversized chunks,
  // and chunks transferred in from another LifoAlloc.
  MOZ_ASSERT(curSize_ >= smallAllocsSize_);
  const size_t chunkSize = (oversize || minSize > defaultChunkSize_)
  const size_t chunkSize = (oversize || minSize > defaultChunkSize_)
                               ? MallocGoodSize(minSize)
                               : NextSize(defaultChunkSize_, smallAllocsSize_);

  // Create a new BumpChunk, and allocate space for it.
  UniqueBumpChunk result = detail::BumpChunk::newWithCapacity(chunkSize);
  UniqueBumpChunk result = detail::BumpChunk::newWithCapacity(chunkSize);
  if (!result) {
    return nullptr;
  }
  MOZ_ASSERT(result->computedSizeOfIncludingThis() == chunkSize);
  return result;
  return result;
}

LifoAlloc::UniqueBumpChunk LifoAlloc::getOrCreateChunk(size_t n) {
  // Look for existing unused BumpChunks to satisfy the request, and pick the
  // first one which is large enough, and move it into the list of used
  // first one which is large enough, and move it into the list of used
  // chunks.
  if (!unused_.empty()) {
    if (unused_.begin()->canAlloc(n)) {
      return unused_.popFirst();
    }
    }

    BumpChunkList::Iterator e(unused_.end());
    for (BumpChunkList::Iterator i(unused_.begin()); i->next() != e.get();
    for (BumpChunkList::Iterator i(unused_.begin()); i->next() != e.get();
         ++i) {
         ++i) {
      detail::BumpChunk* elem = i->next();
      MOZ_ASSERT(elem->empty());
      if (elem->canAlloc(n)) {
        BumpChunkList temp = unused_.splitAfter(i.get());
        UniqueBumpChunk newChunk = temp.popFirst();
        unused_.appendAll(std::move(temp));
        return newChunk;
        return newChunk;
      }
    }
  }

  // Allocate a new BumpChunk with enough space for the next allocation.
  // Allocate a new BumpChunk with enough space for the next allocation.
  UniqueBumpChunk newChunk = newChunkWithCapacity(n, false);
  if (!newChunk) {
    return newChunk;
  }
  }
  incrementCurSize(newChunk->computedSizeOfIncludingThis());
  return newChunk;
}

void* LifoAlloc::allocImplColdPath(size_t n) {
void* LifoAlloc::allocImplColdPath(size_t n) {
  void* result;
  UniqueBumpChunk newChunk = getOrCreateChunk(n);
  if (!newChunk) {
    return nullptr;
  }
  }

  // This new chunk is about to be used for small allocations.
  smallAllocsSize_ += newChunk->computedSizeOfIncludingThis();

  // Since we just created a large enough chunk, this can't fail.
  // Since we just created a large enough chunk, this can't fail.
  chunks_.append(std::move(newChunk));
  result = chunks_.last()->tryAlloc(n);
  MOZ_ASSERT(result);
  return result;
}
}

void* LifoAlloc::allocImplOversize(size_t n) {
  void* result;
  UniqueBumpChunk newChunk = newChunkWithCapacity(n, true);
  if (!newChunk) {
  if (!newChunk) {
    return nullptr;
  }
  incrementCurSize(newChunk->computedSizeOfIncludingThis());

  // Since we just created a large enough chunk, this can't fail.
  // Since we just created a large enough chunk, this can't fail.
  oversize_.append(std::move(newChunk));
  result = oversize_.last()->tryAlloc(n);
  MOZ_ASSERT(result);
  return result;
}
}

bool LifoAlloc::ensureUnusedApproximateColdPath(size_t n, size_t total) {
  for (detail::BumpChunk& bc : unused_) {
  for (detail::BumpChunk& bc : unused_) {
    total += bc.unused();
    total += bc.unused();
    if (total >= n) {
      return true;
    }
    }
  }

  UniqueBumpChunk newChunk = newChunkWithCapacity(n, false);
  if (!newChunk) {
    return false;
    return false;
  }
  incrementCurSize(newChunk->computedSizeOfIncludingThis());
  unused_.pushFront(std::move(newChunk));
  return true;
}
}

LifoAlloc::Mark LifoAlloc::mark() {
  markCount++;
  Mark res;
  if (!chunks_.empty()) {
  if (!chunks_.empty()) {
    res.chunk = chunks_.last()->mark();
  }
  if (!oversize_.empty()) {
    res.oversize = oversize_.last()->mark();
  }
  }
  return res;
}

void LifoAlloc::release(Mark mark) {
  markCount--;
#ifdef DEBUG
  auto assertIsContained = [](const detail::BumpChunk::Mark& m,
                              BumpChunkList& list) {
                              BumpChunkList& list) {
    if (m.markedChunk()) {
      bool contained = false;
      for (const detail::BumpChunk& chunk : list) {
      for (const detail::BumpChunk& chunk : list) {
        if (&chunk == m.markedChunk() && chunk.contains(m)) {
        if (&chunk == m.markedChunk() && chunk.contains(m)) {
          contained = true;
          break;
        }
        }
      }
      MOZ_ASSERT(contained);
    }
  };
  assertIsContained(mark.chunk, chunks_);
  assertIsContained(mark.chunk, chunks_);
  assertIsContained(mark.oversize, oversize_);
#endif

  BumpChunkList released;
  auto cutAtMark = [&released](const detail::BumpChunk::Mark& m,
  auto cutAtMark = [&released](const detail::BumpChunk::Mark& m,
                               BumpChunkList& list) {
    // Move the blocks which are after the mark to the set released chunks.
    if (!m.markedChunk()) {
      released = std::move(list);
    } else {
    } else {
      released = list.splitAfter(m.markedChunk());
    }

    // Release everything which follows the mark in the last chunk.
    if (!list.empty()) {
    if (!list.empty()) {
      list.last()->release(m);
    }
  };


  // Release the content of all the blocks which are after the marks, and keep
  // blocks as unused.
  cutAtMark(mark.chunk, chunks_);
  for (detail::BumpChunk& bc : released) {
    bc.release();

    // Chunks moved from (after a mark) in chunks_ to unused_ are no longer
    // Chunks moved from (after a mark) in chunks_ to unused_ are no longer
    // considered small allocations.
    smallAllocsSize_ -= bc.computedSizeOfIncludingThis();
  }
  unused_.appendAll(std::move(released));


  // Free the content of all the blocks which are after the marks.
  cutAtMark(mark.oversize, oversize_);
  while (!released.empty()) {
    UniqueBumpChunk bc = released.popFirst();
    UniqueBumpChunk bc = released.popFirst();
    decrementCurSize(bc->computedSizeOfIncludingThis());
  }
}

void LifoAlloc::steal(LifoAlloc* other) {
void LifoAlloc::steal(LifoAlloc* other) {
  MOZ_ASSERT(!other->markCount);
  MOZ_DIAGNOSTIC_ASSERT(unused_.empty());
  MOZ_DIAGNOSTIC_ASSERT(chunks_.empty());
  MOZ_DIAGNOSTIC_ASSERT(oversize_.empty());


  // Copy everything from |other| to |this| except for |peakSize_|, which
  // requires some care.
  chunks_ = std::move(other->chunks_);
  oversize_ = std::move(other->oversize_);
  unused_ = std::move(other->unused_);
  unused_ = std::move(other->unused_);
  markCount = other->markCount;
  defaultChunkSize_ = other->defaultChunkSize_;
  oversizeThreshold_ = other->oversizeThreshold_;
  curSize_ = other->curSize_;
  peakSize_ = std::max(peakSize_, other->peakSize_);
  peakSize_ = std::max(peakSize_, other->peakSize_);
  smallAllocsSize_ = other->smallAllocsSize_;
#if defined(DEBUG) || defined(JS_OOM_BREAKPOINT)
  fallibleScope_ = other->fallibleScope_;
#endif


  other->reset(defaultChunkSize_);
}

void LifoAlloc::transferFrom(LifoAlloc* other) {
void LifoAlloc::transferFrom(LifoAlloc* other) {
  MOZ_ASSERT(!markCount);
  MOZ_ASSERT(!other->markCount);

  // Transferred chunks are not counted as part of |smallAllocsSize| as this
  // could introduce bias in the |NextSize| heuristics, leading to
  // could introduce bias in the |NextSize| heuristics, leading to
  // over-allocations in *this* LifoAlloc. As well, to avoid interference with
  // small allocations made with |this|, the last chunk of the |chunks_| list
  // should remain the last chunk. Therefore, the transferred chunks are
  // prepended to the |chunks_| list.
  incrementCurSize(other->curSize_);
  incrementCurSize(other->curSize_);

  appendUnused(std::move(other->unused_));
  chunks_.prependAll(std::move(other->chunks_));
  oversize_.prependAll(std::move(other->oversize_));
  other->curSize_ = 0;
  other->curSize_ = 0;
  other->smallAllocsSize_ = 0;
}

void LifoAlloc::transferUnusedFrom(LifoAlloc* other) {
  MOZ_ASSERT(!markCount);
  MOZ_ASSERT(!markCount);

  size_t size = 0;
  for (detail::BumpChunk& bc : other->unused_) {
    size += bc.computedSizeOfIncludingThis();
  }

  appendUnused(std::move(other->unused_));
  appendUnused(std::move(other->unused_));
  incrementCurSize(size);
  other->decrementCurSize(size);
}

#ifdef LIFO_CHUNK_PROTECT
#ifdef LIFO_CHUNK_PROTECT
void LifoAlloc::setReadOnly() {
  for (detail::BumpChunk& bc : chunks_) {
    bc.setReadOnly();
  }
  for (detail::BumpChunk& bc : oversize_) {
  for (detail::BumpChunk& bc : oversize_) {
    bc.setReadOnly();
  }
  for (detail::BumpChunk& bc : unused_) {
    bc.setReadOnly();
  }
  }
}

void LifoAlloc::setReadWrite() {
  for (detail::BumpChunk& bc : chunks_) {
    bc.setReadWrite();
    bc.setReadWrite();
  }
  for (detail::BumpChunk& bc : oversize_) {
    bc.setReadWrite();
  }
  for (detail::BumpChunk& bc : unused_) {
    bc.setReadWrite();
  }
  }
}
#endif