DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Mercurial (5b21e285d546)

VCS Links

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*-
 * vim: set ts=8 sts=2 et sw=2 tw=80:
 * This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */

#ifndef js_ProfilingStack_h
#define js_ProfilingStack_h

#include <algorithm>
#include <stdint.h>

#include "jstypes.h"

#include "js/ProfilingCategory.h"
#include "js/TypeDecls.h"
#include "js/Utility.h"

#ifdef JS_BROKEN_GCC_ATTRIBUTE_WARNING
#  pragma GCC diagnostic push
#  pragma GCC diagnostic ignored "-Wattributes"
#endif  // JS_BROKEN_GCC_ATTRIBUTE_WARNING

class JS_PUBLIC_API JSTracer;

#ifdef JS_BROKEN_GCC_ATTRIBUTE_WARNING
#  pragma GCC diagnostic pop
#endif  // JS_BROKEN_GCC_ATTRIBUTE_WARNING

class ProfilingStack;

// This file defines the classes ProfilingStack and ProfilingStackFrame.
// The ProfilingStack manages an array of ProfilingStackFrames.
// It keeps track of the "label stack" and the JS interpreter stack.
// The two stack types are interleaved.
//
// Usage:
//
//  ProfilingStack* profilingStack = ...;
//
//  // For label frames:
//  profilingStack->pushLabelFrame(...);
//  // Execute some code. When finished, pop the frame:
//  profilingStack->pop();
//
//  // For JS stack frames:
//  profilingStack->pushJSFrame(...);
//  // Execute some code. When finished, pop the frame:
//  profilingStack->pop();
//
//
// Concurrency considerations
//
// A thread's profiling stack (and the frames inside it) is only modified by
// that thread. However, the profiling stack can be *read* by a different
// thread, the sampler thread: Whenever the profiler wants to sample a given
// thread A, the following happens:
//  (1) Thread A is suspended.
//  (2) The sampler thread (thread S) reads the ProfilingStack of thread A,
//      including all ProfilingStackFrames that are currently in that stack
//      (profilingStack->frames[0..profilingStack->stackSize()]).
//  (3) Thread A is resumed.
//
// Thread suspension is achieved using platform-specific APIs; refer to each
// platform's Sampler::SuspendAndSampleAndResumeThread implementation in
// platform-*.cpp for details.
//
// When the thread is suspended, the values in profilingStack->stackPointer and
// in the stack frame range
// profilingStack->frames[0..profilingStack->stackPointer] need to be in a
// consistent state, so that thread S does not read partially- constructed stack
// frames. More specifically, we have two requirements:
//  (1) When adding a new frame at the top of the stack, its ProfilingStackFrame
//      data needs to be put in place *before* the stackPointer is incremented,
//      and the compiler + CPU need to know that this order matters.
//  (2) When popping an frame from the stack and then preparing the
//      ProfilingStackFrame data for the next frame that is about to be pushed,
//      the decrement of the stackPointer in pop() needs to happen *before* the
//      ProfilingStackFrame for the new frame is being popuplated, and the
//      compiler + CPU need to know that this order matters.
//
// We can express the relevance of these orderings in multiple ways.
// Option A is to make stackPointer an atomic with SequentiallyConsistent
// memory ordering. This would ensure that no writes in thread A would be
// reordered across any writes to stackPointer, which satisfies requirements
// (1) and (2) at the same time. Option A is the simplest.
// Option B is to use ReleaseAcquire memory ordering both for writes to
// stackPointer *and* for writes to ProfilingStackFrame fields. Release-stores
// ensure that all writes that happened *before this write in program order* are
// not reordered to happen after this write. ReleaseAcquire ordering places no
// requirements on the ordering of writes that happen *after* this write in
// program order.
// Using release-stores for writes to stackPointer expresses requirement (1),
// and using release-stores for writes to the ProfilingStackFrame fields
// expresses requirement (2).
//
// Option B is more complicated than option A, but has much better performance
// on x86/64: In a microbenchmark run on a Macbook Pro from 2017, switching
// from option A to option B reduced the overhead of pushing+popping a
// ProfilingStackFrame by 10 nanoseconds.
// On x86/64, release-stores require no explicit hardware barriers or lock
// instructions.
// On ARM/64, option B may be slower than option A, because the compiler will
// generate hardware barriers for every single release-store instead of just
// for the writes to stackPointer. However, the actual performance impact of
// this has not yet been measured on ARM, so we're currently using option B
// everywhere. This is something that we may want to change in the future once
// we've done measurements.

namespace js {

// A call stack can be specified to the JS engine such that all JS entry/exits
// to functions push/pop a stack frame to/from the specified stack.
//
// For more detailed information, see vm/GeckoProfiler.h.
//
class ProfilingStackFrame {
  // A ProfilingStackFrame represents either a label frame or a JS frame.

  // WARNING WARNING WARNING
  //
  // All the fields below are Atomic<...,ReleaseAcquire>. This is needed so
  // that writes to these fields are release-writes, which ensures that
  // earlier writes in this thread don't get reordered after the writes to
  // these fields. In particular, the decrement of the stack pointer in
  // ProfilingStack::pop() is a write that *must* happen before the values in
  // this ProfilingStackFrame are changed. Otherwise, the sampler thread might
  // see an inconsistent state where the stack pointer still points to a
  // ProfilingStackFrame which has already been popped off the stack and whose
  // fields have now been partially repopulated with new values.
  // See the "Concurrency considerations" paragraph at the top of this file
  // for more details.

  // Descriptive label for this stack frame. Must be a static string! Can be
  // an empty string, but not a null pointer.
  mozilla::Atomic<const char*, mozilla::ReleaseAcquire,
                  mozilla::recordreplay::Behavior::DontPreserve>
      label_;

  // An additional descriptive string of this frame which is combined with
  // |label_| in profiler output. Need not be (and usually isn't) static. Can
  // be null.
  mozilla::Atomic<const char*, mozilla::ReleaseAcquire,
                  mozilla::recordreplay::Behavior::DontPreserve>
      dynamicString_;

  // Stack pointer for non-JS stack frames, the script pointer otherwise.
  mozilla::Atomic<void*, mozilla::ReleaseAcquire,
                  mozilla::recordreplay::Behavior::DontPreserve>
      spOrScript;

  // The bytecode offset for JS stack frames.
  // Must not be used on non-JS frames; it'll contain either the default 0,
  // or a leftover value from a previous JS stack frame that was using this
  // ProfilingStackFrame object.
  mozilla::Atomic<int32_t, mozilla::ReleaseAcquire,
                  mozilla::recordreplay::Behavior::DontPreserve>
      pcOffsetIfJS_;

  // Bits 0...8 hold the Flags. Bits 9...31 hold the category pair.
  mozilla::Atomic<uint32_t, mozilla::ReleaseAcquire,
                  mozilla::recordreplay::Behavior::DontPreserve>
      flagsAndCategoryPair_;

  static int32_t pcToOffset(JSScript* aScript, jsbytecode* aPc);

 public:
  ProfilingStackFrame() = default;
  ProfilingStackFrame& operator=(const ProfilingStackFrame& other) {
    label_ = other.label();
    dynamicString_ = other.dynamicString();
    void* spScript = other.spOrScript;
    spOrScript = spScript;
    int32_t offsetIfJS = other.pcOffsetIfJS_;
    pcOffsetIfJS_ = offsetIfJS;
    uint32_t flagsAndCategory = other.flagsAndCategoryPair_;
    flagsAndCategoryPair_ = flagsAndCategory;
    return *this;
  }

  // 9 bits for the flags.
  // That leaves 32 - 9 = 23 bits for the category pair.
  enum class Flags : uint32_t {
    // The first three flags describe the kind of the frame and are
    // mutually exclusive. (We still give them individual bits for
    // simplicity.)

    // A regular label frame. These usually come from AutoProfilerLabel.
    IS_LABEL_FRAME = 1 << 0,

    // A special frame indicating the start of a run of JS profiling stack
    // frames. IS_SP_MARKER_FRAME frames are ignored, except for the sp
    // field. These frames are needed to get correct ordering between JS
    // and LABEL frames because JS frames don't carry sp information.
    // SP is short for "stack pointer".
    IS_SP_MARKER_FRAME = 1 << 1,

    // A JS frame.
    IS_JS_FRAME = 1 << 2,

    // An interpreter JS frame that has OSR-ed into baseline. IS_JS_FRAME
    // frames can have this flag set and unset during their lifetime.
    // JS_OSR frames are ignored.
    JS_OSR = 1 << 3,

    // The next three are mutually exclusive.
    // By default, for profiling stack frames that have both a label and a
    // dynamic string, the two strings are combined into one string of the
    // form "<label> <dynamicString>" during JSON serialization. The
    // following flags can be used to change this preset.
    STRING_TEMPLATE_METHOD = 1 << 4,  // "<label>.<dynamicString>"
    STRING_TEMPLATE_GETTER = 1 << 5,  // "get <label>.<dynamicString>"
    STRING_TEMPLATE_SETTER = 1 << 6,  // "set <label>.<dynamicString>"

    // If set, causes this stack frame to be marked as "relevantForJS" in
    // the profile JSON, which will make it show up in the "JS only" call
    // tree view.
    RELEVANT_FOR_JS = 1 << 7,

    // If set, causes the label on this ProfilingStackFrame to be ignored
    // and to be replaced by the subcategory's label.
    LABEL_DETERMINED_BY_CATEGORY_PAIR = 1 << 8,

    FLAGS_BITCOUNT = 9,
    FLAGS_MASK = (1 << FLAGS_BITCOUNT) - 1
  };

  static_assert(
      uint32_t(JS::ProfilingCategoryPair::LAST) <=
          (UINT32_MAX >> uint32_t(Flags::FLAGS_BITCOUNT)),
      "Too many category pairs to fit into u32 with together with the "
      "reserved bits for the flags");

  bool isLabelFrame() const {
    return uint32_t(flagsAndCategoryPair_) & uint32_t(Flags::IS_LABEL_FRAME);
  }

  bool isSpMarkerFrame() const {
    return uint32_t(flagsAndCategoryPair_) &
           uint32_t(Flags::IS_SP_MARKER_FRAME);
  }

  bool isJsFrame() const {
    return uint32_t(flagsAndCategoryPair_) & uint32_t(Flags::IS_JS_FRAME);
  }

  bool isOSRFrame() const {
    return uint32_t(flagsAndCategoryPair_) & uint32_t(Flags::JS_OSR);
  }

  void setIsOSRFrame(bool isOSR) {
    if (isOSR) {
      flagsAndCategoryPair_ =
          uint32_t(flagsAndCategoryPair_) | uint32_t(Flags::JS_OSR);
    } else {
      flagsAndCategoryPair_ =
          uint32_t(flagsAndCategoryPair_) & ~uint32_t(Flags::JS_OSR);
    }
  }

  const char* label() const {
    uint32_t flagsAndCategoryPair = flagsAndCategoryPair_;
    if (flagsAndCategoryPair &
        uint32_t(Flags::LABEL_DETERMINED_BY_CATEGORY_PAIR)) {
      auto categoryPair = JS::ProfilingCategoryPair(
          flagsAndCategoryPair >> uint32_t(Flags::FLAGS_BITCOUNT));
      return JS::GetProfilingCategoryPairInfo(categoryPair).mLabel;
    }
    return label_;
  }

  const char* dynamicString() const { return dynamicString_; }

  void initLabelFrame(const char* aLabel, const char* aDynamicString, void* sp,
                      JS::ProfilingCategoryPair aCategoryPair,
                      uint32_t aFlags) {
    label_ = aLabel;
    dynamicString_ = aDynamicString;
    spOrScript = sp;
    // pcOffsetIfJS_ is not set and must not be used on label frames.
    flagsAndCategoryPair_ =
        uint32_t(Flags::IS_LABEL_FRAME) |
        (uint32_t(aCategoryPair) << uint32_t(Flags::FLAGS_BITCOUNT)) | aFlags;
    MOZ_ASSERT(isLabelFrame());
  }

  void initSpMarkerFrame(void* sp) {
    label_ = "";
    dynamicString_ = nullptr;
    spOrScript = sp;
    // pcOffsetIfJS_ is not set and must not be used on sp marker frames.
    flagsAndCategoryPair_ = uint32_t(Flags::IS_SP_MARKER_FRAME) |
                            (uint32_t(JS::ProfilingCategoryPair::OTHER)
                             << uint32_t(Flags::FLAGS_BITCOUNT));
    MOZ_ASSERT(isSpMarkerFrame());
  }

  void initJsFrame(const char* aLabel, const char* aDynamicString,
                   JSScript* aScript, jsbytecode* aPc) {
    label_ = aLabel;
    dynamicString_ = aDynamicString;
    spOrScript = aScript;
    pcOffsetIfJS_ = pcToOffset(aScript, aPc);
    flagsAndCategoryPair_ =
        uint32_t(Flags::IS_JS_FRAME) | (uint32_t(JS::ProfilingCategoryPair::JS)
                                        << uint32_t(Flags::FLAGS_BITCOUNT));
    MOZ_ASSERT(isJsFrame());
  }

  uint32_t flags() const {
    return uint32_t(flagsAndCategoryPair_) & uint32_t(Flags::FLAGS_MASK);
  }

  JS::ProfilingCategoryPair categoryPair() const {
    return JS::ProfilingCategoryPair(flagsAndCategoryPair_ >>
                                     uint32_t(Flags::FLAGS_BITCOUNT));
  }

  void* stackAddress() const {
    MOZ_ASSERT(!isJsFrame());
    return spOrScript;
  }

  JS_PUBLIC_API JSScript* script() const;

  // Note that the pointer returned might be invalid.
  JSScript* rawScript() const {
    MOZ_ASSERT(isJsFrame());
    void* script = spOrScript;
    return static_cast<JSScript*>(script);
  }

  // We can't know the layout of JSScript, so look in vm/GeckoProfiler.cpp.
  JS_FRIEND_API jsbytecode* pc() const;
  void setPC(jsbytecode* pc);

  void trace(JSTracer* trc);

  // The offset of a pc into a script's code can actually be 0, so to
  // signify a nullptr pc, use a -1 index. This is checked against in
  // pc() and setPC() to set/get the right pc.
  static const int32_t NullPCOffset = -1;
};

JS_FRIEND_API void SetContextProfilingStack(JSContext* cx,
                                            ProfilingStack* profilingStack);

// GetContextProfilingStack also exists, but it's defined in RootingAPI.h.

JS_FRIEND_API void EnableContextProfilingStack(JSContext* cx, bool enabled);

JS_FRIEND_API void RegisterContextProfilingEventMarker(JSContext* cx,
                                                       void (*fn)(const char*));

}  // namespace js

namespace JS {

typedef ProfilingStack* (*RegisterThreadCallback)(const char* threadName,
                                                  void* stackBase);

typedef void (*UnregisterThreadCallback)();

JS_FRIEND_API void SetProfilingThreadCallbacks(
    RegisterThreadCallback registerThread,
    UnregisterThreadCallback unregisterThread);

}  // namespace JS

// Each thread has its own ProfilingStack. That thread modifies the
// ProfilingStack, pushing and popping elements as necessary.
//
// The ProfilingStack is also read periodically by the profiler's sampler
// thread. This happens only when the thread that owns the ProfilingStack is
// suspended. So there are no genuine parallel accesses.
//
// However, it is possible for pushing/popping to be interrupted by a periodic
// sample. Because of this, we need pushing/popping to be effectively atomic.
//
// - When pushing a new frame, we increment the stack pointer -- making the new
//   frame visible to the sampler thread -- only after the new frame has been
//   fully written. The stack pointer is Atomic<uint32_t,ReleaseAcquire>, so
//   the increment is a release-store, which ensures that this store is not
//   reordered before the writes of the frame.
//
// - When popping an old frame, the only operation is the decrementing of the
//   stack pointer, which is obviously atomic.
//
class ProfilingStack final {
 public:
  ProfilingStack() : stackPointer(0) {}

  ~ProfilingStack();

  void pushLabelFrame(const char* label, const char* dynamicString, void* sp,
                      JS::ProfilingCategoryPair categoryPair,
                      uint32_t flags = 0) {
    // This thread is the only one that ever changes the value of
    // stackPointer.
    // Store the value of the atomic in a non-atomic local variable so that
    // the compiler won't generate two separate loads from the atomic for
    // the size check and the frames[] array indexing operation.
    uint32_t stackPointerVal = stackPointer;

    if (MOZ_UNLIKELY(stackPointerVal >= capacity)) {
      ensureCapacitySlow();
    }
    frames[stackPointerVal].initLabelFrame(label, dynamicString, sp,
                                           categoryPair, flags);

    // This must happen at the end! The compiler will not reorder this
    // update because stackPointer is Atomic<..., ReleaseAcquire>, so any
    // the writes above will not be reordered below the stackPointer store.
    // Do the read and the write as two separate statements, in order to
    // make it clear that we don't need an atomic increment, which would be
    // more expensive on x86 than the separate operations done here.
    // However, don't use stackPointerVal here; instead, allow the compiler
    // to turn this store into a non-atomic increment instruction which
    // takes up less code size.
    stackPointer = stackPointer + 1;
  }

  void pushSpMarkerFrame(void* sp) {
    uint32_t oldStackPointer = stackPointer;

    if (MOZ_UNLIKELY(oldStackPointer >= capacity)) {
      ensureCapacitySlow();
    }
    frames[oldStackPointer].initSpMarkerFrame(sp);

    // This must happen at the end, see the comment in pushLabelFrame.
    stackPointer = oldStackPointer + 1;
  }

  void pushJsFrame(const char* label, const char* dynamicString,
                   JSScript* script, jsbytecode* pc) {
    // This thread is the only one that ever changes the value of
    // stackPointer. Only load the atomic once.
    uint32_t oldStackPointer = stackPointer;

    if (MOZ_UNLIKELY(oldStackPointer >= capacity)) {
      ensureCapacitySlow();
    }
    frames[oldStackPointer].initJsFrame(label, dynamicString, script, pc);

    // This must happen at the end, see the comment in pushLabelFrame.
    stackPointer = stackPointer + 1;
  }

  void pop() {
    MOZ_ASSERT(stackPointer > 0);
    // Do the read and the write as two separate statements, in order to
    // make it clear that we don't need an atomic decrement, which would be
    // more expensive on x86 than the separate operations done here.
    // This thread is the only one that ever changes the value of
    // stackPointer.
    uint32_t oldStackPointer = stackPointer;
    stackPointer = oldStackPointer - 1;
  }

  uint32_t stackSize() const { return stackPointer; }
  uint32_t stackCapacity() const { return capacity; }

 private:
  // Out of line path for expanding the buffer, since otherwise this would get
  // inlined in every DOM WebIDL call.
  MOZ_COLD void ensureCapacitySlow();

  // No copying.
  ProfilingStack(const ProfilingStack&) = delete;
  void operator=(const ProfilingStack&) = delete;

  // No moving either.
  ProfilingStack(ProfilingStack&&) = delete;
  void operator=(ProfilingStack&&) = delete;

  uint32_t capacity = 0;

 public:
  // The pointer to the stack frames, this is read from the profiler thread and
  // written from the current thread.
  //
  // This is effectively a unique pointer.
  mozilla::Atomic<js::ProfilingStackFrame*, mozilla::SequentiallyConsistent,
                  mozilla::recordreplay::Behavior::DontPreserve>
      frames{nullptr};

  // This may exceed the capacity, so instead use the stackSize() method to
  // determine the number of valid frames in stackFrames. When this is less
  // than stackCapacity(), it refers to the first free stackframe past the top
  // of the in-use stack (i.e. frames[stackPointer - 1] is the top stack
  // frame).
  //
  // WARNING WARNING WARNING
  //
  // This is an atomic variable that uses ReleaseAcquire memory ordering.
  // See the "Concurrency considerations" paragraph at the top of this file
  // for more details.
  mozilla::Atomic<uint32_t, mozilla::ReleaseAcquire,
                  mozilla::recordreplay::Behavior::DontPreserve>
      stackPointer;
};

namespace js {

class AutoGeckoProfilerEntry;
class GeckoProfilerEntryMarker;
class GeckoProfilerBaselineOSRMarker;

class GeckoProfilerThread {
  friend class AutoGeckoProfilerEntry;
  friend class GeckoProfilerEntryMarker;
  friend class GeckoProfilerBaselineOSRMarker;

  ProfilingStack* profilingStack_;

  // Same as profilingStack_ if the profiler is currently active, otherwise
  // null.
  ProfilingStack* profilingStackIfEnabled_;

 public:
  GeckoProfilerThread();

  uint32_t stackPointer() {
    MOZ_ASSERT(infraInstalled());
    return profilingStack_->stackPointer;
  }
  ProfilingStackFrame* stack() { return profilingStack_->frames; }
  ProfilingStack* getProfilingStack() { return profilingStack_; }
  ProfilingStack* getProfilingStackIfEnabled() {
    return profilingStackIfEnabled_;
  }

  /*
   * True if the profiler infrastructure is setup.  Should be true in builds
   * that include profiler support except during early startup or late
   * shutdown.  Unrelated to the presence of the Gecko Profiler addon.
   */
  bool infraInstalled() { return profilingStack_ != nullptr; }

  void setProfilingStack(ProfilingStack* profilingStack, bool enabled);
  void enable(bool enable) {
    profilingStackIfEnabled_ = enable ? profilingStack_ : nullptr;
  }
  void trace(JSTracer* trc);

  /*
   * Functions which are the actual instrumentation to track run information
   *
   *   - enter: a function has started to execute
   *   - updatePC: updates the pc information about where a function
   *               is currently executing
   *   - exit: this function has ceased execution, and no further
   *           entries/exits will be made
   */
  bool enter(JSContext* cx, JSScript* script);
  void exit(JSContext* cx, JSScript* script);
  inline void updatePC(JSContext* cx, JSScript* script, jsbytecode* pc);
};

}  // namespace js

#endif /* js_ProfilingStack_h */