DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Mercurial (2b8364cfdb04)

VCS Links

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */

#ifndef mozilla_mscom_Ptr_h
#define mozilla_mscom_Ptr_h

#include "mozilla/Assertions.h"
#include "mozilla/DebugOnly.h"
#include "mozilla/mscom/EnsureMTA.h"
#include "mozilla/SystemGroup.h"
#include "mozilla/UniquePtr.h"
#include "nsError.h"
#include "nsThreadUtils.h"
#include "nsXULAppAPI.h"

#include <objidl.h>

/**
 * The glue code in mozilla::mscom often needs to pass around interface pointers
 * belonging to a different apartment from the current one. We must not touch
 * the reference counts of those objects on the wrong apartment. By using these
 * UniquePtr specializations, we may ensure that the reference counts are always
 * handled correctly.
 */

namespace mozilla {
namespace mscom {

namespace detail {

template <typename T>
struct MainThreadRelease {
  void operator()(T* aPtr) {
    if (!aPtr) {
      return;
    }
    if (NS_IsMainThread()) {
      aPtr->Release();
      return;
    }
    DebugOnly<nsresult> rv = SystemGroup::Dispatch(
        TaskCategory::Other,
        NewNonOwningRunnableMethod("mscom::MainThreadRelease", aPtr,
                                   &T::Release));
    MOZ_ASSERT(NS_SUCCEEDED(rv));
  }
};

template <typename T>
struct MTADelete {
  void operator()(T* aPtr) {
    if (!aPtr) {
      return;
    }

    EnsureMTA::AsyncOperation([aPtr]() -> void { delete aPtr; });
  }
};

template <typename T>
struct MTARelease {
  void operator()(T* aPtr) {
    if (!aPtr) {
      return;
    }

    // Static analysis doesn't recognize that, even though aPtr escapes the
    // current scope, we are in effect moving our strong ref into the lambda.
    void* ptr = aPtr;
    EnsureMTA::AsyncOperation(
        [ptr]() -> void { reinterpret_cast<T*>(ptr)->Release(); });
  }
};

template <typename T>
struct MTAReleaseInChildProcess {
  void operator()(T* aPtr) {
    if (!aPtr) {
      return;
    }

    if (XRE_IsParentProcess()) {
      MOZ_ASSERT(NS_IsMainThread());
      aPtr->Release();
      return;
    }

    // Static analysis doesn't recognize that, even though aPtr escapes the
    // current scope, we are in effect moving our strong ref into the lambda.
    void* ptr = aPtr;
    EnsureMTA::AsyncOperation(
        [ptr]() -> void { reinterpret_cast<T*>(ptr)->Release(); });
  }
};

struct InterceptorTargetDeleter {
  void operator()(IUnknown* aPtr) {
    // We intentionally do not touch the refcounts of interceptor targets!
  }
};

struct PreservedStreamDeleter {
  void operator()(IStream* aPtr) {
    if (!aPtr) {
      return;
    }

    // Static analysis doesn't recognize that, even though aPtr escapes the
    // current scope, we are in effect moving our strong ref into the lambda.
    void* ptr = aPtr;
    auto cleanup = [ptr]() -> void {
      DebugOnly<HRESULT> hr =
          ::CoReleaseMarshalData(reinterpret_cast<LPSTREAM>(ptr));
      MOZ_ASSERT(SUCCEEDED(hr));
      reinterpret_cast<LPSTREAM>(ptr)->Release();
    };

    if (XRE_IsParentProcess()) {
      MOZ_ASSERT(NS_IsMainThread());
      cleanup();
      return;
    }

    EnsureMTA::AsyncOperation(cleanup);
  }
};

}  // namespace detail

template <typename T>
using STAUniquePtr = mozilla::UniquePtr<T, detail::MainThreadRelease<T>>;

template <typename T>
using MTAUniquePtr = mozilla::UniquePtr<T, detail::MTARelease<T>>;

template <typename T>
using MTADeletePtr = mozilla::UniquePtr<T, detail::MTADelete<T>>;

template <typename T>
using ProxyUniquePtr =
    mozilla::UniquePtr<T, detail::MTAReleaseInChildProcess<T>>;

template <typename T>
using InterceptorTargetPtr =
    mozilla::UniquePtr<T, detail::InterceptorTargetDeleter>;

using PreservedStreamPtr =
    mozilla::UniquePtr<IStream, detail::PreservedStreamDeleter>;

namespace detail {

// We don't have direct access to UniquePtr's storage, so we use mPtrStorage
// to receive the pointer and then set the target inside the destructor.
template <typename T, typename Deleter>
class UniquePtrGetterAddRefs {
 public:
  explicit UniquePtrGetterAddRefs(UniquePtr<T, Deleter>& aSmartPtr)
      : mTargetSmartPtr(aSmartPtr), mPtrStorage(nullptr) {}

  ~UniquePtrGetterAddRefs() { mTargetSmartPtr.reset(mPtrStorage); }

  operator void**() { return reinterpret_cast<void**>(&mPtrStorage); }

  operator T**() { return &mPtrStorage; }

  T*& operator*() { return mPtrStorage; }

 private:
  UniquePtr<T, Deleter>& mTargetSmartPtr;
  T* mPtrStorage;
};

}  // namespace detail

template <typename T>
inline STAUniquePtr<T> ToSTAUniquePtr(RefPtr<T>&& aRefPtr) {
  return STAUniquePtr<T>(aRefPtr.forget().take());
}

template <typename T>
inline STAUniquePtr<T> ToSTAUniquePtr(const RefPtr<T>& aRefPtr) {
  MOZ_ASSERT(NS_IsMainThread());
  return STAUniquePtr<T>(do_AddRef(aRefPtr).take());
}

template <typename T>
inline STAUniquePtr<T> ToSTAUniquePtr(T* aRawPtr) {
  MOZ_ASSERT(NS_IsMainThread());
  if (aRawPtr) {
    aRawPtr->AddRef();
  }
  return STAUniquePtr<T>(aRawPtr);
}

template <typename T, typename U>
inline STAUniquePtr<T> ToSTAUniquePtr(const InterceptorTargetPtr<U>& aTarget) {
  MOZ_ASSERT(NS_IsMainThread());
  RefPtr<T> newRef(static_cast<T*>(aTarget.get()));
  return ToSTAUniquePtr(std::move(newRef));
}

template <typename T>
inline MTAUniquePtr<T> ToMTAUniquePtr(RefPtr<T>&& aRefPtr) {
  return MTAUniquePtr<T>(aRefPtr.forget().take());
}

template <typename T>
inline MTAUniquePtr<T> ToMTAUniquePtr(const RefPtr<T>& aRefPtr) {
  MOZ_ASSERT(IsCurrentThreadMTA());
  return MTAUniquePtr<T>(do_AddRef(aRefPtr).take());
}

template <typename T>
inline MTAUniquePtr<T> ToMTAUniquePtr(T* aRawPtr) {
  MOZ_ASSERT(IsCurrentThreadMTA());
  if (aRawPtr) {
    aRawPtr->AddRef();
  }
  return MTAUniquePtr<T>(aRawPtr);
}

template <typename T>
inline ProxyUniquePtr<T> ToProxyUniquePtr(RefPtr<T>&& aRefPtr) {
  return ProxyUniquePtr<T>(aRefPtr.forget().take());
}

template <typename T>
inline ProxyUniquePtr<T> ToProxyUniquePtr(const RefPtr<T>& aRefPtr) {
  MOZ_ASSERT(IsProxy(aRefPtr));
  MOZ_ASSERT((XRE_IsParentProcess() && NS_IsMainThread()) ||
             (XRE_IsContentProcess() && IsCurrentThreadMTA()));

  return ProxyUniquePtr<T>(do_AddRef(aRefPtr).take());
}

template <typename T>
inline ProxyUniquePtr<T> ToProxyUniquePtr(T* aRawPtr) {
  MOZ_ASSERT(IsProxy(aRawPtr));
  MOZ_ASSERT((XRE_IsParentProcess() && NS_IsMainThread()) ||
             (XRE_IsContentProcess() && IsCurrentThreadMTA()));

  if (aRawPtr) {
    aRawPtr->AddRef();
  }
  return ProxyUniquePtr<T>(aRawPtr);
}

template <typename T, typename Deleter>
inline InterceptorTargetPtr<T> ToInterceptorTargetPtr(
    const UniquePtr<T, Deleter>& aTargetPtr) {
  return InterceptorTargetPtr<T>(aTargetPtr.get());
}

inline PreservedStreamPtr ToPreservedStreamPtr(RefPtr<IStream>&& aStream) {
  return PreservedStreamPtr(aStream.forget().take());
}

inline PreservedStreamPtr ToPreservedStreamPtr(
    already_AddRefed<IStream>& aStream) {
  return PreservedStreamPtr(aStream.take());
}

template <typename T, typename Deleter>
inline detail::UniquePtrGetterAddRefs<T, Deleter> getter_AddRefs(
    UniquePtr<T, Deleter>& aSmartPtr) {
  return detail::UniquePtrGetterAddRefs<T, Deleter>(aSmartPtr);
}

}  // namespace mscom
}  // namespace mozilla

// This block makes it possible for these smart pointers to be correctly
// applied in NewRunnableMethod and friends
namespace detail {

template <typename T>
struct SmartPointerStorageClass<mozilla::mscom::STAUniquePtr<T>> {
  typedef StoreCopyPassByRRef<mozilla::mscom::STAUniquePtr<T>> Type;
};

template <typename T>
struct SmartPointerStorageClass<mozilla::mscom::MTAUniquePtr<T>> {
  typedef StoreCopyPassByRRef<mozilla::mscom::MTAUniquePtr<T>> Type;
};

template <typename T>
struct SmartPointerStorageClass<mozilla::mscom::ProxyUniquePtr<T>> {
  typedef StoreCopyPassByRRef<mozilla::mscom::ProxyUniquePtr<T>> Type;
};

template <typename T>
struct SmartPointerStorageClass<mozilla::mscom::InterceptorTargetPtr<T>> {
  typedef StoreCopyPassByRRef<mozilla::mscom::InterceptorTargetPtr<T>> Type;
};

template <>
struct SmartPointerStorageClass<mozilla::mscom::PreservedStreamPtr> {
  typedef StoreCopyPassByRRef<mozilla::mscom::PreservedStreamPtr> Type;
};

}  // namespace detail

#endif  // mozilla_mscom_Ptr_h