Source code

Revision control

Copy as Markdown

Other Tools

/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "base/process_util.h"
#include "base/task.h"
#ifdef XP_UNIX
# include <errno.h>
#endif
#include <type_traits>
#include "mozilla/IntegerPrintfMacros.h"
#include "mozilla/ipc/ProtocolMessageUtils.h"
#include "mozilla/ipc/ProtocolUtils.h"
#include "mozilla/ipc/MessageChannel.h"
#include "mozilla/ipc/IPDLParamTraits.h"
#include "mozilla/StaticMutex.h"
#if defined(DEBUG) || defined(FUZZING)
# include "mozilla/Tokenizer.h"
#endif
#include "mozilla/Unused.h"
#include "nsPrintfCString.h"
#include "nsReadableUtils.h"
#if defined(MOZ_SANDBOX) && defined(XP_WIN)
# include "mozilla/sandboxTarget.h"
#endif
#if defined(XP_WIN)
# include "aclapi.h"
# include "sddl.h"
#endif
#ifdef FUZZING_SNAPSHOT
# include "mozilla/fuzzing/IPCFuzzController.h"
#endif
using namespace IPC;
using base::GetCurrentProcId;
using base::ProcessHandle;
using base::ProcessId;
namespace mozilla {
namespace ipc {
/* static */
IPCResult IPCResult::FailImpl(NotNull<IProtocol*> actor, const char* where,
const char* why) {
// Calls top-level protocol to handle the error.
nsPrintfCString errorMsg("%s %s\n", where, why);
actor->GetIPCChannel()->Listener()->ProcessingError(
HasResultCodes::MsgProcessingError, errorMsg.get());
#if defined(DEBUG) && !defined(FUZZING)
// We do not expect IPC_FAIL to ever happen in normal operations. If this
// happens in DEBUG, we most likely see some behavior during a test we should
// really investigate.
nsPrintfCString crashMsg(
"Use IPC_FAIL only in an "
"unrecoverable, unexpected state: %s",
errorMsg.get());
// We already leak the same information potentially on child process failures
// even in release, and here we are only in DEBUG.
MOZ_CRASH_UNSAFE(crashMsg.get());
#else
return IPCResult(false);
#endif
}
/* static */
IPCResult IPCResult::FailForTesting(NotNull<IProtocol*> actor,
const char* where, const char* why) {
return IPCResult(false);
}
void AnnotateSystemError() {
uint32_t error = 0;
#if defined(XP_WIN)
error = ::GetLastError();
#else
error = errno;
#endif
if (error) {
CrashReporter::RecordAnnotationU32(
CrashReporter::Annotation::IPCSystemError, error);
}
}
#if defined(XP_MACOSX)
void AnnotateCrashReportWithErrno(CrashReporter::Annotation tag, int error) {
CrashReporter::RecordAnnotationU32(tag, static_cast<uint32_t>(error));
}
#endif // defined(XP_MACOSX)
#if defined(DEBUG) || defined(FUZZING)
// If aTopLevelProtocol matches any token in aFilter, return true.
//
// aTopLevelProtocol is a protocol name, without the "Parent" / "Child" suffix.
// aSide indicates whether we're logging parent-side or child-side activity.
//
// aFilter is a list of protocol names separated by commas and/or
// spaces. These may include the "Child" / "Parent" suffix, or omit
// the suffix to log activity on both sides.
//
// This overload is for testability; application code should use the single-
// argument version (defined in the ProtocolUtils.h) which takes the filter from
// the environment.
bool LoggingEnabledFor(const char* aTopLevelProtocol, Side aSide,
const char* aFilter) {
if (!aFilter) {
return false;
}
if (strcmp(aFilter, "1") == 0) {
return true;
}
const char kDelimiters[] = ", ";
Tokenizer tokens(aFilter, kDelimiters);
Tokenizer::Token t;
while (tokens.Next(t)) {
if (t.Type() == Tokenizer::TOKEN_WORD) {
auto filter = t.AsString();
// Since aTopLevelProtocol never includes the "Parent" / "Child" suffix,
// this will only occur when filter doesn't include it either, meaning
// that we should log activity on both sides.
if (filter == aTopLevelProtocol) {
return true;
}
if (aSide == ParentSide &&
StringEndsWith(filter, nsDependentCString("Parent")) &&
Substring(filter, 0, filter.Length() - 6) == aTopLevelProtocol) {
return true;
}
if (aSide == ChildSide &&
StringEndsWith(filter, nsDependentCString("Child")) &&
Substring(filter, 0, filter.Length() - 5) == aTopLevelProtocol) {
return true;
}
}
}
return false;
}
#endif // defined(DEBUG) || defined(FUZZING)
void LogMessageForProtocol(const char* aTopLevelProtocol,
base::ProcessId aOtherPid,
const char* aContextDescription, uint32_t aMessageId,
MessageDirection aDirection) {
nsPrintfCString logMessage(
"[time: %" PRId64 "][%" PRIPID "%s%" PRIPID "] [%s] %s %s\n", PR_Now(),
base::GetCurrentProcId(),
aDirection == MessageDirection::eReceiving ? "<-" : "->", aOtherPid,
aTopLevelProtocol, aContextDescription,
StringFromIPCMessageType(aMessageId));
#ifdef ANDROID
__android_log_write(ANDROID_LOG_INFO, "GeckoIPC", logMessage.get());
#endif
fputs(logMessage.get(), stderr);
}
void ProtocolErrorBreakpoint(const char* aMsg) {
// Bugs that generate these error messages can be tough to
// reproduce. Log always in the hope that someone finds the error
// message.
printf_stderr("IPDL protocol error: %s\n", aMsg);
}
void PickleFatalError(const char* aMsg, IProtocol* aActor) {
if (aActor) {
aActor->FatalError(aMsg);
} else {
FatalError(aMsg, false);
}
}
void FatalError(const char* aMsg, bool aIsParent) {
#ifndef FUZZING
ProtocolErrorBreakpoint(aMsg);
#endif
nsAutoCString formattedMessage("IPDL error: \"");
formattedMessage.AppendASCII(aMsg);
if (aIsParent) {
// We're going to crash the parent process because at this time
// there's no other really nice way of getting a minidump out of
// this process if we're off the main thread.
formattedMessage.AppendLiteral("\". Intentionally crashing.");
NS_ERROR(formattedMessage.get());
CrashReporter::RecordAnnotationCString(
CrashReporter::Annotation::IPCFatalErrorMsg, aMsg);
AnnotateSystemError();
#ifndef FUZZING
MOZ_CRASH("IPC FatalError in the parent process!");
#endif
} else {
formattedMessage.AppendLiteral("\". abort()ing as a result.");
#ifndef FUZZING
MOZ_CRASH_UNSAFE(formattedMessage.get());
#endif
}
}
void LogicError(const char* aMsg) { MOZ_CRASH_UNSAFE(aMsg); }
void ActorIdReadError(const char* aActorDescription) {
#ifndef FUZZING
MOZ_CRASH_UNSAFE_PRINTF("Error deserializing id for %s", aActorDescription);
#endif
}
void BadActorIdError(const char* aActorDescription) {
nsPrintfCString message("bad id for %s", aActorDescription);
ProtocolErrorBreakpoint(message.get());
}
void ActorLookupError(const char* aActorDescription) {
nsPrintfCString message("could not lookup id for %s", aActorDescription);
ProtocolErrorBreakpoint(message.get());
}
void MismatchedActorTypeError(const char* aActorDescription) {
nsPrintfCString message("actor that should be of type %s has different type",
aActorDescription);
ProtocolErrorBreakpoint(message.get());
}
void UnionTypeReadError(const char* aUnionName) {
MOZ_CRASH_UNSAFE_PRINTF("error deserializing type of union %s", aUnionName);
}
void ArrayLengthReadError(const char* aElementName) {
MOZ_CRASH_UNSAFE_PRINTF("error deserializing length of %s[]", aElementName);
}
void SentinelReadError(const char* aClassName) {
MOZ_CRASH_UNSAFE_PRINTF("incorrect sentinel when reading %s", aClassName);
}
ActorLifecycleProxy::ActorLifecycleProxy(IProtocol* aActor) : mActor(aActor) {
MOZ_ASSERT(mActor);
MOZ_ASSERT(mActor->CanSend(),
"Cannot create LifecycleProxy for non-connected actor!");
// Take a reference to our manager's lifecycle proxy to try to hold it &
// ensure it doesn't die before us.
if (mActor->mManager) {
mManager = mActor->mManager->mLifecycleProxy;
}
// Record that we've taken our first reference to our actor.
mActor->ActorAlloc();
}
WeakActorLifecycleProxy* ActorLifecycleProxy::GetWeakProxy() {
if (!mWeakProxy) {
mWeakProxy = new WeakActorLifecycleProxy(this);
}
return mWeakProxy;
}
ActorLifecycleProxy::~ActorLifecycleProxy() {
if (mWeakProxy) {
mWeakProxy->mProxy = nullptr;
mWeakProxy = nullptr;
}
// When the LifecycleProxy's lifetime has come to an end, it means that the
// actor should have its `Dealloc` method called on it. In a well-behaved
// actor, this will release the IPC-held reference to the actor.
//
// If the actor has already died before the `LifecycleProxy`, the `IProtocol`
// destructor below will clear our reference to it, preventing us from
// performing a use-after-free here.
if (!mActor) {
return;
}
// Clear our actor's state back to inactive, and then invoke ActorDealloc.
MOZ_ASSERT(mActor->mLinkStatus == LinkStatus::Destroyed,
"Deallocating non-destroyed actor!");
mActor->mLifecycleProxy = nullptr;
mActor->mLinkStatus = LinkStatus::Inactive;
mActor->ActorDealloc();
mActor = nullptr;
}
WeakActorLifecycleProxy::WeakActorLifecycleProxy(ActorLifecycleProxy* aProxy)
: mProxy(aProxy), mActorEventTarget(GetCurrentSerialEventTarget()) {}
WeakActorLifecycleProxy::~WeakActorLifecycleProxy() {
MOZ_DIAGNOSTIC_ASSERT(!mProxy, "Destroyed before mProxy was cleared?");
}
IProtocol* WeakActorLifecycleProxy::Get() const {
MOZ_DIAGNOSTIC_ASSERT(mActorEventTarget->IsOnCurrentThread());
return mProxy ? mProxy->Get() : nullptr;
}
WeakActorLifecycleProxy* IProtocol::GetWeakLifecycleProxy() {
return mLifecycleProxy ? mLifecycleProxy->GetWeakProxy() : nullptr;
}
IProtocol::~IProtocol() {
// If the actor still has a lifecycle proxy when it is being torn down, it
// means that IPC was not given control over the lifecycle of the actor
// correctly. Usually this means that the actor was destroyed while IPC is
// calling a message handler for it, and the actor incorrectly frees itself
// during that operation.
//
// As this happens unfortunately frequently, due to many odd protocols in
// Gecko, simply emit a warning and clear the weak backreference from our
// LifecycleProxy back to us.
if (mLifecycleProxy) {
NS_WARNING(
nsPrintfCString("Actor destructor for '%s%s' called before IPC "
"lifecycle complete!\n"
"References to this actor may unexpectedly dangle!",
GetProtocolName(), StringFromIPCSide(GetSide()))
.get());
mLifecycleProxy->mActor = nullptr;
// If we are somehow being destroyed while active, make sure that the
// existing IPC reference has been freed. If the status of the actor is
// `Destroyed`, the reference has already been freed, and we shouldn't free
// it a second time.
MOZ_ASSERT(mLinkStatus != LinkStatus::Inactive);
if (mLinkStatus != LinkStatus::Destroyed) {
NS_IF_RELEASE(mLifecycleProxy);
}
mLifecycleProxy = nullptr;
}
}
// The following methods either directly forward to the toplevel protocol, or
// almost directly do.
int32_t IProtocol::Register(IProtocol* aRouted) {
return mToplevel->Register(aRouted);
}
int32_t IProtocol::RegisterID(IProtocol* aRouted, int32_t aId) {
return mToplevel->RegisterID(aRouted, aId);
}
IProtocol* IProtocol::Lookup(int32_t aId) { return mToplevel->Lookup(aId); }
void IProtocol::Unregister(int32_t aId) {
if (aId == mId) {
mId = kFreedActorId;
}
return mToplevel->Unregister(aId);
}
Shmem::SharedMemory* IProtocol::CreateSharedMemory(size_t aSize, bool aUnsafe,
int32_t* aId) {
return mToplevel->CreateSharedMemory(aSize, aUnsafe, aId);
}
Shmem::SharedMemory* IProtocol::LookupSharedMemory(int32_t aId) {
return mToplevel->LookupSharedMemory(aId);
}
bool IProtocol::IsTrackingSharedMemory(Shmem::SharedMemory* aSegment) {
return mToplevel->IsTrackingSharedMemory(aSegment);
}
bool IProtocol::DestroySharedMemory(Shmem& aShmem) {
return mToplevel->DestroySharedMemory(aShmem);
}
MessageChannel* IProtocol::GetIPCChannel() {
return mToplevel->GetIPCChannel();
}
const MessageChannel* IProtocol::GetIPCChannel() const {
return mToplevel->GetIPCChannel();
}
nsISerialEventTarget* IProtocol::GetActorEventTarget() {
return GetIPCChannel()->GetWorkerEventTarget();
}
void IProtocol::SetId(int32_t aId) {
MOZ_ASSERT(mId == aId || mLinkStatus == LinkStatus::Inactive);
mId = aId;
}
Maybe<IProtocol*> IProtocol::ReadActor(IPC::MessageReader* aReader,
bool aNullable,
const char* aActorDescription,
int32_t aProtocolTypeId) {
int32_t id;
if (!IPC::ReadParam(aReader, &id)) {
ActorIdReadError(aActorDescription);
return Nothing();
}
if (id == 1 || (id == 0 && !aNullable)) {
BadActorIdError(aActorDescription);
return Nothing();
}
if (id == 0) {
return Some(static_cast<IProtocol*>(nullptr));
}
IProtocol* listener = this->Lookup(id);
if (!listener) {
ActorLookupError(aActorDescription);
return Nothing();
}
if (listener->GetProtocolId() != aProtocolTypeId) {
MismatchedActorTypeError(aActorDescription);
return Nothing();
}
return Some(listener);
}
void IProtocol::FatalError(const char* const aErrorMsg) {
HandleFatalError(aErrorMsg);
}
void IProtocol::HandleFatalError(const char* aErrorMsg) {
if (IProtocol* manager = Manager()) {
manager->HandleFatalError(aErrorMsg);
return;
}
mozilla::ipc::FatalError(aErrorMsg, mSide == ParentSide);
if (CanSend()) {
GetIPCChannel()->InduceConnectionError();
}
}
bool IProtocol::AllocShmem(size_t aSize, Shmem* aOutMem) {
if (!CanSend()) {
NS_WARNING(
"Shmem not allocated. Cannot communicate with the other actor.");
return false;
}
Shmem::id_t id;
Shmem::SharedMemory* rawmem(CreateSharedMemory(aSize, false, &id));
if (!rawmem) {
return false;
}
*aOutMem = Shmem(rawmem, id, aSize, false);
return true;
}
bool IProtocol::AllocUnsafeShmem(size_t aSize, Shmem* aOutMem) {
if (!CanSend()) {
NS_WARNING(
"Shmem not allocated. Cannot communicate with the other actor.");
return false;
}
Shmem::id_t id;
Shmem::SharedMemory* rawmem(CreateSharedMemory(aSize, true, &id));
if (!rawmem) {
return false;
}
*aOutMem = Shmem(rawmem, id, aSize, true);
return true;
}
bool IProtocol::DeallocShmem(Shmem& aMem) {
bool ok = DestroySharedMemory(aMem);
#ifdef DEBUG
if (!ok) {
if (mSide == ChildSide) {
FatalError("bad Shmem");
} else {
NS_WARNING("bad Shmem");
}
return false;
}
#endif // DEBUG
aMem.forget();
return ok;
}
void IProtocol::SetManager(IProtocol* aManager) {
MOZ_RELEASE_ASSERT(!mManager || mManager == aManager);
mManager = aManager;
mToplevel = aManager->mToplevel;
}
void IProtocol::SetManagerAndRegister(IProtocol* aManager) {
// Set the manager prior to registering so registering properly inherits
// the manager's event target.
SetManager(aManager);
aManager->Register(this);
}
void IProtocol::SetManagerAndRegister(IProtocol* aManager, int32_t aId) {
// Set the manager prior to registering so registering properly inherits
// the manager's event target.
SetManager(aManager);
aManager->RegisterID(this, aId);
}
bool IProtocol::ChannelSend(UniquePtr<IPC::Message> aMsg) {
if (CanSend()) {
// NOTE: This send call failing can only occur during toplevel channel
// teardown. As this is an async call, this isn't reasonable to predict or
// respond to, so just drop the message on the floor silently.
GetIPCChannel()->Send(std::move(aMsg));
return true;
}
WarnMessageDiscarded(aMsg.get());
return false;
}
bool IProtocol::ChannelSend(UniquePtr<IPC::Message> aMsg,
UniquePtr<IPC::Message>* aReply) {
if (CanSend()) {
return GetIPCChannel()->Send(std::move(aMsg), aReply);
}
WarnMessageDiscarded(aMsg.get());
return false;
}
#ifdef DEBUG
void IProtocol::WarnMessageDiscarded(IPC::Message* aMsg) {
NS_WARNING(nsPrintfCString("IPC message '%s' discarded: actor cannot send",
aMsg->name())
.get());
}
#endif
void IProtocol::ActorConnected() {
if (mLinkStatus != LinkStatus::Inactive) {
return;
}
#ifdef FUZZING_SNAPSHOT
fuzzing::IPCFuzzController::instance().OnActorConnected(this);
#endif
mLinkStatus = LinkStatus::Connected;
MOZ_ASSERT(!mLifecycleProxy, "double-connecting live actor");
mLifecycleProxy = new ActorLifecycleProxy(this);
NS_ADDREF(mLifecycleProxy); // Reference freed in DestroySubtree();
}
void IProtocol::DoomSubtree() {
MOZ_ASSERT(CanSend(), "dooming non-connected actor");
MOZ_ASSERT(mLifecycleProxy, "dooming zombie actor");
nsTArray<RefPtr<ActorLifecycleProxy>> managed;
AllManagedActors(managed);
for (ActorLifecycleProxy* proxy : managed) {
// Guard against actor being disconnected or destroyed during previous Doom
IProtocol* actor = proxy->Get();
if (actor && actor->CanSend()) {
actor->DoomSubtree();
}
}
// ActorDoom is called immediately before changing state, this allows messages
// to be sent during ActorDoom immediately before the channel is closed and
// sending messages is disabled.
ActorDoom();
mLinkStatus = LinkStatus::Doomed;
}
void IProtocol::DestroySubtree(ActorDestroyReason aWhy) {
MOZ_ASSERT(CanRecv(), "destroying non-connected actor");
MOZ_ASSERT(mLifecycleProxy, "destroying zombie actor");
#ifdef FUZZING_SNAPSHOT
fuzzing::IPCFuzzController::instance().OnActorDestroyed(this);
#endif
int32_t id = Id();
// If we're a managed actor, unregister from our manager
if (Manager()) {
Unregister(id);
}
// Destroy subtree
ActorDestroyReason subtreeWhy = aWhy;
if (aWhy == Deletion || aWhy == FailedConstructor) {
subtreeWhy = AncestorDeletion;
}
nsTArray<RefPtr<ActorLifecycleProxy>> managed;
AllManagedActors(managed);
for (ActorLifecycleProxy* proxy : managed) {
// Guard against actor being disconnected or destroyed during previous
// Destroy
IProtocol* actor = proxy->Get();
if (actor && actor->CanRecv()) {
actor->DestroySubtree(subtreeWhy);
}
}
// Ensure that we don't send any messages while we're calling `ActorDestroy`
// by setting our state to `Doomed`.
mLinkStatus = LinkStatus::Doomed;
// The actor is being destroyed, reject any pending responses, invoke
// `ActorDestroy` to destroy it, and then clear our status to
// `LinkStatus::Destroyed`.
GetIPCChannel()->RejectPendingResponsesForActor(id);
ActorDestroy(aWhy);
mLinkStatus = LinkStatus::Destroyed;
}
IToplevelProtocol::IToplevelProtocol(const char* aName, ProtocolId aProtoId,
Side aSide)
: IRefCountedProtocol(aProtoId, aSide),
mOtherPid(base::kInvalidProcessId),
mLastLocalId(0),
mChannel(aName, this) {
mToplevel = this;
}
void IToplevelProtocol::SetOtherProcessId(base::ProcessId aOtherPid) {
mOtherPid = aOtherPid;
}
bool IToplevelProtocol::Open(ScopedPort aPort, const nsID& aMessageChannelId,
base::ProcessId aOtherPid,
nsISerialEventTarget* aEventTarget) {
SetOtherProcessId(aOtherPid);
return GetIPCChannel()->Open(std::move(aPort), mSide, aMessageChannelId,
aEventTarget);
}
bool IToplevelProtocol::Open(IToplevelProtocol* aTarget,
nsISerialEventTarget* aEventTarget,
mozilla::ipc::Side aSide) {
SetOtherProcessId(base::GetCurrentProcId());
aTarget->SetOtherProcessId(base::GetCurrentProcId());
return GetIPCChannel()->Open(aTarget->GetIPCChannel(), aEventTarget, aSide);
}
bool IToplevelProtocol::OpenOnSameThread(IToplevelProtocol* aTarget,
Side aSide) {
SetOtherProcessId(base::GetCurrentProcId());
aTarget->SetOtherProcessId(base::GetCurrentProcId());
return GetIPCChannel()->OpenOnSameThread(aTarget->GetIPCChannel(), aSide);
}
void IToplevelProtocol::NotifyImpendingShutdown() {
if (CanRecv()) {
GetIPCChannel()->NotifyImpendingShutdown();
}
}
void IToplevelProtocol::Close() { GetIPCChannel()->Close(); }
void IToplevelProtocol::SetReplyTimeoutMs(int32_t aTimeoutMs) {
GetIPCChannel()->SetReplyTimeoutMs(aTimeoutMs);
}
bool IToplevelProtocol::IsOnCxxStack() const {
return GetIPCChannel()->IsOnCxxStack();
}
int32_t IToplevelProtocol::NextId() {
// Generate the next ID to use for a shared memory or protocol. Parent and
// Child sides of the protocol use different pools.
int32_t tag = 0;
if (GetSide() == ParentSide) {
tag |= 1 << 1;
}
// Check any overflow
MOZ_RELEASE_ASSERT(mLastLocalId < (1 << 29));
// Compute the ID to use with the low two bits as our tag, and the remaining
// bits as a monotonic.
return (++mLastLocalId << 2) | tag;
}
int32_t IToplevelProtocol::Register(IProtocol* aRouted) {
if (aRouted->Id() != kNullActorId && aRouted->Id() != kFreedActorId) {
// If there's already an ID, just return that.
return aRouted->Id();
}
return RegisterID(aRouted, NextId());
}
int32_t IToplevelProtocol::RegisterID(IProtocol* aRouted, int32_t aId) {
aRouted->SetId(aId);
aRouted->ActorConnected();
MOZ_ASSERT(!mActorMap.Contains(aId), "Don't insert with an existing ID");
mActorMap.InsertOrUpdate(aId, aRouted);
return aId;
}
IProtocol* IToplevelProtocol::Lookup(int32_t aId) { return mActorMap.Get(aId); }
void IToplevelProtocol::Unregister(int32_t aId) {
MOZ_ASSERT(mActorMap.Contains(aId),
"Attempting to remove an ID not in the actor map");
mActorMap.Remove(aId);
}
Shmem::SharedMemory* IToplevelProtocol::CreateSharedMemory(size_t aSize,
bool aUnsafe,
Shmem::id_t* aId) {
RefPtr<Shmem::SharedMemory> segment(Shmem::Alloc(aSize));
if (!segment) {
return nullptr;
}
int32_t id = NextId();
Shmem shmem(segment.get(), id, aSize, aUnsafe);
UniquePtr<Message> descriptor = shmem.MkCreatedMessage(MSG_ROUTING_CONTROL);
if (!descriptor) {
return nullptr;
}
Unused << GetIPCChannel()->Send(std::move(descriptor));
*aId = shmem.Id();
Shmem::SharedMemory* rawSegment = segment.get();
MOZ_ASSERT(!mShmemMap.Contains(*aId), "Don't insert with an existing ID");
mShmemMap.InsertOrUpdate(*aId, std::move(segment));
return rawSegment;
}
Shmem::SharedMemory* IToplevelProtocol::LookupSharedMemory(Shmem::id_t aId) {
auto entry = mShmemMap.Lookup(aId);
return entry ? entry.Data().get() : nullptr;
}
bool IToplevelProtocol::IsTrackingSharedMemory(Shmem::SharedMemory* segment) {
for (const auto& shmem : mShmemMap.Values()) {
if (segment == shmem) {
return true;
}
}
return false;
}
bool IToplevelProtocol::DestroySharedMemory(Shmem& shmem) {
Shmem::id_t aId = shmem.Id();
Shmem::SharedMemory* segment = LookupSharedMemory(aId);
if (!segment) {
return false;
}
UniquePtr<Message> descriptor = shmem.MkDestroyedMessage(MSG_ROUTING_CONTROL);
MOZ_ASSERT(mShmemMap.Contains(aId),
"Attempting to remove an ID not in the shmem map");
mShmemMap.Remove(aId);
MessageChannel* channel = GetIPCChannel();
if (!channel->CanSend()) {
return true;
}
return descriptor && channel->Send(std::move(descriptor));
}
void IToplevelProtocol::DeallocShmems() { mShmemMap.Clear(); }
bool IToplevelProtocol::ShmemCreated(const Message& aMsg) {
Shmem::id_t id;
RefPtr<Shmem::SharedMemory> rawmem(Shmem::OpenExisting(aMsg, &id, true));
if (!rawmem) {
return false;
}
MOZ_ASSERT(!mShmemMap.Contains(id), "Don't insert with an existing ID");
mShmemMap.InsertOrUpdate(id, std::move(rawmem));
return true;
}
bool IToplevelProtocol::ShmemDestroyed(const Message& aMsg) {
Shmem::id_t id;
MessageReader reader(aMsg);
if (!IPC::ReadParam(&reader, &id)) {
return false;
}
reader.EndRead();
mShmemMap.Remove(id);
return true;
}
IPDLResolverInner::IPDLResolverInner(UniquePtr<IPC::Message> aReply,
IProtocol* aActor)
: mReply(std::move(aReply)),
mWeakProxy(aActor->GetLifecycleProxy()->GetWeakProxy()) {}
void IPDLResolverInner::ResolveOrReject(
bool aResolve, FunctionRef<void(IPC::Message*, IProtocol*)> aWrite) {
MOZ_ASSERT(mWeakProxy);
MOZ_ASSERT(mWeakProxy->ActorEventTarget()->IsOnCurrentThread());
MOZ_ASSERT(mReply);
UniquePtr<IPC::Message> reply = std::move(mReply);
IProtocol* actor = mWeakProxy->Get();
if (!actor) {
NS_WARNING(nsPrintfCString("Not resolving response '%s': actor is dead",
reply->name())
.get());
return;
}
IPC::MessageWriter writer(*reply, actor);
WriteIPDLParam(&writer, actor, aResolve);
aWrite(reply.get(), actor);
actor->ChannelSend(std::move(reply));
}
void IPDLResolverInner::Destroy() {
if (mReply) {
NS_PROXY_DELETE_TO_EVENT_TARGET(IPDLResolverInner,
mWeakProxy->ActorEventTarget());
} else {
// If we've already been consumed, just delete without proxying. This avoids
// leaking the resolver if the actor's thread is already dead.
delete this;
}
}
IPDLResolverInner::~IPDLResolverInner() {
if (mReply) {
NS_WARNING(
nsPrintfCString(
"Rejecting reply '%s': resolver dropped without being called",
mReply->name())
.get());
ResolveOrReject(false, [](IPC::Message* aMessage, IProtocol* aActor) {
IPC::MessageWriter writer(*aMessage, aActor);
ResponseRejectReason reason = ResponseRejectReason::ResolverDestroyed;
WriteIPDLParam(&writer, aActor, reason);
});
}
}
} // namespace ipc
} // namespace mozilla