DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Header

Mercurial (47d7c18620c8)

VCS Links

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994
/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 2 -*-
 * vim: sw=2 ts=4 et :
 */
/* This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */

#include "mozilla/ipc/MessageChannel.h"

#include "mozilla/Assertions.h"
#include "mozilla/CycleCollectedJSContext.h"
#include "mozilla/DebugOnly.h"
#include "mozilla/dom/ScriptSettings.h"
#include "mozilla/ipc/ProcessChild.h"
#include "mozilla/ipc/ProtocolUtils.h"
#include "mozilla/Logging.h"
#include "mozilla/Move.h"
#include "mozilla/Mutex.h"
#include "mozilla/ScopeExit.h"
#include "mozilla/Sprintf.h"
#include "mozilla/Telemetry.h"
#include "mozilla/TimeStamp.h"
#include "mozilla/UniquePtr.h"
#include "nsAppRunner.h"
#include "nsAutoPtr.h"
#include "nsContentUtils.h"
#include "nsDataHashtable.h"
#include "nsDebug.h"
#include "nsISupportsImpl.h"
#include "nsPrintfCString.h"
#include <math.h>

#ifdef MOZ_TASK_TRACER
#  include "GeckoTaskTracer.h"
using namespace mozilla::tasktracer;
#endif

#ifdef MOZ_GECKO_PROFILER
#  include "ProfilerMarkerPayload.h"
#endif

// Undo the damage done by mozzconf.h
#undef compress

static mozilla::LazyLogModule sLogModule("ipc");
#define IPC_LOG(...) MOZ_LOG(sLogModule, LogLevel::Debug, (__VA_ARGS__))

/*
 * IPC design:
 *
 * There are three kinds of messages: async, sync, and intr. Sync and intr
 * messages are blocking.
 *
 * Terminology: To dispatch a message Foo is to run the RecvFoo code for
 * it. This is also called "handling" the message.
 *
 * Sync and async messages can sometimes "nest" inside other sync messages
 * (i.e., while waiting for the sync reply, we can dispatch the inner
 * message). Intr messages cannot nest.  The three possible nesting levels are
 * NOT_NESTED, NESTED_INSIDE_SYNC, and NESTED_INSIDE_CPOW.  The intended uses
 * are:
 *   NOT_NESTED - most messages.
 *   NESTED_INSIDE_SYNC - CPOW-related messages, which are always sync
 *                        and can go in either direction.
 *   NESTED_INSIDE_CPOW - messages where we don't want to dispatch
 *                        incoming CPOWs while waiting for the response.
 * These nesting levels are ordered: NOT_NESTED, NESTED_INSIDE_SYNC,
 * NESTED_INSIDE_CPOW.  Async messages cannot be NESTED_INSIDE_SYNC but they can
 * be NESTED_INSIDE_CPOW.
 *
 * To avoid jank, the parent process is not allowed to send NOT_NESTED sync
 * messages. When a process is waiting for a response to a sync message M0, it
 * will dispatch an incoming message M if:
 *   1. M has a higher nesting level than M0, or
 *   2. if M has the same nesting level as M0 and we're in the child, or
 *   3. if M has the same nesting level as M0 and it was sent by the other side
 *      while dispatching M0.
 * The idea is that messages with higher nesting should take precendence. The
 * purpose of rule 2 is to handle a race where both processes send to each other
 * simultaneously. In this case, we resolve the race in favor of the parent (so
 * the child dispatches first).
 *
 * Messages satisfy the following properties:
 *   A. When waiting for a response to a sync message, we won't dispatch any
 *      messages of nesting level.
 *   B. Messages of the same nesting level will be dispatched roughly in the
 *      order they were sent. The exception is when the parent and child send
 *      sync messages to each other simulataneously. In this case, the parent's
 *      message is dispatched first. While it is dispatched, the child may send
 *      further nested messages, and these messages may be dispatched before the
 *      child's original message. We can consider ordering to be preserved here
 *      because we pretend that the child's original message wasn't sent until
 *      after the parent's message is finished being dispatched.
 *
 * When waiting for a sync message reply, we dispatch an async message only if
 * it is NESTED_INSIDE_CPOW. Normally NESTED_INSIDE_CPOW async
 * messages are sent only from the child. However, the parent can send
 * NESTED_INSIDE_CPOW async messages when it is creating a bridged protocol.
 *
 * Intr messages are blocking and can nest, but they don't participate in the
 * nesting levels. While waiting for an intr response, all incoming messages are
 * dispatched until a response is received. When two intr messages race with
 * each other, a similar scheme is used to ensure that one side wins. The
 * winning side is chosen based on the message type.
 *
 * Intr messages differ from sync messages in that, while sending an intr
 * message, we may dispatch an async message. This causes some additional
 * complexity. One issue is that replies can be received out of order. It's also
 * more difficult to determine whether one message is nested inside
 * another. Consequently, intr handling uses mOutOfTurnReplies and
 * mRemoteStackDepthGuess, which are not needed for sync messages.
 */

using namespace mozilla;
using namespace mozilla::ipc;

using mozilla::MonitorAutoLock;
using mozilla::MonitorAutoUnlock;
using mozilla::dom::AutoNoJSAPI;

#define IPC_ASSERT(_cond, ...)                                           \
  do {                                                                   \
    if (!(_cond)) DebugAbort(__FILE__, __LINE__, #_cond, ##__VA_ARGS__); \
  } while (0)

static MessageChannel* gParentProcessBlocker;

namespace mozilla {
namespace ipc {

static const uint32_t kMinTelemetryMessageSize = 4096;

// Note: we round the time we spend to the nearest millisecond. So a min value
// of 1 ms actually captures from 500us and above.
static const uint32_t kMinTelemetryIPCWriteLatencyMs = 1;

// Note: we round the time we spend waiting for a response to the nearest
// millisecond. So a min value of 1 ms actually captures from 500us and above.
// This is used for both the sending and receiving side telemetry for sync IPC,
// (IPC_SYNC_MAIN_LATENCY_MS and IPC_SYNC_RECEIVE_MS).
static const uint32_t kMinTelemetrySyncIPCLatencyMs = 1;

const int32_t MessageChannel::kNoTimeout = INT32_MIN;

// static
bool MessageChannel::sIsPumpingMessages = false;

enum Direction { IN_MESSAGE, OUT_MESSAGE };

class MessageChannel::InterruptFrame {
 private:
  enum Semantics { INTR_SEMS, SYNC_SEMS, ASYNC_SEMS };

 public:
  InterruptFrame(Direction direction, const Message* msg)
      : mMessageName(msg->name()),
        mMessageRoutingId(msg->routing_id()),
        mMesageSemantics(msg->is_interrupt()
                             ? INTR_SEMS
                             : msg->is_sync() ? SYNC_SEMS : ASYNC_SEMS),
        mDirection(direction),
        mMoved(false) {
    MOZ_RELEASE_ASSERT(mMessageName);
  }

  InterruptFrame(InterruptFrame&& aOther) {
    MOZ_RELEASE_ASSERT(aOther.mMessageName);
    mMessageName = aOther.mMessageName;
    aOther.mMessageName = nullptr;
    mMoved = aOther.mMoved;
    aOther.mMoved = true;

    mMessageRoutingId = aOther.mMessageRoutingId;
    mMesageSemantics = aOther.mMesageSemantics;
    mDirection = aOther.mDirection;
  }

  ~InterruptFrame() { MOZ_RELEASE_ASSERT(mMessageName || mMoved); }

  InterruptFrame& operator=(InterruptFrame&& aOther) {
    MOZ_RELEASE_ASSERT(&aOther != this);
    this->~InterruptFrame();
    new (this) InterruptFrame(std::move(aOther));
    return *this;
  }

  bool IsInterruptIncall() const {
    return INTR_SEMS == mMesageSemantics && IN_MESSAGE == mDirection;
  }

  bool IsInterruptOutcall() const {
    return INTR_SEMS == mMesageSemantics && OUT_MESSAGE == mDirection;
  }

  bool IsOutgoingSync() const {
    return (mMesageSemantics == INTR_SEMS || mMesageSemantics == SYNC_SEMS) &&
           mDirection == OUT_MESSAGE;
  }

  void Describe(int32_t* id, const char** dir, const char** sems,
                const char** name) const {
    *id = mMessageRoutingId;
    *dir = (IN_MESSAGE == mDirection) ? "in" : "out";
    *sems = (INTR_SEMS == mMesageSemantics)
                ? "intr"
                : (SYNC_SEMS == mMesageSemantics) ? "sync" : "async";
    *name = mMessageName;
  }

  int32_t GetRoutingId() const { return mMessageRoutingId; }

 private:
  const char* mMessageName;
  int32_t mMessageRoutingId;
  Semantics mMesageSemantics;
  Direction mDirection;
  bool mMoved;

  // Disable harmful methods.
  InterruptFrame(const InterruptFrame& aOther) = delete;
  InterruptFrame& operator=(const InterruptFrame&) = delete;
};

class MOZ_STACK_CLASS MessageChannel::CxxStackFrame {
 public:
  CxxStackFrame(MessageChannel& that, Direction direction, const Message* msg)
      : mThat(that) {
    mThat.AssertWorkerThread();

    if (mThat.mCxxStackFrames.empty()) mThat.EnteredCxxStack();

    if (!mThat.mCxxStackFrames.append(InterruptFrame(direction, msg)))
      MOZ_CRASH();

    const InterruptFrame& frame = mThat.mCxxStackFrames.back();

    if (frame.IsInterruptIncall()) mThat.EnteredCall();

    if (frame.IsOutgoingSync()) mThat.EnteredSyncSend();

    mThat.mSawInterruptOutMsg |= frame.IsInterruptOutcall();
  }

  ~CxxStackFrame() {
    mThat.AssertWorkerThread();

    MOZ_RELEASE_ASSERT(!mThat.mCxxStackFrames.empty());

    const InterruptFrame& frame = mThat.mCxxStackFrames.back();
    bool exitingSync = frame.IsOutgoingSync();
    bool exitingCall = frame.IsInterruptIncall();
    mThat.mCxxStackFrames.shrinkBy(1);

    bool exitingStack = mThat.mCxxStackFrames.empty();

    // According how lifetime is declared, mListener on MessageChannel
    // lives longer than MessageChannel itself.  Hence is expected to
    // be alive.  There is nothing to even assert here, there is no place
    // we would be nullifying mListener on MessageChannel.

    if (exitingCall) mThat.ExitedCall();

    if (exitingSync) mThat.ExitedSyncSend();

    if (exitingStack) mThat.ExitedCxxStack();
  }

 private:
  MessageChannel& mThat;

  // Disable harmful methods.
  CxxStackFrame() = delete;
  CxxStackFrame(const CxxStackFrame&) = delete;
  CxxStackFrame& operator=(const CxxStackFrame&) = delete;
};

class AutoEnterTransaction {
 public:
  explicit AutoEnterTransaction(MessageChannel* aChan, int32_t aMsgSeqno,
                                int32_t aTransactionID, int aNestedLevel)
      : mChan(aChan),
        mActive(true),
        mOutgoing(true),
        mNestedLevel(aNestedLevel),
        mSeqno(aMsgSeqno),
        mTransaction(aTransactionID),
        mNext(mChan->mTransactionStack) {
    mChan->mMonitor->AssertCurrentThreadOwns();
    mChan->mTransactionStack = this;
  }

  explicit AutoEnterTransaction(MessageChannel* aChan,
                                const IPC::Message& aMessage)
      : mChan(aChan),
        mActive(true),
        mOutgoing(false),
        mNestedLevel(aMessage.nested_level()),
        mSeqno(aMessage.seqno()),
        mTransaction(aMessage.transaction_id()),
        mNext(mChan->mTransactionStack) {
    mChan->mMonitor->AssertCurrentThreadOwns();

    if (!aMessage.is_sync()) {
      mActive = false;
      return;
    }

    mChan->mTransactionStack = this;
  }

  ~AutoEnterTransaction() {
    mChan->mMonitor->AssertCurrentThreadOwns();
    if (mActive) {
      mChan->mTransactionStack = mNext;
    }
  }

  void Cancel() {
    AutoEnterTransaction* cur = mChan->mTransactionStack;
    MOZ_RELEASE_ASSERT(cur == this);
    while (cur && cur->mNestedLevel != IPC::Message::NOT_NESTED) {
      // Note that, in the following situation, we will cancel multiple
      // transactions:
      // 1. Parent sends NESTED_INSIDE_SYNC message P1 to child.
      // 2. Child sends NESTED_INSIDE_SYNC message C1 to child.
      // 3. Child dispatches P1, parent blocks.
      // 4. Child cancels.
      // In this case, both P1 and C1 are cancelled. The parent will
      // remove C1 from its queue when it gets the cancellation message.
      MOZ_RELEASE_ASSERT(cur->mActive);
      cur->mActive = false;
      cur = cur->mNext;
    }

    mChan->mTransactionStack = cur;

    MOZ_RELEASE_ASSERT(IsComplete());
  }

  bool AwaitingSyncReply() const {
    MOZ_RELEASE_ASSERT(mActive);
    if (mOutgoing) {
      return true;
    }
    return mNext ? mNext->AwaitingSyncReply() : false;
  }

  int AwaitingSyncReplyNestedLevel() const {
    MOZ_RELEASE_ASSERT(mActive);
    if (mOutgoing) {
      return mNestedLevel;
    }
    return mNext ? mNext->AwaitingSyncReplyNestedLevel() : 0;
  }

  bool DispatchingSyncMessage() const {
    MOZ_RELEASE_ASSERT(mActive);
    if (!mOutgoing) {
      return true;
    }
    return mNext ? mNext->DispatchingSyncMessage() : false;
  }

  int DispatchingSyncMessageNestedLevel() const {
    MOZ_RELEASE_ASSERT(mActive);
    if (!mOutgoing) {
      return mNestedLevel;
    }
    return mNext ? mNext->DispatchingSyncMessageNestedLevel() : 0;
  }

  int NestedLevel() const {
    MOZ_RELEASE_ASSERT(mActive);
    return mNestedLevel;
  }

  int32_t SequenceNumber() const {
    MOZ_RELEASE_ASSERT(mActive);
    return mSeqno;
  }

  int32_t TransactionID() const {
    MOZ_RELEASE_ASSERT(mActive);
    return mTransaction;
  }

  void ReceivedReply(IPC::Message&& aMessage) {
    MOZ_RELEASE_ASSERT(aMessage.seqno() == mSeqno);
    MOZ_RELEASE_ASSERT(aMessage.transaction_id() == mTransaction);
    MOZ_RELEASE_ASSERT(!mReply);
    IPC_LOG("Reply received on worker thread: seqno=%d", mSeqno);
    mReply = MakeUnique<IPC::Message>(std::move(aMessage));
    MOZ_RELEASE_ASSERT(IsComplete());
  }

  void HandleReply(IPC::Message&& aMessage) {
    AutoEnterTransaction* cur = mChan->mTransactionStack;
    MOZ_RELEASE_ASSERT(cur == this);
    while (cur) {
      MOZ_RELEASE_ASSERT(cur->mActive);
      if (aMessage.seqno() == cur->mSeqno) {
        cur->ReceivedReply(std::move(aMessage));
        break;
      }
      cur = cur->mNext;
      MOZ_RELEASE_ASSERT(cur);
    }
  }

  bool IsComplete() { return !mActive || mReply; }

  bool IsOutgoing() { return mOutgoing; }

  bool IsCanceled() { return !mActive; }

  bool IsBottom() const { return !mNext; }

  bool IsError() {
    MOZ_RELEASE_ASSERT(mReply);
    return mReply->is_reply_error();
  }

  UniquePtr<IPC::Message> GetReply() { return std::move(mReply); }

 private:
  MessageChannel* mChan;

  // Active is true if this transaction is on the mChan->mTransactionStack
  // stack. Generally we're not on the stack if the transaction was canceled
  // or if it was for a message that doesn't require transactions (an async
  // message).
  bool mActive;

  // Is this stack frame for an outgoing message?
  bool mOutgoing;

  // Properties of the message being sent/received.
  int mNestedLevel;
  int32_t mSeqno;
  int32_t mTransaction;

  // Next item in mChan->mTransactionStack.
  AutoEnterTransaction* mNext;

  // Pointer the a reply received for this message, if one was received.
  UniquePtr<IPC::Message> mReply;
};

class PendingResponseReporter final : public nsIMemoryReporter {
  ~PendingResponseReporter() {}

 public:
  NS_DECL_THREADSAFE_ISUPPORTS

  NS_IMETHOD
  CollectReports(nsIHandleReportCallback* aHandleReport, nsISupports* aData,
                 bool aAnonymize) override {
    MOZ_COLLECT_REPORT(
        "unresolved-ipc-responses", KIND_OTHER, UNITS_COUNT,
        MessageChannel::gUnresolvedResponses,
        "Outstanding IPC async message responses that are still not resolved.");
    return NS_OK;
  }
};

NS_IMPL_ISUPPORTS(PendingResponseReporter, nsIMemoryReporter)

class ChannelCountReporter final : public nsIMemoryReporter {
  ~ChannelCountReporter() = default;

  struct ChannelCounts {
    size_t mNow;
    size_t mMax;

    ChannelCounts() : mNow(0), mMax(0) {}

    void Inc() {
      ++mNow;
      if (mMax < mNow) {
        mMax = mNow;
      }
    }

    void Dec() {
      MOZ_ASSERT(mNow > 0);
      --mNow;
    }
  };

  using CountTable = nsDataHashtable<nsDepCharHashKey, ChannelCounts>;

  static StaticMutex sChannelCountMutex;
  static CountTable* sChannelCounts;

 public:
  NS_DECL_THREADSAFE_ISUPPORTS

  NS_IMETHOD
  CollectReports(nsIHandleReportCallback* aHandleReport, nsISupports* aData,
                 bool aAnonymize) override {
    StaticMutexAutoLock countLock(sChannelCountMutex);
    if (!sChannelCounts) {
      return NS_OK;
    }
    for (auto iter = sChannelCounts->Iter(); !iter.Done(); iter.Next()) {
      nsPrintfCString pathNow("ipc-channels/%s", iter.Key());
      nsPrintfCString pathMax("ipc-channels-peak/%s", iter.Key());
      nsPrintfCString descNow(
          "Number of IPC channels for"
          " top-level actor type %s",
          iter.Key());
      nsPrintfCString descMax(
          "Peak number of IPC channels for"
          " top-level actor type %s",
          iter.Key());

      aHandleReport->Callback(EmptyCString(), pathNow, KIND_OTHER, UNITS_COUNT,
                              iter.Data().mNow, descNow, aData);
      aHandleReport->Callback(EmptyCString(), pathMax, KIND_OTHER, UNITS_COUNT,
                              iter.Data().mMax, descMax, aData);
    }
    return NS_OK;
  }

  static void Increment(const char* aName) {
    StaticMutexAutoLock countLock(sChannelCountMutex);
    if (!sChannelCounts) {
      sChannelCounts = new CountTable;
    }
    sChannelCounts->GetOrInsert(aName).Inc();
  }

  static void Decrement(const char* aName) {
    StaticMutexAutoLock countLock(sChannelCountMutex);
    MOZ_ASSERT(sChannelCounts);
    sChannelCounts->GetOrInsert(aName).Dec();
  }
};

StaticMutex ChannelCountReporter::sChannelCountMutex;
ChannelCountReporter::CountTable* ChannelCountReporter::sChannelCounts;

NS_IMPL_ISUPPORTS(ChannelCountReporter, nsIMemoryReporter)

// In child processes, the first MessageChannel is created before
// XPCOM is initialized enough to construct the memory reporter
// manager.  This retries every time a MessageChannel is constructed,
// which is good enough in practice.
template <class Reporter>
static void TryRegisterStrongMemoryReporter() {
  static Atomic<bool> registered;
  if (registered.compareExchange(false, true)) {
    RefPtr<Reporter> reporter = new Reporter();
    if (NS_FAILED(RegisterStrongMemoryReporter(reporter))) {
      registered = false;
    }
  }
}

Atomic<size_t> MessageChannel::gUnresolvedResponses;

// Channels in record/replay middleman processes can forward messages that
// originated in a child recording process. Middleman processes are given
// a large negative sequence number so that sequence numbers on their messages
// can be distinguished from those on recording process messages.
static const int32_t MiddlemanStartSeqno = -(1 << 30);

/* static */
bool MessageChannel::MessageOriginatesFromMiddleman(const Message& aMessage) {
  MOZ_ASSERT(recordreplay::IsMiddleman());
  return aMessage.seqno() < MiddlemanStartSeqno;
}

MessageChannel::MessageChannel(const char* aName, IToplevelProtocol* aListener)
    : mName(aName),
      mListener(aListener),
      mChannelState(ChannelClosed),
      mSide(UnknownSide),
      mIsCrossProcess(false),
      mLink(nullptr),
      mWorkerLoop(nullptr),
      mChannelErrorTask(nullptr),
      mWorkerThread(nullptr),
      mTimeoutMs(kNoTimeout),
      mInTimeoutSecondHalf(false),
      mNextSeqno(0),
      mLastSendError(SyncSendError::SendSuccess),
      mDispatchingAsyncMessage(false),
      mDispatchingAsyncMessageNestedLevel(0),
      mTransactionStack(nullptr),
      mTimedOutMessageSeqno(0),
      mTimedOutMessageNestedLevel(0),
      mMaybeDeferredPendingCount(0),
      mRemoteStackDepthGuess(0),
      mSawInterruptOutMsg(false),
      mIsWaitingForIncoming(false),
      mAbortOnError(false),
      mNotifiedChannelDone(false),
      mFlags(REQUIRE_DEFAULT),
      mPeerPidSet(false),
      mPeerPid(-1),
      mIsPostponingSends(false),
      mBuildIDsConfirmedMatch(false),
      mIsSameThreadChannel(false) {
  MOZ_COUNT_CTOR(ipc::MessageChannel);

#ifdef OS_WIN
  mTopFrame = nullptr;
  mIsSyncWaitingOnNonMainThread = false;
#endif

  mOnChannelConnectedTask = NewNonOwningCancelableRunnableMethod(
      "ipc::MessageChannel::DispatchOnChannelConnected", this,
      &MessageChannel::DispatchOnChannelConnected);

#ifdef OS_WIN
  mEvent = CreateEventW(nullptr, TRUE, FALSE, nullptr);
  MOZ_RELEASE_ASSERT(mEvent, "CreateEvent failed! Nothing is going to work!");
#endif

  TryRegisterStrongMemoryReporter<PendingResponseReporter>();
  TryRegisterStrongMemoryReporter<ChannelCountReporter>();

  if (recordreplay::IsMiddleman()) {
    mNextSeqno = MiddlemanStartSeqno;
  }
}

MessageChannel::~MessageChannel() {
  MOZ_COUNT_DTOR(ipc::MessageChannel);
  IPC_ASSERT(mCxxStackFrames.empty(), "mismatched CxxStackFrame ctor/dtors");
#ifdef OS_WIN
  if (mEvent) {
    BOOL ok = CloseHandle(mEvent);
    mEvent = nullptr;

    if (!ok) {
      gfxDevCrash(mozilla::gfx::LogReason::MessageChannelCloseFailure)
          << "MessageChannel failed to close. GetLastError: " << GetLastError();
    }
    MOZ_RELEASE_ASSERT(ok);
  } else {
    gfxDevCrash(mozilla::gfx::LogReason::MessageChannelCloseFailure)
        << "MessageChannel destructor ran without an mEvent Handle";
  }
#endif
  Clear();
}

#ifdef DEBUG
void MessageChannel::AssertMaybeDeferredCountCorrect() {
  size_t count = 0;
  for (MessageTask* task : mPending) {
    if (!IsAlwaysDeferred(task->Msg())) {
      count++;
    }
  }

  MOZ_ASSERT(count == mMaybeDeferredPendingCount);
}
#endif

// This function returns the current transaction ID. Since the notion of a
// "current transaction" can be hard to define when messages race with each
// other and one gets canceled and the other doesn't, we require that this
// function is only called when the current transaction is known to be for a
// NESTED_INSIDE_SYNC message. In that case, we know for sure what the caller is
// looking for.
int32_t MessageChannel::CurrentNestedInsideSyncTransaction() const {
  mMonitor->AssertCurrentThreadOwns();
  if (!mTransactionStack) {
    return 0;
  }
  MOZ_RELEASE_ASSERT(mTransactionStack->NestedLevel() ==
                     IPC::Message::NESTED_INSIDE_SYNC);
  return mTransactionStack->TransactionID();
}

bool MessageChannel::AwaitingSyncReply() const {
  mMonitor->AssertCurrentThreadOwns();
  return mTransactionStack ? mTransactionStack->AwaitingSyncReply() : false;
}

int MessageChannel::AwaitingSyncReplyNestedLevel() const {
  mMonitor->AssertCurrentThreadOwns();
  return mTransactionStack ? mTransactionStack->AwaitingSyncReplyNestedLevel()
                           : 0;
}

bool MessageChannel::DispatchingSyncMessage() const {
  mMonitor->AssertCurrentThreadOwns();
  return mTransactionStack ? mTransactionStack->DispatchingSyncMessage()
                           : false;
}

int MessageChannel::DispatchingSyncMessageNestedLevel() const {
  mMonitor->AssertCurrentThreadOwns();
  return mTransactionStack
             ? mTransactionStack->DispatchingSyncMessageNestedLevel()
             : 0;
}

static void PrintErrorMessage(Side side, const char* channelName,
                              const char* msg) {
  const char* from = (side == ChildSide)
                         ? "Child"
                         : ((side == ParentSide) ? "Parent" : "Unknown");
  printf_stderr("\n###!!! [%s][%s] Error: %s\n\n", from, channelName, msg);
}

bool MessageChannel::Connected() const {
  mMonitor->AssertCurrentThreadOwns();

  // The transport layer allows us to send messages before
  // receiving the "connected" ack from the remote side.
  return (ChannelOpening == mChannelState || ChannelConnected == mChannelState);
}

bool MessageChannel::CanSend() const {
  if (!mMonitor) {
    return false;
  }
  MonitorAutoLock lock(*mMonitor);
  return Connected();
}

void MessageChannel::WillDestroyCurrentMessageLoop() {
#if defined(DEBUG)
  CrashReporter::AnnotateCrashReport(
      CrashReporter::Annotation::IPCFatalErrorProtocol,
      nsDependentCString(mName));
  MOZ_CRASH("MessageLoop destroyed before MessageChannel that's bound to it");
#endif

  // Clear mWorkerThread to avoid posting to it in the future.
  MonitorAutoLock lock(*mMonitor);
  mWorkerLoop = nullptr;
}

void MessageChannel::Clear() {
  // Don't clear mWorkerThread; we use it in AssertLinkThread() and
  // AssertWorkerThread().
  //
  // Also don't clear mListener.  If we clear it, then sending a message
  // through this channel after it's Clear()'ed can cause this process to
  // crash.
  //
  // In practice, mListener owns the channel, so the channel gets deleted
  // before mListener.  But just to be safe, mListener is a weak pointer.

#if !defined(ANDROID)
  if (!Unsound_IsClosed()) {
    CrashReporter::AnnotateCrashReport(
        CrashReporter::Annotation::IPCFatalErrorProtocol,
        nsDependentCString(mName));
    switch (mChannelState) {
      case ChannelOpening:
        MOZ_CRASH(
            "MessageChannel destroyed without being closed "
            "(mChannelState == ChannelOpening).");
        break;
      case ChannelConnected:
        MOZ_CRASH(
            "MessageChannel destroyed without being closed "
            "(mChannelState == ChannelConnected).");
        break;
      case ChannelTimeout:
        MOZ_CRASH(
            "MessageChannel destroyed without being closed "
            "(mChannelState == ChannelTimeout).");
        break;
      case ChannelClosing:
        MOZ_CRASH(
            "MessageChannel destroyed without being closed "
            "(mChannelState == ChannelClosing).");
        break;
      case ChannelError:
        MOZ_CRASH(
            "MessageChannel destroyed without being closed "
            "(mChannelState == ChannelError).");
        break;
      default:
        MOZ_CRASH("MessageChannel destroyed without being closed.");
    }
  }
#endif

  if (gParentProcessBlocker == this) {
    gParentProcessBlocker = nullptr;
  }

  if (mWorkerLoop) {
    mWorkerLoop->RemoveDestructionObserver(this);
  }

  gUnresolvedResponses -= mPendingResponses.size();
  for (auto& pair : mPendingResponses) {
    pair.second.get()->Reject(ResponseRejectReason::ChannelClosed);
  }
  mPendingResponses.clear();

  mWorkerLoop = nullptr;
  if (mLink != nullptr && mIsCrossProcess) {
    ChannelCountReporter::Decrement(mName);
  }
  delete mLink;
  mLink = nullptr;

  mOnChannelConnectedTask->Cancel();

  if (mChannelErrorTask) {
    mChannelErrorTask->Cancel();
    mChannelErrorTask = nullptr;
  }

  // Free up any memory used by pending messages.
  for (MessageTask* task : mPending) {
    task->Clear();
  }
  mPending.clear();

  mMaybeDeferredPendingCount = 0;

  mOutOfTurnReplies.clear();
  while (!mDeferred.empty()) {
    mDeferred.pop();
  }
}

bool MessageChannel::Open(Transport* aTransport, MessageLoop* aIOLoop,
                          Side aSide) {
  MOZ_ASSERT(!mLink, "Open() called > once");

  mMonitor = new RefCountedMonitor();
  mWorkerLoop = MessageLoop::current();
  mWorkerThread = GetCurrentVirtualThread();
  mWorkerLoop->AddDestructionObserver(this);
  mListener->OnIPCChannelOpened();

  ProcessLink* link = new ProcessLink(this);
  link->Open(aTransport, aIOLoop, aSide);  // :TODO: n.b.: sets mChild
  mLink = link;
  mIsCrossProcess = true;
  ChannelCountReporter::Increment(mName);
  return true;
}

bool MessageChannel::Open(MessageChannel* aTargetChan,
                          nsIEventTarget* aEventTarget, Side aSide) {
  // Opens a connection to another thread in the same process.

  //  This handshake proceeds as follows:
  //  - Let A be the thread initiating the process (either child or parent)
  //    and B be the other thread.
  //  - A spawns thread for B, obtaining B's message loop
  //  - A creates ProtocolChild and ProtocolParent instances.
  //    Let PA be the one appropriate to A and PB the side for B.
  //  - A invokes PA->Open(PB, ...):
  //    - set state to mChannelOpening
  //    - this will place a work item in B's worker loop (see next bullet)
  //      and then spins until PB->mChannelState becomes mChannelConnected
  //    - meanwhile, on PB's worker loop, the work item is removed and:
  //      - invokes PB->SlaveOpen(PA, ...):
  //        - sets its state and that of PA to Connected
  MOZ_ASSERT(aTargetChan, "Need a target channel");
  MOZ_ASSERT(ChannelClosed == mChannelState, "Not currently closed");

  CommonThreadOpenInit(aTargetChan, aSide);

  Side oppSide = UnknownSide;
  switch (aSide) {
    case ChildSide:
      oppSide = ParentSide;
      break;
    case ParentSide:
      oppSide = ChildSide;
      break;
    case UnknownSide:
      break;
  }

  mMonitor = new RefCountedMonitor();

  MonitorAutoLock lock(*mMonitor);
  mChannelState = ChannelOpening;
  MOZ_ALWAYS_SUCCEEDS(
      aEventTarget->Dispatch(NewNonOwningRunnableMethod<MessageChannel*, Side>(
          "ipc::MessageChannel::OnOpenAsSlave", aTargetChan,
          &MessageChannel::OnOpenAsSlave, this, oppSide)));

  while (ChannelOpening == mChannelState) mMonitor->Wait();
  MOZ_RELEASE_ASSERT(ChannelConnected == mChannelState,
                     "not connected when awoken");
  return (ChannelConnected == mChannelState);
}

void MessageChannel::OnOpenAsSlave(MessageChannel* aTargetChan, Side aSide) {
  // Invoked when the other side has begun the open.
  MOZ_ASSERT(ChannelClosed == mChannelState, "Not currently closed");
  MOZ_ASSERT(ChannelOpening == aTargetChan->mChannelState,
             "Target channel not in the process of opening");

  CommonThreadOpenInit(aTargetChan, aSide);
  mMonitor = aTargetChan->mMonitor;

  MonitorAutoLock lock(*mMonitor);
  MOZ_RELEASE_ASSERT(ChannelOpening == aTargetChan->mChannelState,
                     "Target channel not in the process of opening");
  mChannelState = ChannelConnected;
  aTargetChan->mChannelState = ChannelConnected;
  aTargetChan->mMonitor->Notify();
}

void MessageChannel::CommonThreadOpenInit(MessageChannel* aTargetChan,
                                          Side aSide) {
  mWorkerLoop = MessageLoop::current();
  mWorkerThread = GetCurrentVirtualThread();
  mWorkerLoop->AddDestructionObserver(this);
  mListener->OnIPCChannelOpened();

  mLink = new ThreadLink(this, aTargetChan);
  mSide = aSide;
}

bool MessageChannel::OpenOnSameThread(MessageChannel* aTargetChan,
                                      mozilla::ipc::Side aSide) {
  CommonThreadOpenInit(aTargetChan, aSide);

  Side oppSide = UnknownSide;
  switch (aSide) {
    case ChildSide:
      oppSide = ParentSide;
      break;
    case ParentSide:
      oppSide = ChildSide;
      break;
    case UnknownSide:
      break;
  }
  mIsSameThreadChannel = true;

  // XXX(nika): Avoid setting up a monitor for same thread channels? We
  // shouldn't need it.
  mMonitor = new RefCountedMonitor();

  mChannelState = ChannelOpening;
  aTargetChan->CommonThreadOpenInit(this, oppSide);

  aTargetChan->mIsSameThreadChannel = true;
  aTargetChan->mMonitor = mMonitor;

  mChannelState = ChannelConnected;
  aTargetChan->mChannelState = ChannelConnected;
  return true;
}

bool MessageChannel::Echo(Message* aMsg) {
  UniquePtr<Message> msg(aMsg);
  AssertWorkerThread();
  mMonitor->AssertNotCurrentThreadOwns();
  if (MSG_ROUTING_NONE == msg->routing_id()) {
    ReportMessageRouteError("MessageChannel::Echo");
    return false;
  }

  MonitorAutoLock lock(*mMonitor);

  if (!Connected()) {
    ReportConnectionError("MessageChannel", msg.get());
    return false;
  }

  mLink->EchoMessage(msg.release());
  return true;
}

bool MessageChannel::Send(Message* aMsg) {
  if (aMsg->size() >= kMinTelemetryMessageSize) {
    Telemetry::Accumulate(Telemetry::IPC_MESSAGE_SIZE2, aMsg->size());
  }

  // If the message was created by the IPC bindings, the create time will be
  // recorded. Use this information to report the
  // IPC_WRITE_MAIN_THREAD_LATENCY_MS (time from message creation to it being
  // sent).
  if (NS_IsMainThread() && aMsg->create_time()) {
    uint32_t latencyMs = round(
        (mozilla::TimeStamp::Now() - aMsg->create_time()).ToMilliseconds());
    if (latencyMs >= kMinTelemetryIPCWriteLatencyMs) {
      mozilla::Telemetry::Accumulate(
          mozilla::Telemetry::IPC_WRITE_MAIN_THREAD_LATENCY_MS,
          nsDependentCString(aMsg->name()), latencyMs);
    }
  }

  MOZ_RELEASE_ASSERT(!aMsg->is_sync());
  MOZ_RELEASE_ASSERT(aMsg->nested_level() != IPC::Message::NESTED_INSIDE_SYNC);

  CxxStackFrame frame(*this, OUT_MESSAGE, aMsg);

  UniquePtr<Message> msg(aMsg);
  AssertWorkerThread();
  mMonitor->AssertNotCurrentThreadOwns();
  if (MSG_ROUTING_NONE == msg->routing_id()) {
    ReportMessageRouteError("MessageChannel::Send");
    return false;
  }

  if (msg->seqno() == 0) {
    msg->set_seqno(NextSeqno());
  }

  MonitorAutoLock lock(*mMonitor);
  if (!Connected()) {
    ReportConnectionError("MessageChannel", msg.get());
    return false;
  }

  AddProfilerMarker(msg.get(), MessageDirection::eSending);
  SendMessageToLink(msg.release());
  return true;
}

void MessageChannel::SendMessageToLink(Message* aMsg) {
  if (mIsPostponingSends) {
    UniquePtr<Message> msg(aMsg);
    mPostponedSends.push_back(std::move(msg));
    return;
  }
  mLink->SendMessage(aMsg);
}

void MessageChannel::BeginPostponingSends() {
  AssertWorkerThread();
  mMonitor->AssertNotCurrentThreadOwns();

  MonitorAutoLock lock(*mMonitor);
  {
    MOZ_ASSERT(!mIsPostponingSends);
    mIsPostponingSends = true;
  }
}

void MessageChannel::StopPostponingSends() {
  // Note: this can be called from any thread.
  MonitorAutoLock lock(*mMonitor);

  MOZ_ASSERT(mIsPostponingSends);

  for (UniquePtr<Message>& iter : mPostponedSends) {
    mLink->SendMessage(iter.release());
  }

  // We unset this after SendMessage so we can make correct thread
  // assertions in MessageLink.
  mIsPostponingSends = false;
  mPostponedSends.clear();
}

UniquePtr<MessageChannel::UntypedCallbackHolder> MessageChannel::PopCallback(
    const Message& aMsg) {
  auto iter = mPendingResponses.find(aMsg.seqno());
  if (iter != mPendingResponses.end()) {
    UniquePtr<MessageChannel::UntypedCallbackHolder> ret =
        std::move(iter->second);
    mPendingResponses.erase(iter);
    gUnresolvedResponses--;
    return ret;
  }
  return nullptr;
}

void MessageChannel::RejectPendingResponsesForActor(ActorIdType aActorId) {
  auto itr = mPendingResponses.begin();
  while (itr != mPendingResponses.end()) {
    if (itr->second.get()->mActorId != aActorId) {
      ++itr;
      continue;
    }
    itr->second.get()->Reject(ResponseRejectReason::ActorDestroyed);
    // Take special care of advancing the iterator since we are
    // removing it while iterating.
    itr = mPendingResponses.erase(itr);
    gUnresolvedResponses--;
  }
}

class BuildIDsMatchMessage : public IPC::Message {
 public:
  BuildIDsMatchMessage()
      : IPC::Message(MSG_ROUTING_NONE, BUILD_IDS_MATCH_MESSAGE_TYPE) {}
  void Log(const std::string& aPrefix, FILE* aOutf) const {
    fputs("(special `Build IDs match' message)", aOutf);
  }
};

// Send the parent a special async message to confirm when the parent and child
// are of the same buildID. Skips sending the message and returns false if the
// buildIDs don't match. This is a minor variation on
// MessageChannel::Send(Message* aMsg).
bool MessageChannel::SendBuildIDsMatchMessage(const char* aParentBuildID) {
  MOZ_ASSERT(!XRE_IsParentProcess());

  nsCString parentBuildID(aParentBuildID);
  nsCString childBuildID(mozilla::PlatformBuildID());

  if (parentBuildID != childBuildID) {
    // The build IDs didn't match, usually because an update occurred in the
    // background.
    return false;
  }

  nsAutoPtr<BuildIDsMatchMessage> msg(new BuildIDsMatchMessage());

  MOZ_RELEASE_ASSERT(!msg->is_sync());
  MOZ_RELEASE_ASSERT(msg->nested_level() != IPC::Message::NESTED_INSIDE_SYNC);

  AssertWorkerThread();
  mMonitor->AssertNotCurrentThreadOwns();
  // Don't check for MSG_ROUTING_NONE.

  MonitorAutoLock lock(*mMonitor);
  if (!Connected()) {
    ReportConnectionError("MessageChannel", msg);
    return false;
  }
  mLink->SendMessage(msg.forget());
  return true;
}

class CancelMessage : public IPC::Message {
 public:
  explicit CancelMessage(int transaction)
      : IPC::Message(MSG_ROUTING_NONE, CANCEL_MESSAGE_TYPE) {
    set_transaction_id(transaction);
  }
  static bool Read(const Message* msg) { return true; }
  void Log(const std::string& aPrefix, FILE* aOutf) const {
    fputs("(special `Cancel' message)", aOutf);
  }
};

bool MessageChannel::MaybeInterceptSpecialIOMessage(const Message& aMsg) {
  AssertLinkThread();
  mMonitor->AssertCurrentThreadOwns();

  if (MSG_ROUTING_NONE == aMsg.routing_id()) {
    if (GOODBYE_MESSAGE_TYPE == aMsg.type()) {
      // :TODO: Sort out Close() on this side racing with Close() on the
      // other side
      mChannelState = ChannelClosing;
      if (LoggingEnabled()) {
        printf("NOTE: %s process received `Goodbye', closing down\n",
               (mSide == ChildSide) ? "child" : "parent");
      }
      return true;
    } else if (CANCEL_MESSAGE_TYPE == aMsg.type()) {
      IPC_LOG("Cancel from message");
      CancelTransaction(aMsg.transaction_id());
      NotifyWorkerThread();
      return true;
    } else if (BUILD_IDS_MATCH_MESSAGE_TYPE == aMsg.type()) {
      IPC_LOG("Build IDs match message");
      mBuildIDsConfirmedMatch = true;
      return true;
    }
  }
  return false;
}

/* static */
bool MessageChannel::IsAlwaysDeferred(const Message& aMsg) {
  // If a message is not NESTED_INSIDE_CPOW and not sync, then we always defer
  // it.
  return aMsg.nested_level() != IPC::Message::NESTED_INSIDE_CPOW &&
         !aMsg.is_sync();
}

bool MessageChannel::ShouldDeferMessage(const Message& aMsg) {
  // Never defer messages that have the highest nested level, even async
  // ones. This is safe because only the child can send these messages, so
  // they can never nest.
  if (aMsg.nested_level() == IPC::Message::NESTED_INSIDE_CPOW) {
    MOZ_ASSERT(!IsAlwaysDeferred(aMsg));
    return false;
  }

  // Unless they're NESTED_INSIDE_CPOW, we always defer async messages.
  // Note that we never send an async NESTED_INSIDE_SYNC message.
  if (!aMsg.is_sync()) {
    MOZ_RELEASE_ASSERT(aMsg.nested_level() == IPC::Message::NOT_NESTED);
    MOZ_ASSERT(IsAlwaysDeferred(aMsg));
    return true;
  }

  MOZ_ASSERT(!IsAlwaysDeferred(aMsg));

  int msgNestedLevel = aMsg.nested_level();
  int waitingNestedLevel = AwaitingSyncReplyNestedLevel();

  // Always defer if the nested level of the incoming message is less than the
  // nested level of the message we're awaiting.
  if (msgNestedLevel < waitingNestedLevel) return true;

  // Never defer if the message has strictly greater nested level.
  if (msgNestedLevel > waitingNestedLevel) return false;

  // When both sides send sync messages of the same nested level, we resolve the
  // race by dispatching in the child and deferring the incoming message in
  // the parent. However, the parent still needs to dispatch nested sync
  // messages.
  //
  // Deferring in the parent only sort of breaks message ordering. When the
  // child's message comes in, we can pretend the child hasn't quite
  // finished sending it yet. Since the message is sync, we know that the
  // child hasn't moved on yet.
  return mSide == ParentSide &&
         aMsg.transaction_id() != CurrentNestedInsideSyncTransaction();
}

void MessageChannel::OnMessageReceivedFromLink(Message&& aMsg) {
  AssertLinkThread();
  mMonitor->AssertCurrentThreadOwns();

  if (MaybeInterceptSpecialIOMessage(aMsg)) return;

  mListener->OnChannelReceivedMessage(aMsg);

  // Regardless of the Interrupt stack, if we're awaiting a sync reply,
  // we know that it needs to be immediately handled to unblock us.
  if (aMsg.is_sync() && aMsg.is_reply()) {
    IPC_LOG("Received reply seqno=%d xid=%d", aMsg.seqno(),
            aMsg.transaction_id());

    if (aMsg.seqno() == mTimedOutMessageSeqno) {
      // Drop the message, but allow future sync messages to be sent.
      IPC_LOG("Received reply to timedout message; igoring; xid=%d",
              mTimedOutMessageSeqno);
      EndTimeout();
      return;
    }

    MOZ_RELEASE_ASSERT(AwaitingSyncReply());
    MOZ_RELEASE_ASSERT(!mTimedOutMessageSeqno);

    mTransactionStack->HandleReply(std::move(aMsg));
    NotifyWorkerThread();
    return;
  }

  // Nested messages cannot be compressed.
  MOZ_RELEASE_ASSERT(aMsg.compress_type() == IPC::Message::COMPRESSION_NONE ||
                     aMsg.nested_level() == IPC::Message::NOT_NESTED);

  bool reuseTask = false;
  if (aMsg.compress_type() == IPC::Message::COMPRESSION_ENABLED) {
    bool compress =
        (!mPending.isEmpty() &&
         mPending.getLast()->Msg().type() == aMsg.type() &&
         mPending.getLast()->Msg().routing_id() == aMsg.routing_id());
    if (compress) {
      // This message type has compression enabled, and the back of the
      // queue was the same message type and routed to the same destination.
      // Replace it with the newer message.
      MOZ_RELEASE_ASSERT(mPending.getLast()->Msg().compress_type() ==
                         IPC::Message::COMPRESSION_ENABLED);
      mPending.getLast()->Msg() = std::move(aMsg);

      reuseTask = true;
    }
  } else if (aMsg.compress_type() == IPC::Message::COMPRESSION_ALL &&
             !mPending.isEmpty()) {
    for (MessageTask* p = mPending.getLast(); p; p = p->getPrevious()) {
      if (p->Msg().type() == aMsg.type() &&
          p->Msg().routing_id() == aMsg.routing_id()) {
        // This message type has compression enabled, and the queue
        // holds a message with the same message type and routed to the
        // same destination. Erase it. Note that, since we always
        // compress these redundancies, There Can Be Only One.
        MOZ_RELEASE_ASSERT(p->Msg().compress_type() ==
                           IPC::Message::COMPRESSION_ALL);
        MOZ_RELEASE_ASSERT(IsAlwaysDeferred(p->Msg()));
        p->remove();
        break;
      }
    }
  }

  bool alwaysDeferred = IsAlwaysDeferred(aMsg);

  bool wakeUpSyncSend = AwaitingSyncReply() && !ShouldDeferMessage(aMsg);

  bool shouldWakeUp =
      AwaitingInterruptReply() || wakeUpSyncSend || AwaitingIncomingMessage();

  // Although we usually don't need to post a message task if
  // shouldWakeUp is true, it's easier to post anyway than to have to
  // guarantee that every Send call processes everything it's supposed to
  // before returning.
  bool shouldPostTask = !shouldWakeUp || wakeUpSyncSend;

  IPC_LOG("Receive on link thread; seqno=%d, xid=%d, shouldWakeUp=%d",
          aMsg.seqno(), aMsg.transaction_id(), shouldWakeUp);

  if (reuseTask) {
    return;
  }

  // There are three cases we're concerned about, relating to the state of the
  // main thread:
  //
  // (1) We are waiting on a sync reply - main thread is blocked on the
  //     IPC monitor.
  //   - If the message is NESTED_INSIDE_SYNC, we wake up the main thread to
  //     deliver the message depending on ShouldDeferMessage. Otherwise, we
  //     leave it in the mPending queue, posting a task to the main event
  //     loop, where it will be processed once the synchronous reply has been
  //     received.
  //
  // (2) We are waiting on an Interrupt reply - main thread is blocked on the
  //     IPC monitor.
  //   - Always notify and wake up the main thread.
  //
  // (3) We are not waiting on a reply.
  //   - We post a task to the main event loop.
  //
  // Note that, we may notify the main thread even though the monitor is not
  // blocked. This is okay, since we always check for pending events before
  // blocking again.

#ifdef MOZ_TASK_TRACER
  aMsg.TaskTracerDispatch();
#endif
  RefPtr<MessageTask> task = new MessageTask(this, std::move(aMsg));
  mPending.insertBack(task);

  if (!alwaysDeferred) {
    mMaybeDeferredPendingCount++;
  }

  if (shouldWakeUp) {
    NotifyWorkerThread();
  }

  if (shouldPostTask) {
    task->Post();
  }
}

void MessageChannel::PeekMessages(
    const std::function<bool(const Message& aMsg)>& aInvoke) {
  // FIXME: We shouldn't be holding the lock for aInvoke!
  MonitorAutoLock lock(*mMonitor);

  for (MessageTask* it : mPending) {
    const Message& msg = it->Msg();
    if (!aInvoke(msg)) {
      break;
    }
  }
}

void MessageChannel::ProcessPendingRequests(
    AutoEnterTransaction& aTransaction) {
  mMonitor->AssertCurrentThreadOwns();

  AssertMaybeDeferredCountCorrect();
  if (mMaybeDeferredPendingCount == 0) {
    return;
  }

  IPC_LOG("ProcessPendingRequests for seqno=%d, xid=%d",
          aTransaction.SequenceNumber(), aTransaction.TransactionID());

  // Loop until there aren't any more nested messages to process.
  for (;;) {
    // If we canceled during ProcessPendingRequest, then we need to leave
    // immediately because the results of ShouldDeferMessage will be
    // operating with weird state (as if no Send is in progress). That could
    // cause even NOT_NESTED sync messages to be processed (but not
    // NOT_NESTED async messages), which would break message ordering.
    if (aTransaction.IsCanceled()) {
      return;
    }

    mozilla::Vector<Message> toProcess;

    for (MessageTask* p = mPending.getFirst(); p;) {
      Message& msg = p->Msg();

      MOZ_RELEASE_ASSERT(!aTransaction.IsCanceled(),
                         "Calling ShouldDeferMessage when cancelled");
      bool defer = ShouldDeferMessage(msg);

      // Only log the interesting messages.
      if (msg.is_sync() ||
          msg.nested_level() == IPC::Message::NESTED_INSIDE_CPOW) {
        IPC_LOG("ShouldDeferMessage(seqno=%d) = %d", msg.seqno(), defer);
      }

      if (!defer) {
        MOZ_ASSERT(!IsAlwaysDeferred(msg));

        if (!toProcess.append(std::move(msg))) MOZ_CRASH();

        mMaybeDeferredPendingCount--;

        p = p->removeAndGetNext();
        continue;
      }
      p = p->getNext();
    }

    if (toProcess.empty()) {
      break;
    }

    // Processing these messages could result in more messages, so we
    // loop around to check for more afterwards.

    for (auto it = toProcess.begin(); it != toProcess.end(); it++) {
      ProcessPendingRequest(std::move(*it));
    }
  }

  AssertMaybeDeferredCountCorrect();
}

bool MessageChannel::Send(Message* aMsg, Message* aReply) {
  mozilla::TimeStamp start = TimeStamp::Now();
  if (aMsg->size() >= kMinTelemetryMessageSize) {
    Telemetry::Accumulate(Telemetry::IPC_MESSAGE_SIZE2, aMsg->size());
  }

  UniquePtr<Message> msg(aMsg);

  // Sanity checks.
  AssertWorkerThread();
  mMonitor->AssertNotCurrentThreadOwns();
  MOZ_RELEASE_ASSERT(!mIsSameThreadChannel,
                     "sync send over same-thread channel will deadlock!");

#ifdef OS_WIN
  SyncStackFrame frame(this, false);
  NeuteredWindowRegion neuteredRgn(mFlags &
                                   REQUIRE_DEFERRED_MESSAGE_PROTECTION);
#endif
#ifdef MOZ_TASK_TRACER
  AutoScopedLabel autolabel("sync message %s", aMsg->name());
#endif

  CxxStackFrame f(*this, OUT_MESSAGE, msg.get());

  MonitorAutoLock lock(*mMonitor);

  if (mTimedOutMessageSeqno) {
    // Don't bother sending another sync message if a previous one timed out
    // and we haven't received a reply for it. Once the original timed-out
    // message receives a reply, we'll be able to send more sync messages
    // again.
    IPC_LOG("Send() failed due to previous timeout");
    mLastSendError = SyncSendError::PreviousTimeout;
    return false;
  }

  if (DispatchingSyncMessageNestedLevel() == IPC::Message::NOT_NESTED &&
      msg->nested_level() > IPC::Message::NOT_NESTED) {
    // Don't allow sending CPOWs while we're dispatching a sync message.
    // If you want to do that, use sendRpcMessage instead.
    IPC_LOG("Nested level forbids send");
    mLastSendError = SyncSendError::SendingCPOWWhileDispatchingSync;
    return false;
  }

  if (DispatchingSyncMessageNestedLevel() == IPC::Message::NESTED_INSIDE_CPOW ||
      DispatchingAsyncMessageNestedLevel() ==
          IPC::Message::NESTED_INSIDE_CPOW) {
    // Generally only the parent dispatches urgent messages. And the only
    // sync messages it can send are NESTED_INSIDE_SYNC. Mainly we want to
    // ensure here that we don't return false for non-CPOW messages.
    MOZ_RELEASE_ASSERT(msg->nested_level() == IPC::Message::NESTED_INSIDE_SYNC);
    IPC_LOG("Sending while dispatching urgent message");
    mLastSendError = SyncSendError::SendingCPOWWhileDispatchingUrgent;
    return false;
  }

  if (msg->nested_level() < DispatchingSyncMessageNestedLevel() ||
      msg->nested_level() < AwaitingSyncReplyNestedLevel()) {
    MOZ_RELEASE_ASSERT(DispatchingSyncMessage() || DispatchingAsyncMessage());
    MOZ_RELEASE_ASSERT(!mIsPostponingSends);
    IPC_LOG("Cancel from Send");
    CancelMessage* cancel =
        new CancelMessage(CurrentNestedInsideSyncTransaction());
    CancelTransaction(CurrentNestedInsideSyncTransaction());
    mLink->SendMessage(cancel);
  }

  IPC_ASSERT(msg->is_sync(), "can only Send() sync messages here");

  IPC_ASSERT(msg->nested_level() >= DispatchingSyncMessageNestedLevel(),
             "can't send sync message of a lesser nested level than what's "
             "being dispatched");
  IPC_ASSERT(AwaitingSyncReplyNestedLevel() <= msg->nested_level(),
             "nested sync message sends must be of increasing nested level");
  IPC_ASSERT(
      DispatchingSyncMessageNestedLevel() != IPC::Message::NESTED_INSIDE_CPOW,
      "not allowed to send messages while dispatching urgent messages");

  IPC_ASSERT(
      DispatchingAsyncMessageNestedLevel() != IPC::Message::NESTED_INSIDE_CPOW,
      "not allowed to send messages while dispatching urgent messages");

  if (!Connected()) {
    ReportConnectionError("MessageChannel::SendAndWait", msg.get());
    mLastSendError = SyncSendError::NotConnectedBeforeSend;
    return false;
  }

  msg->set_seqno(NextSeqno());

  int32_t seqno = msg->seqno();
  int nestedLevel = msg->nested_level();
  msgid_t replyType = msg->type() + 1;

  AutoEnterTransaction* stackTop = mTransactionStack;

  // If the most recent message on the stack is NESTED_INSIDE_SYNC, then our
  // message should nest inside that and we use the same transaction
  // ID. Otherwise we need a new transaction ID (so we use the seqno of the
  // message we're sending).
  bool nest =
      stackTop && stackTop->NestedLevel() == IPC::Message::NESTED_INSIDE_SYNC;
  int32_t transaction = nest ? stackTop->TransactionID() : seqno;
  msg->set_transaction_id(transaction);

  bool handleWindowsMessages = mListener->HandleWindowsMessages(*aMsg);
  AutoEnterTransaction transact(this, seqno, transaction, nestedLevel);

  IPC_LOG("Send seqno=%d, xid=%d", seqno, transaction);

  // msg will be destroyed soon, but name() is not owned by msg.
  const char* msgName = msg->name();

  AddProfilerMarker(msg.get(), MessageDirection::eSending);
  SendMessageToLink(msg.release());

  while (true) {
    MOZ_RELEASE_ASSERT(!transact.IsCanceled());
    ProcessPendingRequests(transact);
    if (transact.IsComplete()) {
      break;
    }
    if (!Connected()) {
      ReportConnectionError("MessageChannel::Send");
      mLastSendError = SyncSendError::DisconnectedDuringSend;
      return false;
    }

    MOZ_RELEASE_ASSERT(!mTimedOutMessageSeqno);
    MOZ_RELEASE_ASSERT(!transact.IsComplete());
    MOZ_RELEASE_ASSERT(mTransactionStack == &transact);

    bool maybeTimedOut = !WaitForSyncNotify(handleWindowsMessages);

    if (mListener->NeedArtificialSleep()) {
      MonitorAutoUnlock unlock(*mMonitor);
      mListener->ArtificialSleep();
    }

    if (!Connected()) {
      ReportConnectionError("MessageChannel::SendAndWait");
      mLastSendError = SyncSendError::DisconnectedDuringSend;
      return false;
    }

    if (transact.IsCanceled()) {
      break;
    }

    MOZ_RELEASE_ASSERT(mTransactionStack == &transact);

    // We only time out a message if it initiated a new transaction (i.e.,
    // if neither side has any other message Sends on the stack).
    bool canTimeOut = transact.IsBottom();
    if (maybeTimedOut && canTimeOut && !ShouldContinueFromTimeout()) {
      // Since ShouldContinueFromTimeout drops the lock, we need to
      // re-check all our conditions here. We shouldn't time out if any of
      // these things happen because there won't be a reply to the timed
      // out message in these cases.
      if (transact.IsComplete()) {
        break;
      }

      IPC_LOG("Timing out Send: xid=%d", transaction);

      mTimedOutMessageSeqno = seqno;
      mTimedOutMessageNestedLevel = nestedLevel;
      mLastSendError = SyncSendError::TimedOut;
      return false;
    }

    if (transact.IsCanceled()) {
      break;
    }
  }

  if (transact.IsCanceled()) {
    IPC_LOG("Other side canceled seqno=%d, xid=%d", seqno, transaction);
    mLastSendError = SyncSendError::CancelledAfterSend;
    return false;
  }

  if (transact.IsError()) {
    IPC_LOG("Error: seqno=%d, xid=%d", seqno, transaction);
    mLastSendError = SyncSendError::ReplyError;
    return false;
  }

  uint32_t latencyMs = round((TimeStamp::Now() - start).ToMilliseconds());
  IPC_LOG("Got reply: seqno=%d, xid=%d, msgName=%s, latency=%ums", seqno,
          transaction, msgName, latencyMs);

  UniquePtr<Message> reply = transact.GetReply();

  MOZ_RELEASE_ASSERT(reply);
  MOZ_RELEASE_ASSERT(reply->is_reply(), "expected reply");
  MOZ_RELEASE_ASSERT(!reply->is_reply_error());
  MOZ_RELEASE_ASSERT(reply->seqno() == seqno);
  MOZ_RELEASE_ASSERT(reply->type() == replyType, "wrong reply type");
  MOZ_RELEASE_ASSERT(reply->is_sync());

  AddProfilerMarker(reply.get(), MessageDirection::eReceiving);

  *aReply = std::move(*reply);
  if (aReply->size() >= kMinTelemetryMessageSize) {
    Telemetry::Accumulate(Telemetry::IPC_REPLY_SIZE,
                          nsDependentCString(msgName), aReply->size());
  }

  // NOTE: Only collect IPC_SYNC_MAIN_LATENCY_MS on the main thread (bug
  // 1343729)
  if (NS_IsMainThread() && latencyMs >= kMinTelemetrySyncIPCLatencyMs) {
    Telemetry::Accumulate(Telemetry::IPC_SYNC_MAIN_LATENCY_MS,
                          nsDependentCString(msgName), latencyMs);
  }
  return true;
}

bool MessageChannel::Call(Message* aMsg, Message* aReply) {
  UniquePtr<Message> msg(aMsg);
  AssertWorkerThread();
  mMonitor->AssertNotCurrentThreadOwns();
  MOZ_RELEASE_ASSERT(!mIsSameThreadChannel,
                     "intr call send over same-thread channel will deadlock!");

#ifdef OS_WIN
  SyncStackFrame frame(this, true);
#endif
#ifdef MOZ_TASK_TRACER
  AutoScopedLabel autolabel("sync message %s", aMsg->name());
#endif

  // This must come before MonitorAutoLock, as its destructor acquires the
  // monitor lock.
  CxxStackFrame cxxframe(*this, OUT_MESSAGE, msg.get());

  MonitorAutoLock lock(*mMonitor);
  if (!Connected()) {
    ReportConnectionError("MessageChannel::Call", msg.get());
    return false;
  }

  // Sanity checks.
  IPC_ASSERT(!AwaitingSyncReply(),
             "cannot issue Interrupt call while blocked on sync request");
  IPC_ASSERT(!DispatchingSyncMessage(), "violation of sync handler invariant");
  IPC_ASSERT(msg->is_interrupt(), "can only Call() Interrupt messages here");
  IPC_ASSERT(!mIsPostponingSends, "not postponing sends");

  msg->set_seqno(NextSeqno());
  msg->set_interrupt_remote_stack_depth_guess(mRemoteStackDepthGuess);
  msg->set_interrupt_local_stack_depth(1 + InterruptStackDepth());
  mInterruptStack.push(MessageInfo(*msg));

  AddProfilerMarker(msg.get(), MessageDirection::eSending);

  mLink->SendMessage(msg.release());

  while (true) {
    // if a handler invoked by *Dispatch*() spun a nested event
    // loop, and the connection was broken during that loop, we
    // might have already processed the OnError event. if so,
    // trying another loop iteration will be futile because
    // channel state will have been cleared
    if (!Connected()) {
      ReportConnectionError("MessageChannel::Call");
      return false;
    }

#ifdef OS_WIN
    // We need to limit the scoped of neuteredRgn to this spot in the code.
    // Window neutering can't be enabled during some plugin calls because
    // we then risk the neutered window procedure being subclassed by a
    // plugin.
    {
      NeuteredWindowRegion neuteredRgn(mFlags &
                                       REQUIRE_DEFERRED_MESSAGE_PROTECTION);
      /* We should pump messages at this point to ensure that the IPC
         peer does not become deadlocked on a pending inter-thread
         SendMessage() */
      neuteredRgn.PumpOnce();
    }
#endif

    // Now might be the time to process a message deferred because of race
    // resolution.
    MaybeUndeferIncall();

    // Wait for an event to occur.
    while (!InterruptEventOccurred()) {
      bool maybeTimedOut = !WaitForInterruptNotify();

      // We might have received a "subtly deferred" message in a nested
      // loop that it's now time to process.
      if (InterruptEventOccurred() ||
          (!maybeTimedOut &&
           (!mDeferred.empty() || !mOutOfTurnReplies.empty()))) {
        break;
      }

      if (maybeTimedOut && !ShouldContinueFromTimeout()) return false;
    }

    Message recvd;
    MessageMap::iterator it;

    if ((it = mOutOfTurnReplies.find(mInterruptStack.top().seqno())) !=
        mOutOfTurnReplies.end()) {
      recvd = std::move(it->second);
      mOutOfTurnReplies.erase(it);
    } else if (!mPending.isEmpty()) {
      RefPtr<MessageTask> task = mPending.popFirst();
      recvd = std::move(task->Msg());
      if (!IsAlwaysDeferred(recvd)) {
        mMaybeDeferredPendingCount--;
      }
    } else {
      // because of subtleties with nested event loops, it's possible
      // that we got here and nothing happened.  or, we might have a
      // deferred in-call that needs to be processed.  either way, we
      // won't break the inner while loop again until something new
      // happens.
      continue;
    }

    // If the message is not Interrupt, we can dispatch it as normal.
    if (!recvd.is_interrupt()) {
      DispatchMessage(std::move(recvd));
      if (!Connected()) {
        ReportConnectionError("MessageChannel::DispatchMessage");
        return false;
      }
      continue;
    }

    // If the message is an Interrupt reply, either process it as a reply to our
    // call, or add it to the list of out-of-turn replies we've received.
    if (recvd.is_reply()) {
      IPC_ASSERT(!mInterruptStack.empty(), "invalid Interrupt stack");

      // If this is not a reply the call we've initiated, add it to our
      // out-of-turn replies and keep polling for events.
      {
        const MessageInfo& outcall = mInterruptStack.top();

        // Note, In the parent, sequence numbers increase from 0, and
        // in the child, they decrease from 0.
        if ((mSide == ChildSide && recvd.seqno() > outcall.seqno()) ||
            (mSide != ChildSide && recvd.seqno() < outcall.seqno())) {
          mOutOfTurnReplies[recvd.seqno()] = std::move(recvd);
          continue;
        }

        IPC_ASSERT(
            recvd.is_reply_error() || (recvd.type() == (outcall.type() + 1) &&
                                       recvd.seqno() == outcall.seqno()),
            "somebody's misbehavin'", true);
      }

      // We received a reply to our most recent outstanding call. Pop
      // this frame and return the reply.
      mInterruptStack.pop();

      AddProfilerMarker(&recvd, MessageDirection::eReceiving);

      bool is_reply_error = recvd.is_reply_error();
      if (!is_reply_error) {
        *aReply = std::move(recvd);
      }

      // If we have no more pending out calls waiting on replies, then
      // the reply queue should be empty.
      IPC_ASSERT(!mInterruptStack.empty() || mOutOfTurnReplies.empty(),
                 "still have pending replies with no pending out-calls", true);

      return !is_reply_error;
    }

    // Dispatch an Interrupt in-call. Snapshot the current stack depth while we
    // own the monitor.
    size_t stackDepth = InterruptStackDepth();
    {
#ifdef MOZ_TASK_TRACER
      Message::AutoTaskTracerRun tasktracerRun(recvd);
#endif
      MonitorAutoUnlock unlock(*mMonitor);

      CxxStackFrame frame(*this, IN_MESSAGE, &recvd);
      RefPtr<ActorLifecycleProxy> listenerProxy =
          mListener->GetLifecycleProxy();
      DispatchInterruptMessage(listenerProxy, std::move(recvd), stackDepth);
    }
    if (!Connected()) {
      ReportConnectionError("MessageChannel::DispatchInterruptMessage");
      return false;
    }
  }

  return true;
}

bool MessageChannel::WaitForIncomingMessage() {
#ifdef OS_WIN
  SyncStackFrame frame(this, true);
  NeuteredWindowRegion neuteredRgn(mFlags &
                                   REQUIRE_DEFERRED_MESSAGE_PROTECTION);
#endif

  MonitorAutoLock lock(*mMonitor);
  AutoEnterWaitForIncoming waitingForIncoming(*this);
  if (mChannelState != ChannelConnected) {
    return false;
  }
  if (!HasPendingEvents()) {
    return WaitForInterruptNotify();
  }

  MOZ_RELEASE_ASSERT(!mPending.isEmpty());
  RefPtr<MessageTask> task = mPending.getFirst();
  RunMessage(*task);
  return true;
}

bool MessageChannel::HasPendingEvents() {
  AssertWorkerThread();
  mMonitor->AssertCurrentThreadOwns();
  return Connected() && !mPending.isEmpty();
}

bool MessageChannel::InterruptEventOccurred() {
  AssertWorkerThread();
  mMonitor->AssertCurrentThreadOwns();
  IPC_ASSERT(InterruptStackDepth() > 0, "not in wait loop");

  return (!Connected() || !mPending.isEmpty() ||
          (!mOutOfTurnReplies.empty() &&
           mOutOfTurnReplies.find(mInterruptStack.top().seqno()) !=
               mOutOfTurnReplies.end()));
}

bool MessageChannel::ProcessPendingRequest(Message&& aUrgent) {
  AssertWorkerThread();
  mMonitor->AssertCurrentThreadOwns();

  IPC_LOG("Process pending: seqno=%d, xid=%d", aUrgent.seqno(),
          aUrgent.transaction_id());

  DispatchMessage(std::move(aUrgent));
  if (!Connected()) {
    ReportConnectionError("MessageChannel::ProcessPendingRequest");
    return false;
  }

  return true;
}

bool MessageChannel::ShouldRunMessage(const Message& aMsg) {
  if (!mTimedOutMessageSeqno) {
    return true;
  }

  // If we've timed out a message and we're awaiting the reply to the timed
  // out message, we have to be careful what messages we process. Here's what
  // can go wrong:
  // 1. child sends a NOT_NESTED sync message S
  // 2. parent sends a NESTED_INSIDE_SYNC sync message H at the same time
  // 3. parent times out H
  // 4. child starts processing H and sends a NESTED_INSIDE_SYNC message H'
  //    nested within the same transaction
  // 5. parent dispatches S and sends reply
  // 6. child asserts because it instead expected a reply to H'.
  //
  // To solve this, we refuse to process S in the parent until we get a reply
  // to H. More generally, let the timed out message be M. We don't process a
  // message unless the child would need the response to that message in order
  // to process M. Those messages are the ones that have a higher nested level
  // than M or that are part of the same transaction as M.
  if (aMsg.nested_level() < mTimedOutMessageNestedLevel ||
      (aMsg.nested_level() == mTimedOutMessageNestedLevel &&
       aMsg.transaction_id() != mTimedOutMessageSeqno)) {
    return false;
  }

  return true;
}

void MessageChannel::RunMessage(MessageTask& aTask) {
  AssertWorkerThread();
  mMonitor->AssertCurrentThreadOwns();

  Message& msg = aTask.Msg();

  if (!Connected()) {
    ReportConnectionError("RunMessage");
    return;
  }

  // Check that we're going to run the first message that's valid to run.
#if 0
#  ifdef DEBUG
    nsCOMPtr<nsIEventTarget> messageTarget =
        mListener->GetMessageEventTarget(msg);

    for (MessageTask* task : mPending) {
        if (task == &aTask) {
            break;
        }

        nsCOMPtr<nsIEventTarget> taskTarget =
            mListener->GetMessageEventTarget(task->Msg());

        MOZ_ASSERT(!ShouldRunMessage(task->Msg()) ||
                   taskTarget != messageTarget ||
                   aTask.Msg().priority() != task->Msg().priority());

    }
#  endif
#endif

  if (!mDeferred.empty()) {
    MaybeUndeferIncall();
  }

  if (!ShouldRunMessage(msg)) {
    return;
  }

  MOZ_RELEASE_ASSERT(aTask.isInList());
  aTask.remove();

  if (!IsAlwaysDeferred(msg)) {
    mMaybeDeferredPendingCount--;
  }

  if (IsOnCxxStack() && msg.is_interrupt() && msg.is_reply()) {
    // We probably just received a reply in a nested loop for an
    // Interrupt call sent before entering that loop.
    mOutOfTurnReplies[msg.seqno()] = std::move(msg);
    return;
  }

  DispatchMessage(std::move(msg));
}

NS_IMPL_ISUPPORTS_INHERITED(MessageChannel::MessageTask, CancelableRunnable,
                            nsIRunnablePriority, nsIRunnableIPCMessageType)

MessageChannel::MessageTask::MessageTask(MessageChannel* aChannel,
                                         Message&& aMessage)
    : CancelableRunnable(aMessage.name()),
      mChannel(aChannel),
      mMessage(std::move(aMessage)),
      mScheduled(false) {}

nsresult MessageChannel::MessageTask::Run() {
  if (!mChannel) {
    return NS_OK;
  }

  mChannel->AssertWorkerThread();
  mChannel->mMonitor->AssertNotCurrentThreadOwns();

  MonitorAutoLock lock(*mChannel->mMonitor);

  // In case we choose not to run this message, we may need to be able to Post
  // it again.
  mScheduled = false;

  if (!isInList()) {
    return NS_OK;
  }

  mChannel->RunMessage(*this);
  return NS_OK;
}

// Warning: This method removes the receiver from whatever list it might be in.
nsresult MessageChannel::MessageTask::Cancel() {
  if (!mChannel) {
    return NS_OK;
  }

  mChannel->AssertWorkerThread();
  mChannel->mMonitor->AssertNotCurrentThreadOwns();

  MonitorAutoLock lock(*mChannel->mMonitor);

  if (!isInList()) {
    return NS_OK;
  }
  remove();

  if (!IsAlwaysDeferred(Msg())) {
    mChannel->mMaybeDeferredPendingCount--;
  }

  return NS_OK;
}

void MessageChannel::MessageTask::Post() {
  MOZ_RELEASE_ASSERT(!mScheduled);
  MOZ_RELEASE_ASSERT(isInList());

  mScheduled = true;

  RefPtr<MessageTask> self = this;
  nsCOMPtr<nsIEventTarget> eventTarget =
      mChannel->mListener->GetMessageEventTarget(mMessage);

  if (eventTarget) {
    eventTarget->Dispatch(self.forget(), NS_DISPATCH_NORMAL);
  } else if (mChannel->mWorkerLoop) {
    mChannel->mWorkerLoop->PostTask(self.forget());
  }
}

void MessageChannel::MessageTask::Clear() {
  mChannel->AssertWorkerThread();

  mChannel = nullptr;
}

NS_IMETHODIMP
MessageChannel::MessageTask::GetPriority(uint32_t* aPriority) {
  if (recordreplay::IsRecordingOrReplaying()) {
    // Ignore message priorities in recording/replaying processes. Incoming
    // messages were sorted in the middleman process according to their
    // priority before being forwarded here, and reordering them again in this
    // process can cause problems such as dispatching messages for an actor
    // before the constructor for that actor.
    *aPriority = PRIORITY_NORMAL;
    return NS_OK;
  }
  switch (mMessage.priority()) {
    case Message::NORMAL_PRIORITY:
      *aPriority = PRIORITY_NORMAL;
      break;
    case Message::INPUT_PRIORITY:
      *aPriority = PRIORITY_INPUT;
      break;
    case Message::HIGH_PRIORITY:
      *aPriority = PRIORITY_HIGH;
      break;
    default:
      MOZ_ASSERT(false);
      break;
  }
  return NS_OK;
}

NS_IMETHODIMP
MessageChannel::MessageTask::GetType(uint32_t* aType) {
  if (!Msg().is_valid()) {
    // If mMessage has been moved already elsewhere, we can't know what the type
    // has been.
    return NS_ERROR_FAILURE;
  }

  *aType = Msg().type();
  return NS_OK;
}

void MessageChannel::DispatchMessage(Message&& aMsg) {
  AssertWorkerThread();
  mMonitor->AssertCurrentThreadOwns();

  RefPtr<ActorLifecycleProxy> listenerProxy = mListener->GetLifecycleProxy();

  Maybe<AutoNoJSAPI> nojsapi;
  if (NS_IsMainThread() && CycleCollectedJSContext::Get()) {
    nojsapi.emplace();
  }

  nsAutoPtr<Message> reply;

  IPC_LOG("DispatchMessage: seqno=%d, xid=%d", aMsg.seqno(),
          aMsg.transaction_id());
  AddProfilerMarker(&aMsg, MessageDirection::eReceiving);

  {
    AutoEnterTransaction transaction(this, aMsg);

    int id = aMsg.transaction_id();
    MOZ_RELEASE_ASSERT(!aMsg.is_sync() || id == transaction.TransactionID());

    {
#ifdef MOZ_TASK_TRACER
      Message::AutoTaskTracerRun tasktracerRun(aMsg);
#endif
      MonitorAutoUnlock unlock(*mMonitor);
      CxxStackFrame frame(*this, IN_MESSAGE, &aMsg);

      mListener->ArtificialSleep();

      if (aMsg.is_sync()) {
        DispatchSyncMessage(listenerProxy, aMsg, *getter_Transfers(reply));
      } else if (aMsg.is_interrupt()) {
        DispatchInterruptMessage(listenerProxy, std::move(aMsg), 0);
      } else {
        DispatchAsyncMessage(listenerProxy, aMsg);
      }

      mListener->ArtificialSleep();
    }

    if (reply && transaction.IsCanceled()) {
      // The transaction has been canceled. Don't send a reply.
      IPC_LOG("Nulling out reply due to cancellation, seqno=%d, xid=%d",
              aMsg.seqno(), id);
      reply = nullptr;
    }
  }

  if (reply && ChannelConnected == mChannelState) {
    IPC_LOG("Sending reply seqno=%d, xid=%d", aMsg.seqno(),
            aMsg.transaction_id());
    AddProfilerMarker(reply.get(), MessageDirection::eSending);

    mLink->SendMessage(reply.forget());
  }
}

void MessageChannel::DispatchSyncMessage(ActorLifecycleProxy* aProxy,
                                         const Message& aMsg,
                                         Message*& aReply) {
  AssertWorkerThread();

  mozilla::TimeStamp start = TimeStamp::Now();

  int nestedLevel = aMsg.nested_level();

  MOZ_RELEASE_ASSERT(
      nestedLevel == IPC::Message::NOT_NESTED || NS_IsMainThread() ||
      // Middleman processes forward sync messages on a non-main thread.
      recordreplay::IsMiddleman());
#ifdef MOZ_TASK_TRACER
  AutoScopedLabel autolabel("sync message %s", aMsg.name());
#endif

  MessageChannel* dummy;
  MessageChannel*& blockingVar =
      mSide == ChildSide && NS_IsMainThread() ? gParentProcessBlocker : dummy;

  Result rv;
  {
    AutoSetValue<MessageChannel*> blocked(blockingVar, this);
    rv = aProxy->Get()->OnMessageReceived(aMsg, aReply);
  }

  uint32_t latencyMs = round((TimeStamp::Now() - start).ToMilliseconds());
  if (latencyMs >= kMinTelemetrySyncIPCLatencyMs) {
    Telemetry::Accumulate(Telemetry::IPC_SYNC_RECEIVE_MS,
                          nsDependentCString(aMsg.name()), latencyMs);
  }

  if (!MaybeHandleError(rv, aMsg, "DispatchSyncMessage")) {
    aReply = Message::ForSyncDispatchError(aMsg.nested_level());
  }
  aReply->set_seqno(aMsg.seqno());
  aReply->set_transaction_id(aMsg.transaction_id());
}

void MessageChannel::DispatchAsyncMessage(ActorLifecycleProxy* aProxy,
                                          const Message& aMsg) {
  AssertWorkerThread();
  MOZ_RELEASE_ASSERT(!aMsg.is_interrupt() && !aMsg.is_sync());

  if (aMsg.routing_id() == MSG_ROUTING_NONE) {
    MOZ_CRASH("unhandled special message!");
  }

  Result rv;
  {
    int nestedLevel = aMsg.nested_level();
    AutoSetValue<bool> async(mDispatchingAsyncMessage, true);
    AutoSetValue<int> nestedLevelSet(mDispatchingAsyncMessageNestedLevel,
                                     nestedLevel);
    rv = aProxy->Get()->OnMessageReceived(aMsg);
  }
  MaybeHandleError(rv, aMsg, "DispatchAsyncMessage");
}

void MessageChannel::DispatchInterruptMessage(ActorLifecycleProxy* aProxy,
                                              Message&& aMsg,
                                              size_t stackDepth) {
  AssertWorkerThread();
  mMonitor->AssertNotCurrentThreadOwns();

  IPC_ASSERT(aMsg.is_interrupt() && !aMsg.is_reply(), "wrong message type");

  if (ShouldDeferInterruptMessage(aMsg, stackDepth)) {
    // We now know the other side's stack has one more frame
    // than we thought.
    ++mRemoteStackDepthGuess;  // decremented in MaybeProcessDeferred()
    mDeferred.push(std::move(aMsg));
    return;
  }

  // If we "lost" a race and need to process the other side's in-call, we
  // don't need to fix up the mRemoteStackDepthGuess here, because we're just
  // about to increment it, which will make it correct again.

#ifdef OS_WIN
  SyncStackFrame frame(this, true);
#endif

  nsAutoPtr<Message> reply;

  ++mRemoteStackDepthGuess;
  Result rv = aProxy->Get()->OnCallReceived(aMsg, *getter_Transfers(reply));
  --mRemoteStackDepthGuess;

  if (!MaybeHandleError(rv, aMsg, "DispatchInterruptMessage")) {
    reply = Message::ForInterruptDispatchError();
  }
  reply->set_seqno(aMsg.seqno());

  MonitorAutoLock lock(*mMonitor);
  if (ChannelConnected == mChannelState) {
    AddProfilerMarker(reply.get(), MessageDirection::eSending);
    mLink->SendMessage(reply.forget());
  }
}

bool MessageChannel::ShouldDeferInterruptMessage(const Message& aMsg,
                                                 size_t aStackDepth) {
  AssertWorkerThread();

  // We may or may not own the lock in this function, so don't access any
  // channel state.

  IPC_ASSERT(aMsg.is_interrupt() && !aMsg.is_reply(), "wrong message type");

  // Race detection: see the long comment near mRemoteStackDepthGuess in
  // MessageChannel.h. "Remote" stack depth means our side, and "local" means
  // the other side.
  if (aMsg.interrupt_remote_stack_depth_guess() ==
      RemoteViewOfStackDepth(aStackDepth)) {
    return false;
  }

  // Interrupt in-calls have raced. The winner, if there is one, gets to defer
  // processing of the other side's in-call.
  bool defer;
  const char* winner;
  const MessageInfo parentMsgInfo =
      (mSide == ChildSide) ? MessageInfo(aMsg) : mInterruptStack.top();
  const MessageInfo childMsgInfo =
      (mSide == ChildSide) ? mInterruptStack.top() : MessageInfo(aMsg);
  switch (mListener->MediateInterruptRace(parentMsgInfo, childMsgInfo)) {
    case RIPChildWins:
      winner = "child";
      defer = (mSide == ChildSide);
      break;
    case RIPParentWins:
      winner = "parent";
      defer = (mSide != ChildSide);
      break;
    case RIPError:
      MOZ_CRASH("NYI: 'Error' Interrupt race policy");
    default:
      MOZ_CRASH("not reached");
  }

  IPC_LOG("race in %s: %s won", (mSide == ChildSide) ? "child" : "parent",
          winner);

  return defer;
}

void MessageChannel::MaybeUndeferIncall() {
  AssertWorkerThread();
  mMonitor->AssertCurrentThreadOwns();

  if (mDeferred.empty()) return;

  size_t stackDepth = InterruptStackDepth();

  Message& deferred = mDeferred.top();

  // the other side can only *under*-estimate our actual stack depth
  IPC_ASSERT(deferred.interrupt_remote_stack_depth_guess() <= stackDepth,
             "fatal logic error");

  if (ShouldDeferInterruptMessage(deferred, stackDepth)) {
    return;
  }

  // maybe time to process this message
  Message call(std::move(deferred));
  mDeferred.pop();

  // fix up fudge factor we added to account for race
  IPC_ASSERT(0 < mRemoteStackDepthGuess, "fatal logic error");
  --mRemoteStackDepthGuess;

  MOZ_RELEASE_ASSERT(call.nested_level() == IPC::Message::NOT_NESTED);
  RefPtr<MessageTask> task = new MessageTask(this, std::move(call));
  mPending.insertBack(task);
  MOZ_ASSERT(IsAlwaysDeferred(task->Msg()));
  task->Post();
}

void MessageChannel::EnteredCxxStack() { mListener->EnteredCxxStack(); }

void MessageChannel::ExitedCxxStack() {
  mListener->ExitedCxxStack();
  if (mSawInterruptOutMsg) {
    MonitorAutoLock lock(*mMonitor);
    // see long comment in OnMaybeDequeueOne()
    EnqueuePendingMessages();
    mSawInterruptOutMsg = false;
  }
}

void MessageChannel::EnteredCall() { mListener->EnteredCall(); }

void MessageChannel::ExitedCall() { mListener->ExitedCall(); }

void MessageChannel::EnteredSyncSend() { mListener->OnEnteredSyncSend(); }

void MessageChannel::ExitedSyncSend() { mListener->OnExitedSyncSend(); }

void MessageChannel::EnqueuePendingMessages() {
  AssertWorkerThread();
  mMonitor->AssertCurrentThreadOwns();

  MaybeUndeferIncall();

  // XXX performance tuning knob: could process all or k pending
  // messages here, rather than enqueuing for later processing

  RepostAllMessages();
}

bool MessageChannel::WaitResponse(bool aWaitTimedOut) {
  if (aWaitTimedOut) {
    if (mInTimeoutSecondHalf) {
      // We've really timed out this time.
      return false;
    }
    // Try a second time.
    mInTimeoutSecondHalf = true;
  } else {
    mInTimeoutSecondHalf = false;
  }
  return true;
}

#ifndef OS_WIN
bool MessageChannel::WaitForSyncNotify(bool /* aHandleWindowsMessages */) {
#  ifdef DEBUG
  // WARNING: We don't release the lock here. We can't because the link thread
  // could signal at this time and we would miss it. Instead we require
  // ArtificialTimeout() to be extremely simple.
  if (mListener->ArtificialTimeout()) {
    return false;
  }
#  endif

  MOZ_RELEASE_ASSERT(!mIsSameThreadChannel,
                     "Wait on same-thread channel will deadlock!");

  TimeDuration timeout = (kNoTimeout == mTimeoutMs)
                             ? TimeDuration::Forever()
                             : TimeDuration::FromMilliseconds(mTimeoutMs);
  CVStatus status = mMonitor->Wait(timeout);

  // If the timeout didn't expire, we know we received an event. The
  // converse is not true.
  return WaitResponse(status == CVStatus::Timeout);
}

bool MessageChannel::WaitForInterruptNotify() {
  return WaitForSyncNotify(true);
}

void MessageChannel::NotifyWorkerThread() { mMonitor->Notify(); }
#endif

bool MessageChannel::ShouldContinueFromTimeout() {
  AssertWorkerThread();
  mMonitor->AssertCurrentThreadOwns();

  bool cont;
  {
    MonitorAutoUnlock unlock(*mMonitor);
    cont = mListener->ShouldContinueFromReplyTimeout();
    mListener->ArtificialSleep();
  }

  static enum {
    UNKNOWN,
    NOT_DEBUGGING,
    DEBUGGING
  } sDebuggingChildren = UNKNOWN;

  if (sDebuggingChildren == UNKNOWN) {
    sDebuggingChildren =
        getenv("MOZ_DEBUG_CHILD_PROCESS") || getenv("MOZ_DEBUG_CHILD_PAUSE")
            ? DEBUGGING
            : NOT_DEBUGGING;
  }
  if (sDebuggingChildren == DEBUGGING) {
    return true;
  }

  return cont;
}

void MessageChannel::SetReplyTimeoutMs(int32_t aTimeoutMs) {
  // Set channel timeout value. Since this is broken up into
  // two period, the minimum timeout value is 2ms.
  AssertWorkerThread();
  mTimeoutMs =
      (aTimeoutMs <= 0) ? kNoTimeout : (int32_t)ceil((double)aTimeoutMs / 2.0);
}

void MessageChannel::OnChannelConnected(int32_t peer_id) {
  MOZ_RELEASE_ASSERT(!mPeerPidSet);
  mPeerPidSet = true;
  mPeerPid = peer_id;
  RefPtr<CancelableRunnable> task = mOnChannelConnectedTask;
  if (mWorkerLoop) {
    mWorkerLoop->PostTask(task.forget());
  }
}

void MessageChannel::DispatchOnChannelConnected() {
  AssertWorkerThread();
  MOZ_RELEASE_ASSERT(mPeerPidSet);
  mListener->OnChannelConnected(mPeerPid);
}

void MessageChannel::ReportMessageRouteError(const char* channelName) const {
  PrintErrorMessage(mSide, channelName, "Need a route");
  mListener->ProcessingError(MsgRouteError, "MsgRouteError");
}

void MessageChannel::ReportConnectionError(const char* aChannelName,
                                           Message* aMsg) const {
  AssertWorkerThread();
  mMonitor->AssertCurrentThreadOwns();

  const char* errorMsg = nullptr;
  switch (mChannelState) {
    case ChannelClosed:
      errorMsg = "Closed channel: cannot send/recv";
      break;
    case ChannelOpening:
      errorMsg = "Opening channel: not yet ready for send/recv";
      break;
    case ChannelTimeout:
      errorMsg = "Channel timeout: cannot send/recv";
      break;
    case ChannelClosing:
      errorMsg =
          "Channel closing: too late to send/recv, messages will be lost";
      break;
    case ChannelError:
      errorMsg = "Channel error: cannot send/recv";
      break;

    default:
      MOZ_CRASH("unreached");
  }

  if (aMsg) {
    char reason[512];
    SprintfLiteral(reason, "(msgtype=0x%X,name=%s) %s", aMsg->type(),
                   aMsg->name(), errorMsg);

    PrintErrorMessage(mSide, aChannelName, reason);
  } else {
    PrintErrorMessage(mSide, aChannelName, errorMsg);
  }

  MonitorAutoUnlock unlock(*mMonitor);
  mListener->ProcessingError(MsgDropped, errorMsg);
}

bool MessageChannel::MaybeHandleError(Result code, const Message& aMsg,
                                      const char* channelName) {
  if (MsgProcessed == code) return true;

  const char* errorMsg = nullptr;
  switch (code) {
    case MsgNotKnown:
      errorMsg = "Unknown message: not processed";
      break;
    case MsgNotAllowed:
      errorMsg = "Message not allowed: cannot be sent/recvd in this state";
      break;
    case MsgPayloadError:
      errorMsg = "Payload error: message could not be deserialized";
      break;
    case MsgProcessingError:
      errorMsg =
          "Processing error: message was deserialized, but the handler "
          "returned false (indicating failure)";
      break;
    case MsgRouteError:
      errorMsg = "Route error: message sent to unknown actor ID";
      break;
    case MsgValueError:
      errorMsg =
          "Value error: message was deserialized, but contained an illegal "
          "value";
      break;

    default:
      MOZ_CRASH("unknown Result code");
      return false;
  }

  char reason[512];
  const char* msgname = aMsg.name();
  if (msgname[0] == '?') {
    SprintfLiteral(reason, "(msgtype=0x%X) %s", aMsg.type(), errorMsg);
  } else {
    SprintfLiteral(reason, "%s %s", msgname, errorMsg);
  }

  PrintErrorMessage(mSide, channelName, reason);

  // Error handled in mozilla::ipc::IPCResult.
  if (code == MsgProcessingError) {
    return false;
  }

  mListener->ProcessingError(code, reason);

  return false;
}

void MessageChannel::OnChannelErrorFromLink() {
  AssertLinkThread();
  mMonitor->AssertCurrentThreadOwns();

  IPC_LOG("OnChannelErrorFromLink");

  if (InterruptStackDepth() > 0) NotifyWorkerThread();

  if (AwaitingSyncReply() || AwaitingIncomingMessage()) NotifyWorkerThread();

  if (ChannelClosing != mChannelState) {
    if (mAbortOnError) {
      // mAbortOnError is set by main actors (e.g., ContentChild) to ensure
      // that the process terminates even if normal shutdown is prevented.
      // A MOZ_CRASH() here is not helpful because crash reporting relies
      // on the parent process which we know is dead or otherwise unusable.
      //
      // Additionally, the parent process can (and often is) killed on Android
      // when apps are backgrounded. We don't need to report a crash for
      // normal behavior in that case.
      printf_stderr("Exiting due to channel error.\n");
      ProcessChild::QuickExit();
    }
    mChannelState = ChannelError;
    mMonitor->Notify();
  }

  PostErrorNotifyTask();
}

void MessageChannel::NotifyMaybeChannelError() {
  mMonitor->AssertNotCurrentThreadOwns();

  // TODO sort out Close() on this side racing with Close() on the other side
  if (ChannelClosing == mChannelState) {
    // the channel closed, but we received a "Goodbye" message warning us
    // about it. no worries
    mChannelState = ChannelClosed;
    NotifyChannelClosed();
    return;
  }

  Clear();

  // Oops, error!  Let the listener know about it.
  mChannelState = ChannelError;

  // IPDL assumes these notifications do not fire twice, so we do not let
  // that happen.
  if (mNotifiedChannelDone) {
    return;
  }
  mNotifiedChannelDone = true;

  // After this, the channel may be deleted.  Based on the premise that
  // mListener owns this channel, any calls back to this class that may
  // work with mListener should still work on living objects.
  mListener->OnChannelError();
}

void MessageChannel::OnNotifyMaybeChannelError() {
  AssertWorkerThread();
  mMonitor->AssertNotCurrentThreadOwns();

  mChannelErrorTask = nullptr;

  // OnChannelError holds mMonitor when it posts this task and this
  // task cannot be allowed to run until OnChannelError has
  // exited. We enforce that order by grabbing the mutex here which
  // should only continue once OnChannelError has completed.
  {
    MonitorAutoLock lock(*mMonitor);
    // nothing to do here
  }

  if (IsOnCxxStack()) {
    mChannelErrorTask = NewNonOwningCancelableRunnableMethod(
        "ipc::MessageChannel::OnNotifyMaybeChannelError", this,
        &MessageChannel::OnNotifyMaybeChannelError);
    RefPtr<Runnable> task = mChannelErrorTask;
    // 10 ms delay is completely arbitrary
    if (mWorkerLoop) {
      mWorkerLoop->PostDelayedTask(task.forget(), 10);
    }
    return;
  }

  NotifyMaybeChannelError();
}

void MessageChannel::PostErrorNotifyTask() {
  mMonitor->AssertCurrentThreadOwns();

  if (mChannelErrorTask || !mWorkerLoop) return;

  // This must be the last code that runs on this thread!
  mChannelErrorTask = NewNonOwningCancelableRunnableMethod(
      "ipc::MessageChannel::OnNotifyMaybeChannelError", this,
      &MessageChannel::OnNotifyMaybeChannelError);
  RefPtr<Runnable> task = mChannelErrorTask;
  mWorkerLoop->PostTask(task.forget());
}

// Special async message.
class GoodbyeMessage : public IPC::Message {
 public:
  GoodbyeMessage() : IPC::Message(MSG_ROUTING_NONE, GOODBYE_MESSAGE_TYPE) {}
  static bool Read(const Message* msg) { return true; }
  void Log(const std::string& aPrefix, FILE* aOutf) const {
    fputs("(special `Goodbye' message)", aOutf);
  }
};

void MessageChannel::SynchronouslyClose() {
  AssertWorkerThread();
  mMonitor->AssertCurrentThreadOwns();
  mLink->SendClose();

  MOZ_RELEASE_ASSERT(!mIsSameThreadChannel || ChannelClosed == mChannelState,
                     "same-thread channel failed to synchronously close?");

  while (ChannelClosed != mChannelState) mMonitor->Wait();
}

void MessageChannel::CloseWithError() {
  AssertWorkerThread();

  MonitorAutoLock lock(*mMonitor);
  if (ChannelConnected != mChannelState) {
    return;
  }
  SynchronouslyClose();
  mChannelState = ChannelError;
  PostErrorNotifyTask();
}

void MessageChannel::CloseWithTimeout() {
  AssertWorkerThread();

  MonitorAutoLock lock(*mMonitor);
  if (ChannelConnected != mChannelState) {
    return;
  }
  SynchronouslyClose();
  mChannelState = ChannelTimeout;
}

void MessageChannel::Close() {
  AssertWorkerThread();

  {
    // We don't use MonitorAutoLock here as that causes some sort of
    // deadlock in the error/timeout-with-a-listener state below when
    // compiling an optimized msvc build.
    mMonitor->Lock();

    // Instead just use a ScopeExit to manage the unlock.
    RefPtr<RefCountedMonitor> monitor(mMonitor);
    auto exit = MakeScopeExit([m = std::move(monitor)]() { m->Unlock(); });

    if (ChannelError == mChannelState || ChannelTimeout == mChannelState) {
      // See bug 538586: if the listener gets deleted while the
      // IO thread's NotifyChannelError event is still enqueued
      // and subsequently deletes us, then the error event will
      // also be deleted and the listener will never be notified
      // of the channel error.
      if (mListener) {
        exit.release();  // Explicitly unlocking, clear scope exit.
        mMonitor->Unlock();
        NotifyMaybeChannelError();
      }
      return;
    }

    if (ChannelOpening == mChannelState) {
      // SynchronouslyClose() waits for an ack from the other side, so
      // the opening sequence should complete before this returns.
      SynchronouslyClose();
      mChannelState = ChannelError;
      NotifyMaybeChannelError();
      return;
    }

    if (ChannelClosed == mChannelState) {
      // Slightly unexpected but harmless; ignore.  See bug 1554244.
      return;
    }

    // Notify the other side that we're about to close our socket. If we've
    // already received a Goodbye from the other side (and our state is
    // ChannelClosing), there's no reason to send one.
    if (ChannelConnected == mChannelState) {
      mLink->SendMessage(new GoodbyeMessage());
    }
    SynchronouslyClose();
  }

  NotifyChannelClosed();
}

void MessageChannel::NotifyChannelClosed() {
  mMonitor->AssertNotCurrentThreadOwns();

  if (ChannelClosed != mChannelState)
    MOZ_CRASH("channel should have been closed!");

  Clear();

  // IPDL assumes these notifications do not fire twice, so we do not let
  // that happen.
  if (mNotifiedChannelDone) {
    return;
  }
  mNotifiedChannelDone = true;

  // OK, the IO thread just closed the channel normally.  Let the
  // listener know about it. After this point the channel may be
  // deleted.
  mListener->OnChannelClose();
}

void MessageChannel::DebugAbort(const char* file, int line, const char* cond,
                                const char* why, bool reply) {
  printf_stderr(
      "###!!! [MessageChannel][%s][%s:%d] "
      "Assertion (%s) failed.  %s %s\n",
      mSide == ChildSide ? "Child" : "Parent", file, line, cond, why,
      reply ? "(reply)" : "");
  // technically we need the mutex for this, but we're dying anyway
  DumpInterruptStack("  ");
  printf_stderr("  remote Interrupt stack guess: %zu\n",
                mRemoteStackDepthGuess);
  printf_stderr("  deferred stack size: %zu\n", mDeferred.size());
  printf_stderr("  out-of-turn Interrupt replies stack size: %zu\n",
                mOutOfTurnReplies.size());

  MessageQueue pending = std::move(mPending);
  while (!pending.isEmpty()) {
    printf_stderr(
        "    [ %s%s ]\n",
        pending.getFirst()->Msg().is_interrupt()
            ? "intr"
            : (pending.getFirst()->Msg().is_sync() ? "sync" : "async"),
        pending.getFirst()->Msg().is_reply() ? "reply" : "");
    pending.popFirst();
  }

  MOZ_CRASH_UNSAFE(why);
}

void MessageChannel::DumpInterruptStack(const char* const pfx) const {
  NS_WARNING_ASSERTION(MessageLoop::current() != mWorkerLoop,
                       "The worker thread had better be paused in a debugger!");

  printf_stderr("%sMessageChannel 'backtrace':\n", pfx);

  // print a python-style backtrace, first frame to last
  for (uint32_t i = 0; i < mCxxStackFrames.length(); ++i) {
    int32_t id;
    const char* dir;
    const char* sems;
    const char* name;
    mCxxStackFrames[i].Describe(&id, &dir, &sems, &name);

    printf_stderr("%s[(%u) %s %s %s(actor=%d) ]\n", pfx, i, dir, sems, name,
                  id);
  }
}

void MessageChannel::AddProfilerMarker(const IPC::Message* aMessage,
                                       MessageDirection aDirection) {
#ifdef MOZ_GECKO_PROFILER
  if (profiler_feature_active(ProfilerFeature::IPCMessages)) {
    int32_t pid = mPeerPid == -1 ? base::GetCurrentProcId() : mPeerPid;
    PROFILER_ADD_MARKER_WITH_PAYLOAD(
        "IPC", IPC, IPCMarkerPayload,
        (pid, aMessage->seqno(), aMessage->type(), mSide, aDirection,
         aMessage->is_sync(), TimeStamp::Now()));
  }
#endif
}

int32_t MessageChannel::GetTopmostMessageRoutingId() const {
  MOZ_RELEASE_ASSERT(MessageLoop::current() == mWorkerLoop);
  if (mCxxStackFrames.empty()) {
    return MSG_ROUTING_NONE;
  }
  const InterruptFrame& frame = mCxxStackFrames.back();
  return frame.GetRoutingId();
}

void MessageChannel::EndTimeout() {
  mMonitor->AssertCurrentThreadOwns();

  IPC_LOG("Ending timeout of seqno=%d", mTimedOutMessageSeqno);
  mTimedOutMessageSeqno = 0;
  mTimedOutMessageNestedLevel = 0;

  RepostAllMessages();
}

void MessageChannel::RepostAllMessages() {
  bool needRepost = false;
  for (MessageTask* task : mPending) {
    if (!task->IsScheduled()) {
      needRepost = true;
      break;
    }
  }
  if (!needRepost) {
    // If everything is already scheduled to run, do nothing.
    return;
  }

  // In some cases we may have deferred dispatch of some messages in the
  // queue. Now we want to run them again. However, we can't just re-post
  // those messages since the messages after them in mPending would then be
  // before them in the event queue. So instead we cancel everything and
  // re-post all messages in the correct order.
  MessageQueue queue = std::move(mPending);
  while (RefPtr<MessageTask> task = queue.popFirst()) {
    RefPtr<MessageTask> newTask = new MessageTask(this, std::move(task->Msg()));
    mPending.insertBack(newTask);
    newTask->Post();
  }

  AssertMaybeDeferredCountCorrect();
}

void MessageChannel::CancelTransaction(int transaction) {
  mMonitor->AssertCurrentThreadOwns();

  // When we cancel a transaction, we need to behave as if there's no longer
  // any IPC on the stack. Anything we were dispatching or sending will get
  // canceled. Consequently, we have to update the state variables below.
  //
  // We also need to ensure that when any IPC functions on the stack return,
  // they don't reset these values using an RAII class like AutoSetValue. To
  // avoid that, these RAII classes check if the variable they set has been
  // tampered with (by us). If so, they don't reset the variable to the old
  // value.

  IPC_LOG("CancelTransaction: xid=%d", transaction);

  // An unusual case: We timed out a transaction which the other side then
  // cancelled. In this case we just leave the timedout state and try to
  // forget this ever happened.
  if (transaction == mTimedOutMessageSeqno) {
    IPC_LOG("Cancelled timed out message %d", mTimedOutMessageSeqno);
    EndTimeout();

    // Normally mCurrentTransaction == 0 here. But it can be non-zero if:
    // 1. Parent sends NESTED_INSIDE_SYNC message H.
    // 2. Parent times out H.
    // 3. Child dispatches H and sends nested message H' (same transaction).
    // 4. Parent dispatches H' and cancels.
    MOZ_RELEASE_ASSERT(!mTransactionStack ||
                       mTransactionStack->TransactionID() == transaction);
    if (mTransactionStack) {
      mTransactionStack->Cancel();
    }
  } else {
    MOZ_RELEASE_ASSERT(mTransactionStack->TransactionID() == transaction);
    mTransactionStack->Cancel();
  }

  bool foundSync = false;
  for (MessageTask* p = mPending.getFirst(); p;) {
    Message& msg = p->Msg();

    // If there was a race between the parent and the child, then we may
    // have a queued sync message. We want to drop this message from the
    // queue since if will get cancelled along with the transaction being
    // cancelled. This happens if the message in the queue is
    // NESTED_INSIDE_SYNC.
    if (msg.is_sync() && msg.nested_level() != IPC::Message::NOT_NESTED) {
      MOZ_RELEASE_ASSERT(!foundSync);
      MOZ_RELEASE_ASSERT(msg.transaction_id() != transaction);
      IPC_LOG("Removing msg from queue seqno=%d xid=%d", msg.seqno(),
              msg.transaction_id());
      foundSync = true;
      if (!IsAlwaysDeferred(msg)) {
        mMaybeDeferredPendingCount--;
      }
      p = p->removeAndGetNext();
      continue;
    }

    p = p->getNext();
  }

  AssertMaybeDeferredCountCorrect();
}

bool MessageChannel::IsInTransaction() const {
  MonitorAutoLock lock(*mMonitor);
  return !!mTransactionStack;
}

void MessageChannel::CancelCurrentTransaction() {
  MonitorAutoLock lock(*mMonitor);
  if (DispatchingSyncMessageNestedLevel() >= IPC::Message::NESTED_INSIDE_SYNC) {
    if (DispatchingSyncMessageNestedLevel() ==
            IPC::Message::NESTED_INSIDE_CPOW ||
        DispatchingAsyncMessageNestedLevel() ==
            IPC::Message::NESTED_INSIDE_CPOW) {
      mListener->IntentionalCrash();
    }

    IPC_LOG("Cancel requested: current xid=%d",
            CurrentNestedInsideSyncTransaction());
    MOZ_RELEASE_ASSERT(DispatchingSyncMessage());
    CancelMessage* cancel =
        new CancelMessage(CurrentNestedInsideSyncTransaction());
    CancelTransaction(CurrentNestedInsideSyncTransaction());
    mLink->SendMessage(cancel);
  }
}

void CancelCPOWs() {
  if (gParentProcessBlocker) {
    mozilla::Telemetry::Accumulate(mozilla::Telemetry::IPC_TRANSACTION_CANCEL,
                                   true);
    gParentProcessBlocker->CancelCurrentTransaction();
  }
}

}  // namespace ipc
}  // namespace mozilla