DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Mercurial (3bc0d683a41c)

VCS Links

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
// Copyright (c) 2006-2008 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#ifndef BASE_TASK_H_
#define BASE_TASK_H_

#include "base/revocable_store.h"
#include "base/tuple.h"
#include "mozilla/Tuple.h"
#include "nsISupportsImpl.h"
#include "nsThreadUtils.h"

#include <utility>

// Helper functions so that we can call a function a pass it arguments that come
// from a Tuple.

namespace details {

// Call the given method on the given object. Arguments are passed by move
// semantics from the given tuple. If the tuple has length N, the sequence must
// be IndexSequence<0, 1, ..., N-1>.
template <size_t... Indices, class ObjT, class Method, typename... Args>
void CallMethod(std::index_sequence<Indices...>, ObjT* obj, Method method,
                mozilla::Tuple<Args...>& arg) {
  (obj->*method)(std::move(mozilla::Get<Indices>(arg))...);
}

// Same as above, but call a function.
template <size_t... Indices, typename Function, typename... Args>
void CallFunction(std::index_sequence<Indices...>, Function function,
                  mozilla::Tuple<Args...>& arg) {
  (*function)(std::move(mozilla::Get<Indices>(arg))...);
}

}  // namespace details

// Call a method on the given object. Arguments are passed by move semantics
// from the given tuple.
template <class ObjT, class Method, typename... Args>
void DispatchTupleToMethod(ObjT* obj, Method method,
                           mozilla::Tuple<Args...>& arg) {
  details::CallMethod(std::index_sequence_for<Args...>{}, obj, method, arg);
}

// Same as above, but call a function.
template <typename Function, typename... Args>
void DispatchTupleToFunction(Function function, mozilla::Tuple<Args...>& arg) {
  details::CallFunction(std::index_sequence_for<Args...>{}, function, arg);
}

// Scoped Factories ------------------------------------------------------------
//
// These scoped factory objects can be used by non-refcounted objects to safely
// place tasks in a message loop.  Each factory guarantees that the tasks it
// produces will not run after the factory is destroyed.  Commonly, factories
// are declared as class members, so the class' tasks will automatically cancel
// when the class instance is destroyed.
//
// Exampe Usage:
//
// class MyClass {
//  private:
//   // This factory will be used to schedule invocations of SomeMethod.
//   ScopedRunnableMethodFactory<MyClass> some_method_factory_;
//
//  public:
//   // It is safe to suppress warning 4355 here.
//   MyClass() : some_method_factory_(this) { }
//
//   void SomeMethod() {
//     // If this function might be called directly, you might want to revoke
//     // any outstanding runnable methods scheduled to call it.  If it's not
//     // referenced other than by the factory, this is unnecessary.
//     some_method_factory_.RevokeAll();
//     ...
//   }
//
//   void ScheduleSomeMethod() {
//     // If you'd like to only only have one pending task at a time, test for
//     // |empty| before manufacturing another task.
//     if (!some_method_factory_.empty())
//       return;
//
//     // The factories are not thread safe, so always invoke on
//     // |MessageLoop::current()|.
//     MessageLoop::current()->PostDelayedTask(
//         some_method_factory_.NewRunnableMethod(&MyClass::SomeMethod),
//         kSomeMethodDelayMS);
//   }
// };

// A ScopedTaskFactory produces tasks of type |TaskType| and prevents them from
// running after it is destroyed.
template <class TaskType>
class ScopedTaskFactory : public RevocableStore {
 public:
  ScopedTaskFactory() {}

  // Create a new task.
  inline TaskType* NewTask() { return new TaskWrapper(this); }

  class TaskWrapper : public TaskType {
   public:
    explicit TaskWrapper(RevocableStore* store) : revocable_(store) {}

    NS_IMETHOD Run() override {
      if (!revocable_.revoked()) TaskType::Run();
      return NS_OK;
    }

    ~TaskWrapper() { NS_ASSERT_OWNINGTHREAD(TaskWrapper); }

   private:
    Revocable revocable_;

    NS_DECL_OWNINGTHREAD

    DISALLOW_EVIL_CONSTRUCTORS(TaskWrapper);
  };

 private:
  DISALLOW_EVIL_CONSTRUCTORS(ScopedTaskFactory);
};

// A ScopedRunnableMethodFactory creates runnable methods for a specified
// object.  This is particularly useful for generating callbacks for
// non-reference counted objects when the factory is a member of the object.
template <class T>
class ScopedRunnableMethodFactory : public RevocableStore {
 public:
  explicit ScopedRunnableMethodFactory(T* object) : object_(object) {}

  template <class Method, typename... Elements>
  inline already_AddRefed<mozilla::Runnable> NewRunnableMethod(
      Method method, Elements&&... elements) {
    typedef mozilla::Tuple<typename mozilla::Decay<Elements>::Type...>
        ArgsTuple;
    typedef RunnableMethod<Method, ArgsTuple> Runnable;
    typedef typename ScopedTaskFactory<Runnable>::TaskWrapper TaskWrapper;

    RefPtr<TaskWrapper> task = new TaskWrapper(this);
    task->Init(object_, method,
               mozilla::MakeTuple(std::forward<Elements>(elements)...));
    return task.forget();
  }

 protected:
  template <class Method, class Params>
  class RunnableMethod : public mozilla::Runnable {
   public:
    RunnableMethod()
        : mozilla::Runnable("ScopedRunnableMethodFactory::RunnableMethod") {}

    void Init(T* obj, Method meth, Params&& params) {
      obj_ = obj;
      meth_ = meth;
      params_ = std::forward<Params>(params);
    }

    NS_IMETHOD Run() override {
      DispatchTupleToMethod(obj_, meth_, params_);
      return NS_OK;
    }

   private:
    T* MOZ_UNSAFE_REF(
        "The validity of this pointer must be enforced by "
        "external factors.") obj_;
    Method meth_;
    Params params_;

    DISALLOW_EVIL_CONSTRUCTORS(RunnableMethod);
  };

 private:
  T* object_;

  DISALLOW_EVIL_CONSTRUCTORS(ScopedRunnableMethodFactory);
};

// General task implementations ------------------------------------------------

// Task to delete an object
template <class T>
class DeleteTask : public mozilla::CancelableRunnable {
 public:
  explicit DeleteTask(T* obj)
      : mozilla::CancelableRunnable("DeleteTask"), obj_(obj) {}
  NS_IMETHOD Run() override {
    delete obj_;
    return NS_OK;
  }
  virtual nsresult Cancel() override {
    obj_ = NULL;
    return NS_OK;
  }

 private:
  T* MOZ_UNSAFE_REF(
      "The validity of this pointer must be enforced by "
      "external factors.") obj_;
};

// RunnableMethodTraits --------------------------------------------------------
//
// This traits-class is used by RunnableMethod to manage the lifetime of the
// callee object.  By default, it is assumed that the callee supports AddRef
// and Release methods.  A particular class can specialize this template to
// define other lifetime management.  For example, if the callee is known to
// live longer than the RunnableMethod object, then a RunnableMethodTraits
// struct could be defined with empty RetainCallee and ReleaseCallee methods.

template <class T>
struct RunnableMethodTraits {
  static void RetainCallee(T* obj) { obj->AddRef(); }
  static void ReleaseCallee(T* obj) { obj->Release(); }
};

// This allows using the NewRunnableMethod() functions with a const pointer
// to the callee object. See the similar support in nsRefPtr for a rationale
// of why this is reasonable.
template <class T>
struct RunnableMethodTraits<const T> {
  static void RetainCallee(const T* obj) { const_cast<T*>(obj)->AddRef(); }
  static void ReleaseCallee(const T* obj) { const_cast<T*>(obj)->Release(); }
};

// RunnableMethod and RunnableFunction -----------------------------------------
//
// Runnable methods are a type of task that call a function on an object when
// they are run. We implement both an object and a set of NewRunnableMethod and
// NewRunnableFunction functions for convenience. These functions are
// overloaded and will infer the template types, simplifying calling code.
//
// The template definitions all use the following names:
// T                - the class type of the object you're supplying
//                    this is not needed for the Static version of the call
// Method/Function  - the signature of a pointer to the method or function you
//                    want to call
// Param            - the parameter(s) to the method, possibly packed as a Tuple
// A                - the first parameter (if any) to the method
// B                - the second parameter (if any) to the mathod
//
// Put these all together and you get an object that can call a method whose
// signature is:
//   R T::MyFunction([A[, B]])
//
// Usage:
// PostTask(NewRunnableMethod(object, &Object::method[, a[, b]])
// PostTask(NewRunnableFunction(&function[, a[, b]])

// RunnableMethod and NewRunnableMethod implementation -------------------------

template <class T, class Method, class Params>
class RunnableMethod : public mozilla::CancelableRunnable,
                       public RunnableMethodTraits<T> {
 public:
  RunnableMethod(T* obj, Method meth, Params&& params)
      : mozilla::CancelableRunnable("RunnableMethod"),
        obj_(obj),
        meth_(meth),
        params_(std::forward<Params>(params)) {
    this->RetainCallee(obj_);
  }
  ~RunnableMethod() { ReleaseCallee(); }

  NS_IMETHOD Run() override {
    if (obj_) DispatchTupleToMethod(obj_, meth_, params_);
    return NS_OK;
  }

  virtual nsresult Cancel() override {
    ReleaseCallee();
    return NS_OK;
  }

 private:
  void ReleaseCallee() {
    if (obj_) {
      RunnableMethodTraits<T>::ReleaseCallee(obj_);
      obj_ = nullptr;
    }
  }

  // This is owning because of the RetainCallee and ReleaseCallee calls in the
  // constructor and destructor.
  T* MOZ_OWNING_REF obj_;
  Method meth_;
  Params params_;
};

namespace dont_add_new_uses_of_this {

// Don't add new uses of this!!!!
template <class T, class Method, typename... Args>
inline already_AddRefed<mozilla::Runnable> NewRunnableMethod(T* object,
                                                             Method method,
                                                             Args&&... args) {
  typedef mozilla::Tuple<typename mozilla::Decay<Args>::Type...> ArgsTuple;
  RefPtr<mozilla::Runnable> t = new RunnableMethod<T, Method, ArgsTuple>(
      object, method, mozilla::MakeTuple(std::forward<Args>(args)...));
  return t.forget();
}

}  // namespace dont_add_new_uses_of_this

// RunnableFunction and NewRunnableFunction implementation ---------------------

template <class Function, class Params>
class RunnableFunction : public mozilla::CancelableRunnable {
 public:
  RunnableFunction(const char* name, Function function, Params&& params)
      : mozilla::CancelableRunnable(name),
        function_(function),
        params_(std::forward<Params>(params)) {}

  ~RunnableFunction() {}

  NS_IMETHOD Run() override {
    if (function_) DispatchTupleToFunction(function_, params_);
    return NS_OK;
  }

  virtual nsresult Cancel() override {
    function_ = nullptr;
    return NS_OK;
  }

  Function function_;
  Params params_;
};

template <class Function, typename... Args>
inline already_AddRefed<mozilla::CancelableRunnable>
NewCancelableRunnableFunction(const char* name, Function function,
                              Args&&... args) {
  typedef mozilla::Tuple<typename mozilla::Decay<Args>::Type...> ArgsTuple;
  RefPtr<mozilla::CancelableRunnable> t =
      new RunnableFunction<Function, ArgsTuple>(
          name, function, mozilla::MakeTuple(std::forward<Args>(args)...));
  return t.forget();
}

template <class Function, typename... Args>
inline already_AddRefed<mozilla::Runnable> NewRunnableFunction(
    const char* name, Function function, Args&&... args) {
  typedef mozilla::Tuple<typename mozilla::Decay<Args>::Type...> ArgsTuple;
  RefPtr<mozilla::Runnable> t = new RunnableFunction<Function, ArgsTuple>(
      name, function, mozilla::MakeTuple(std::forward<Args>(args)...));
  return t.forget();
}

#endif  // BASE_TASK_H_