DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Mercurial (3dc70a33491f)

VCS Links

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
// Copyright (c) 2006-2008 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

// STL utility functions.  Usually, these replace built-in, but slow(!),
// STL functions with more efficient versions.

#ifndef BASE_STL_UTIL_INL_H_
#define BASE_STL_UTIL_INL_H_

#include <string.h>  // for memcpy
#include <functional>
#include <set>
#include <string>
#include <vector>
#include <cassert>

// Clear internal memory of an STL object.
// STL clear()/reserve(0) does not always free internal memory allocated
// This function uses swap/destructor to ensure the internal memory is freed.
template <class T>
void STLClearObject(T* obj) {
  T tmp;
  tmp.swap(*obj);
  obj->reserve(0);  // this is because sometimes "T tmp" allocates objects with
                    // memory (arena implementation?).  use reserve()
                    // to clear() even if it doesn't always work
}

// Reduce memory usage on behalf of object if it is using more than
// "bytes" bytes of space.  By default, we clear objects over 1MB.
template <class T>
inline void STLClearIfBig(T* obj, size_t limit = 1 << 20) {
  if (obj->capacity() >= limit) {
    STLClearObject(obj);
  } else {
    obj->clear();
  }
}

// Reserve space for STL object.
// STL's reserve() will always copy.
// This function avoid the copy if we already have capacity
template <class T>
void STLReserveIfNeeded(T* obj, int new_size) {
  if (obj->capacity() < new_size)  // increase capacity
    obj->reserve(new_size);
  else if (obj->size() > new_size)  // reduce size
    obj->resize(new_size);
}

// STLDeleteContainerPointers()
//  For a range within a container of pointers, calls delete
//  (non-array version) on these pointers.
// NOTE: for these three functions, we could just implement a DeleteObject
// functor and then call for_each() on the range and functor, but this
// requires us to pull in all of algorithm.h, which seems expensive.
// For hash_[multi]set, it is important that this deletes behind the iterator
// because the hash_set may call the hash function on the iterator when it is
// advanced, which could result in the hash function trying to deference a
// stale pointer.
template <class ForwardIterator>
void STLDeleteContainerPointers(ForwardIterator begin, ForwardIterator end) {
  while (begin != end) {
    ForwardIterator temp = begin;
    ++begin;
    delete *temp;
  }
}

// STLDeleteContainerPairPointers()
//  For a range within a container of pairs, calls delete
//  (non-array version) on BOTH items in the pairs.
// NOTE: Like STLDeleteContainerPointers, it is important that this deletes
// behind the iterator because if both the key and value are deleted, the
// container may call the hash function on the iterator when it is advanced,
// which could result in the hash function trying to dereference a stale
// pointer.
template <class ForwardIterator>
void STLDeleteContainerPairPointers(ForwardIterator begin,
                                    ForwardIterator end) {
  while (begin != end) {
    ForwardIterator temp = begin;
    ++begin;
    delete temp->first;
    delete temp->second;
  }
}

// STLDeleteContainerPairFirstPointers()
//  For a range within a container of pairs, calls delete (non-array version)
//  on the FIRST item in the pairs.
// NOTE: Like STLDeleteContainerPointers, deleting behind the iterator.
template <class ForwardIterator>
void STLDeleteContainerPairFirstPointers(ForwardIterator begin,
                                         ForwardIterator end) {
  while (begin != end) {
    ForwardIterator temp = begin;
    ++begin;
    delete temp->first;
  }
}

// STLDeleteContainerPairSecondPointers()
//  For a range within a container of pairs, calls delete
//  (non-array version) on the SECOND item in the pairs.
template <class ForwardIterator>
void STLDeleteContainerPairSecondPointers(ForwardIterator begin,
                                          ForwardIterator end) {
  while (begin != end) {
    delete begin->second;
    ++begin;
  }
}

template <typename T>
inline void STLAssignToVector(std::vector<T>* vec, const T* ptr, size_t n) {
  vec->resize(n);
  memcpy(&vec->front(), ptr, n * sizeof(T));
}

/***** Hack to allow faster assignment to a vector *****/

// This routine speeds up an assignment of 32 bytes to a vector from
// about 250 cycles per assignment to about 140 cycles.
//
// Usage:
//      STLAssignToVectorChar(&vec, ptr, size);
//      STLAssignToString(&str, ptr, size);

inline void STLAssignToVectorChar(std::vector<char>* vec, const char* ptr,
                                  size_t n) {
  STLAssignToVector(vec, ptr, n);
}

inline void STLAssignToString(std::string* str, const char* ptr, size_t n) {
  str->resize(n);
  memcpy(&*str->begin(), ptr, n);
}

// To treat a possibly-empty vector as an array, use these functions.
// If you know the array will never be empty, you can use &*v.begin()
// directly, but that is allowed to dump core if v is empty.  This
// function is the most efficient code that will work, taking into
// account how our STL is actually implemented.  THIS IS NON-PORTABLE
// CODE, so call us instead of repeating the nonportable code
// everywhere.  If our STL implementation changes, we will need to
// change this as well.

template <typename T>
inline T* vector_as_array(std::vector<T>* v) {
#ifdef NDEBUG
  return &*v->begin();
#else
  return v->empty() ? NULL : &*v->begin();
#endif
}

template <typename T>
inline const T* vector_as_array(const std::vector<T>* v) {
#ifdef NDEBUG
  return &*v->begin();
#else
  return v->empty() ? NULL : &*v->begin();
#endif
}

// Return a mutable char* pointing to a string's internal buffer,
// which may not be null-terminated. Writing through this pointer will
// modify the string.
//
// string_as_array(&str)[i] is valid for 0 <= i < str.size() until the
// next call to a string method that invalidates iterators.
//
// As of 2006-04, there is no standard-blessed way of getting a
// mutable reference to a string's internal buffer. However, issue 530
// (http://www.open-std.org/JTC1/SC22/WG21/docs/lwg-active.html#530)
// proposes this as the method. According to Matt Austern, this should
// already work on all current implementations.
inline char* string_as_array(std::string* str) {
  // DO NOT USE const_cast<char*>(str->data())! See the unittest for why.
  return str->empty() ? NULL : &*str->begin();
}

// These are methods that test two hash maps/sets for equality.  These exist
// because the == operator in the STL can return false when the maps/sets
// contain identical elements.  This is because it compares the internal hash
// tables which may be different if the order of insertions and deletions
// differed.

template <class HashSet>
inline bool HashSetEquality(const HashSet& set_a, const HashSet& set_b) {
  if (set_a.size() != set_b.size()) return false;
  for (typename HashSet::const_iterator i = set_a.begin(); i != set_a.end();
       ++i) {
    if (set_b.find(*i) == set_b.end()) return false;
  }
  return true;
}

template <class HashMap>
inline bool HashMapEquality(const HashMap& map_a, const HashMap& map_b) {
  if (map_a.size() != map_b.size()) return false;
  for (typename HashMap::const_iterator i = map_a.begin(); i != map_a.end();
       ++i) {
    typename HashMap::const_iterator j = map_b.find(i->first);
    if (j == map_b.end()) return false;
    if (i->second != j->second) return false;
  }
  return true;
}

// The following functions are useful for cleaning up STL containers
// whose elements point to allocated memory.

// STLDeleteElements() deletes all the elements in an STL container and clears
// the container.  This function is suitable for use with a vector, set,
// hash_set, or any other STL container which defines sensible begin(), end(),
// and clear() methods.
//
// If container is NULL, this function is a no-op.
//
// As an alternative to calling STLDeleteElements() directly, consider
// STLElementDeleter (defined below), which ensures that your container's
// elements are deleted when the STLElementDeleter goes out of scope.
template <class T>
void STLDeleteElements(T* container) {
  if (!container) return;
  STLDeleteContainerPointers(container->begin(), container->end());
  container->clear();
}

// Given an STL container consisting of (key, value) pairs, STLDeleteValues
// deletes all the "value" components and clears the container.  Does nothing
// in the case it's given a NULL pointer.

template <class T>
void STLDeleteValues(T* v) {
  if (!v) return;
  for (typename T::iterator i = v->begin(); i != v->end(); ++i) {
    delete i->second;
  }
  v->clear();
}

// The following classes provide a convenient way to delete all elements or
// values from STL containers when they goes out of scope.  This greatly
// simplifies code that creates temporary objects and has multiple return
// statements.  Example:
//
// vector<MyProto *> tmp_proto;
// STLElementDeleter<vector<MyProto *> > d(&tmp_proto);
// if (...) return false;
// ...
// return success;

// Given a pointer to an STL container this class will delete all the element
// pointers when it goes out of scope.

template <class STLContainer>
class STLElementDeleter {
 public:
  explicit STLElementDeleter(STLContainer* ptr) : container_ptr_(ptr) {}
  ~STLElementDeleter() { STLDeleteElements(container_ptr_); }

 private:
  STLContainer* container_ptr_;
};

// Given a pointer to an STL container this class will delete all the value
// pointers when it goes out of scope.

template <class STLContainer>
class STLValueDeleter {
 public:
  explicit STLValueDeleter(STLContainer* ptr) : container_ptr_(ptr) {}
  ~STLValueDeleter() { STLDeleteValues(container_ptr_); }

 private:
  STLContainer* container_ptr_;
};

// Forward declare some callback classes in callback.h for STLBinaryFunction
template <class R, class T1, class T2>
class ResultCallback2;

// STLBinaryFunction is a wrapper for the ResultCallback2 class in callback.h
// It provides an operator () method instead of a Run method, so it may be
// passed to STL functions in <algorithm>.
//
// The client should create callback with NewPermanentCallback, and should
// delete callback after it is done using the STLBinaryFunction.

template <class Result, class Arg1, class Arg2>
class STLBinaryFunction : public std::binary_function<Arg1, Arg2, Result> {
 public:
  typedef ResultCallback2<Result, Arg1, Arg2> Callback;

  explicit STLBinaryFunction(Callback* callback) : callback_(callback) {
    assert(callback_);
  }

  Result operator()(Arg1 arg1, Arg2 arg2) { return callback_->Run(arg1, arg2); }

 private:
  Callback* callback_;
};

// STLBinaryPredicate is a specialized version of STLBinaryFunction, where the
// return type is bool and both arguments have type Arg.  It can be used
// wherever STL requires a StrictWeakOrdering, such as in sort() or
// lower_bound().
//
// templated typedefs are not supported, so instead we use inheritance.

template <class Arg>
class STLBinaryPredicate : public STLBinaryFunction<bool, Arg, Arg> {
 public:
  typedef typename STLBinaryPredicate<Arg>::Callback Callback;
  explicit STLBinaryPredicate(Callback* callback)
      : STLBinaryFunction<bool, Arg, Arg>(callback) {}
};

// Functors that compose arbitrary unary and binary functions with a
// function that "projects" one of the members of a pair.
// Specifically, if p1 and p2, respectively, are the functions that
// map a pair to its first and second, respectively, members, the
// table below summarizes the functions that can be constructed:
//
// * UnaryOperate1st<pair>(f) returns the function x -> f(p1(x))
// * UnaryOperate2nd<pair>(f) returns the function x -> f(p2(x))
// * BinaryOperate1st<pair>(f) returns the function (x,y) -> f(p1(x),p1(y))
// * BinaryOperate2nd<pair>(f) returns the function (x,y) -> f(p2(x),p2(y))
//
// A typical usage for these functions would be when iterating over
// the contents of an STL map. For other sample usage, see the unittest.

template <typename Pair, typename UnaryOp>
class UnaryOperateOnFirst
    : public std::unary_function<Pair, typename UnaryOp::result_type> {
 public:
  UnaryOperateOnFirst() {}

  explicit UnaryOperateOnFirst(const UnaryOp& f) : f_(f) {}

  typename UnaryOp::result_type operator()(const Pair& p) const {
    return f_(p.first);
  }

 private:
  UnaryOp f_;
};

template <typename Pair, typename UnaryOp>
UnaryOperateOnFirst<Pair, UnaryOp> UnaryOperate1st(const UnaryOp& f) {
  return UnaryOperateOnFirst<Pair, UnaryOp>(f);
}

template <typename Pair, typename UnaryOp>
class UnaryOperateOnSecond
    : public std::unary_function<Pair, typename UnaryOp::result_type> {
 public:
  UnaryOperateOnSecond() {}

  explicit UnaryOperateOnSecond(const UnaryOp& f) : f_(f) {}

  typename UnaryOp::result_type operator()(const Pair& p) const {
    return f_(p.second);
  }

 private:
  UnaryOp f_;
};

template <typename Pair, typename UnaryOp>
UnaryOperateOnSecond<Pair, UnaryOp> UnaryOperate2nd(const UnaryOp& f) {
  return UnaryOperateOnSecond<Pair, UnaryOp>(f);
}

template <typename Pair, typename BinaryOp>
class BinaryOperateOnFirst
    : public std::binary_function<Pair, Pair, typename BinaryOp::result_type> {
 public:
  BinaryOperateOnFirst() {}

  explicit BinaryOperateOnFirst(const BinaryOp& f) : f_(f) {}

  typename BinaryOp::result_type operator()(const Pair& p1,
                                            const Pair& p2) const {
    return f_(p1.first, p2.first);
  }

 private:
  BinaryOp f_;
};

template <typename Pair, typename BinaryOp>
BinaryOperateOnFirst<Pair, BinaryOp> BinaryOperate1st(const BinaryOp& f) {
  return BinaryOperateOnFirst<Pair, BinaryOp>(f);
}

template <typename Pair, typename BinaryOp>
class BinaryOperateOnSecond
    : public std::binary_function<Pair, Pair, typename BinaryOp::result_type> {
 public:
  BinaryOperateOnSecond() {}

  explicit BinaryOperateOnSecond(const BinaryOp& f) : f_(f) {}

  typename BinaryOp::result_type operator()(const Pair& p1,
                                            const Pair& p2) const {
    return f_(p1.second, p2.second);
  }

 private:
  BinaryOp f_;
};

template <typename Pair, typename BinaryOp>
BinaryOperateOnSecond<Pair, BinaryOp> BinaryOperate2nd(const BinaryOp& f) {
  return BinaryOperateOnSecond<Pair, BinaryOp>(f);
}

// Translates a set into a vector.
template <typename T>
std::vector<T> SetToVector(const std::set<T>& values) {
  std::vector<T> result;
  result.reserve(values.size());
  result.insert(result.begin(), values.begin(), values.end());
  return result;
}

#endif  // BASE_STL_UTIL_INL_H_