DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Header

Mercurial (014c61389f0b)

VCS Links

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
// Copyright (c) 2011 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

// Histogram is an object that aggregates statistics, and can summarize them in
// various forms, including ASCII graphical, HTML, and numerically (as a
// vector of numbers corresponding to each of the aggregating buckets).
// See header file for details and examples.

#include "base/histogram.h"

#include <math.h>

#include <algorithm>
#include <string>

#include "base/logging.h"
#include "base/pickle.h"
#include "base/string_util.h"
#include "base/logging.h"

namespace base {

#define DVLOG(x) CHROMIUM_LOG(ERROR)
#define CHECK_GT DCHECK_GT
#define CHECK_LT DCHECK_LT

// Static table of checksums for all possible 8 bit bytes.
const uint32_t Histogram::kCrcTable[256] = {
    0x0,         0x77073096L, 0xee0e612cL, 0x990951baL, 0x76dc419L,
    0x706af48fL, 0xe963a535L, 0x9e6495a3L, 0xedb8832L,  0x79dcb8a4L,
    0xe0d5e91eL, 0x97d2d988L, 0x9b64c2bL,  0x7eb17cbdL, 0xe7b82d07L,
    0x90bf1d91L, 0x1db71064L, 0x6ab020f2L, 0xf3b97148L, 0x84be41deL,
    0x1adad47dL, 0x6ddde4ebL, 0xf4d4b551L, 0x83d385c7L, 0x136c9856L,
    0x646ba8c0L, 0xfd62f97aL, 0x8a65c9ecL, 0x14015c4fL, 0x63066cd9L,
    0xfa0f3d63L, 0x8d080df5L, 0x3b6e20c8L, 0x4c69105eL, 0xd56041e4L,
    0xa2677172L, 0x3c03e4d1L, 0x4b04d447L, 0xd20d85fdL, 0xa50ab56bL,
    0x35b5a8faL, 0x42b2986cL, 0xdbbbc9d6L, 0xacbcf940L, 0x32d86ce3L,
    0x45df5c75L, 0xdcd60dcfL, 0xabd13d59L, 0x26d930acL, 0x51de003aL,
    0xc8d75180L, 0xbfd06116L, 0x21b4f4b5L, 0x56b3c423L, 0xcfba9599L,
    0xb8bda50fL, 0x2802b89eL, 0x5f058808L, 0xc60cd9b2L, 0xb10be924L,
    0x2f6f7c87L, 0x58684c11L, 0xc1611dabL, 0xb6662d3dL, 0x76dc4190L,
    0x1db7106L,  0x98d220bcL, 0xefd5102aL, 0x71b18589L, 0x6b6b51fL,
    0x9fbfe4a5L, 0xe8b8d433L, 0x7807c9a2L, 0xf00f934L,  0x9609a88eL,
    0xe10e9818L, 0x7f6a0dbbL, 0x86d3d2dL,  0x91646c97L, 0xe6635c01L,
    0x6b6b51f4L, 0x1c6c6162L, 0x856530d8L, 0xf262004eL, 0x6c0695edL,
    0x1b01a57bL, 0x8208f4c1L, 0xf50fc457L, 0x65b0d9c6L, 0x12b7e950L,
    0x8bbeb8eaL, 0xfcb9887cL, 0x62dd1ddfL, 0x15da2d49L, 0x8cd37cf3L,
    0xfbd44c65L, 0x4db26158L, 0x3ab551ceL, 0xa3bc0074L, 0xd4bb30e2L,
    0x4adfa541L, 0x3dd895d7L, 0xa4d1c46dL, 0xd3d6f4fbL, 0x4369e96aL,
    0x346ed9fcL, 0xad678846L, 0xda60b8d0L, 0x44042d73L, 0x33031de5L,
    0xaa0a4c5fL, 0xdd0d7cc9L, 0x5005713cL, 0x270241aaL, 0xbe0b1010L,
    0xc90c2086L, 0x5768b525L, 0x206f85b3L, 0xb966d409L, 0xce61e49fL,
    0x5edef90eL, 0x29d9c998L, 0xb0d09822L, 0xc7d7a8b4L, 0x59b33d17L,
    0x2eb40d81L, 0xb7bd5c3bL, 0xc0ba6cadL, 0xedb88320L, 0x9abfb3b6L,
    0x3b6e20cL,  0x74b1d29aL, 0xead54739L, 0x9dd277afL, 0x4db2615L,
    0x73dc1683L, 0xe3630b12L, 0x94643b84L, 0xd6d6a3eL,  0x7a6a5aa8L,
    0xe40ecf0bL, 0x9309ff9dL, 0xa00ae27L,  0x7d079eb1L, 0xf00f9344L,
    0x8708a3d2L, 0x1e01f268L, 0x6906c2feL, 0xf762575dL, 0x806567cbL,
    0x196c3671L, 0x6e6b06e7L, 0xfed41b76L, 0x89d32be0L, 0x10da7a5aL,
    0x67dd4accL, 0xf9b9df6fL, 0x8ebeeff9L, 0x17b7be43L, 0x60b08ed5L,
    0xd6d6a3e8L, 0xa1d1937eL, 0x38d8c2c4L, 0x4fdff252L, 0xd1bb67f1L,
    0xa6bc5767L, 0x3fb506ddL, 0x48b2364bL, 0xd80d2bdaL, 0xaf0a1b4cL,
    0x36034af6L, 0x41047a60L, 0xdf60efc3L, 0xa867df55L, 0x316e8eefL,
    0x4669be79L, 0xcb61b38cL, 0xbc66831aL, 0x256fd2a0L, 0x5268e236L,
    0xcc0c7795L, 0xbb0b4703L, 0x220216b9L, 0x5505262fL, 0xc5ba3bbeL,
    0xb2bd0b28L, 0x2bb45a92L, 0x5cb36a04L, 0xc2d7ffa7L, 0xb5d0cf31L,
    0x2cd99e8bL, 0x5bdeae1dL, 0x9b64c2b0L, 0xec63f226L, 0x756aa39cL,
    0x26d930aL,  0x9c0906a9L, 0xeb0e363fL, 0x72076785L, 0x5005713L,
    0x95bf4a82L, 0xe2b87a14L, 0x7bb12baeL, 0xcb61b38L,  0x92d28e9bL,
    0xe5d5be0dL, 0x7cdcefb7L, 0xbdbdf21L,  0x86d3d2d4L, 0xf1d4e242L,
    0x68ddb3f8L, 0x1fda836eL, 0x81be16cdL, 0xf6b9265bL, 0x6fb077e1L,
    0x18b74777L, 0x88085ae6L, 0xff0f6a70L, 0x66063bcaL, 0x11010b5cL,
    0x8f659effL, 0xf862ae69L, 0x616bffd3L, 0x166ccf45L, 0xa00ae278L,
    0xd70dd2eeL, 0x4e048354L, 0x3903b3c2L, 0xa7672661L, 0xd06016f7L,
    0x4969474dL, 0x3e6e77dbL, 0xaed16a4aL, 0xd9d65adcL, 0x40df0b66L,
    0x37d83bf0L, 0xa9bcae53L, 0xdebb9ec5L, 0x47b2cf7fL, 0x30b5ffe9L,
    0xbdbdf21cL, 0xcabac28aL, 0x53b39330L, 0x24b4a3a6L, 0xbad03605L,
    0xcdd70693L, 0x54de5729L, 0x23d967bfL, 0xb3667a2eL, 0xc4614ab8L,
    0x5d681b02L, 0x2a6f2b94L, 0xb40bbe37L, 0xc30c8ea1L, 0x5a05df1bL,
    0x2d02ef8dL,
};

typedef Histogram::Count Count;

// static
const size_t Histogram::kBucketCount_MAX = 16384u;

Histogram* Histogram::FactoryGet(Sample minimum, Sample maximum,
                                 size_t bucket_count, Flags flags,
                                 const int* buckets) {
  DCHECK(buckets);
  Histogram* histogram(NULL);

  // Defensive code.
  if (minimum < 1) minimum = 1;
  if (maximum > kSampleType_MAX - 1) maximum = kSampleType_MAX - 1;

  histogram = new Histogram(minimum, maximum, bucket_count);
  histogram->InitializeBucketRangeFromData(buckets);
  histogram->SetFlags(flags);

  DCHECK_EQ(HISTOGRAM, histogram->histogram_type());
  DCHECK(histogram->HasConstructorArguments(minimum, maximum, bucket_count));
  return histogram;
}

void Histogram::Add(int value) {
  if (value > kSampleType_MAX - 1) value = kSampleType_MAX - 1;
  if (value < 0) value = 0;
  size_t index = BucketIndex(value);
  DCHECK_GE(value, ranges(index));
  DCHECK_LT(value, ranges(index + 1));
  Accumulate(value, 1, index);
}

void Histogram::Subtract(int value) {
  if (value > kSampleType_MAX - 1) value = kSampleType_MAX - 1;
  if (value < 0) value = 0;
  size_t index = BucketIndex(value);
  DCHECK_GE(value, ranges(index));
  DCHECK_LT(value, ranges(index + 1));
  Accumulate(value, -1, index);
}

void Histogram::AddBoolean(bool value) { DCHECK(false); }

void Histogram::AddSampleSet(const SampleSet& sample) { sample_.Add(sample); }

void Histogram::Clear() {
  SampleSet ss;
  ss.Resize(*this);
  sample_ = ss;
}

void Histogram::SetRangeDescriptions(const DescriptionPair descriptions[]) {
  DCHECK(false);
}

//------------------------------------------------------------------------------
// Methods for the validating a sample and a related histogram.
//------------------------------------------------------------------------------

Histogram::Inconsistencies Histogram::FindCorruption(
    const SampleSet& snapshot) const {
  int inconsistencies = NO_INCONSISTENCIES;
  Sample previous_range = -1;  // Bottom range is always 0.
  int64_t count = 0;
  for (size_t index = 0; index < bucket_count(); ++index) {
    count += snapshot.counts(index);
    int new_range = ranges(index);
    if (previous_range >= new_range) inconsistencies |= BUCKET_ORDER_ERROR;
    previous_range = new_range;
  }

  if (!HasValidRangeChecksum()) inconsistencies |= RANGE_CHECKSUM_ERROR;

  int64_t delta64 = snapshot.redundant_count() - count;
  if (delta64 != 0) {
    int delta = static_cast<int>(delta64);
    if (delta != delta64) delta = INT_MAX;  // Flag all giant errors as INT_MAX.
    // Since snapshots of histograms are taken asynchronously relative to
    // sampling (and snapped from different threads), it is pretty likely that
    // we'll catch a redundant count that doesn't match the sample count.  We
    // allow for a certain amount of slop before flagging this as an
    // inconsistency.  Even with an inconsistency, we'll snapshot it again (for
    // UMA in about a half hour, so we'll eventually get the data, if it was
    // not the result of a corruption.  If histograms show that 1 is "too tight"
    // then we may try to use 2 or 3 for this slop value.
    const int kCommonRaceBasedCountMismatch = 1;
    if (delta > 0) {
      if (delta > kCommonRaceBasedCountMismatch)
        inconsistencies |= COUNT_HIGH_ERROR;
    } else {
      DCHECK_GT(0, delta);
      if (-delta > kCommonRaceBasedCountMismatch)
        inconsistencies |= COUNT_LOW_ERROR;
    }
  }
  return static_cast<Inconsistencies>(inconsistencies);
}

Histogram::ClassType Histogram::histogram_type() const { return HISTOGRAM; }

Histogram::Sample Histogram::ranges(size_t i) const { return ranges_[i]; }

size_t Histogram::bucket_count() const { return bucket_count_; }

void Histogram::SnapshotSample(SampleSet* sample) const { *sample = sample_; }

bool Histogram::HasConstructorArguments(Sample minimum, Sample maximum,
                                        size_t bucket_count) {
  return ((minimum == declared_min_) && (maximum == declared_max_) &&
          (bucket_count == bucket_count_));
}

bool Histogram::HasConstructorTimeDeltaArguments(TimeDelta minimum,
                                                 TimeDelta maximum,
                                                 size_t bucket_count) {
  return ((minimum.InMilliseconds() == declared_min_) &&
          (maximum.InMilliseconds() == declared_max_) &&
          (bucket_count == bucket_count_));
}

bool Histogram::HasValidRangeChecksum() const {
  return CalculateRangeChecksum() == range_checksum_;
}

size_t Histogram::SizeOfIncludingThis(mozilla::MallocSizeOf aMallocSizeOf) {
  size_t n = 0;
  n += aMallocSizeOf(this);
  n += sample_.SizeOfExcludingThis(aMallocSizeOf);
  return n;
}

size_t Histogram::SampleSet::SizeOfExcludingThis(
    mozilla::MallocSizeOf aMallocSizeOf) {
  return counts_.ShallowSizeOfExcludingThis(aMallocSizeOf);
}

Histogram::Histogram(Sample minimum, Sample maximum, size_t bucket_count)
    : sample_(),
      declared_min_(minimum),
      declared_max_(maximum),
      bucket_count_(bucket_count),
      flags_(kNoFlags),
      range_checksum_(0) {
  Initialize();
}

Histogram::Histogram(TimeDelta minimum, TimeDelta maximum, size_t bucket_count)
    : sample_(),
      declared_min_(static_cast<int>(minimum.InMilliseconds())),
      declared_max_(static_cast<int>(maximum.InMilliseconds())),
      bucket_count_(bucket_count),
      flags_(kNoFlags),
      range_checksum_(0) {
  Initialize();
}

Histogram::~Histogram() {
  // Just to make sure most derived class did this properly...
  DCHECK(ValidateBucketRanges());
}

void Histogram::InitializeBucketRangeFromData(const int* buckets) {
  ranges_ = buckets;
  ResetRangeChecksum();
  DCHECK(ValidateBucketRanges());
}

bool Histogram::PrintEmptyBucket(size_t index) const { return true; }

size_t Histogram::BucketIndex(Sample value) const {
  // Use simple binary search.  This is very general, but there are better
  // approaches if we knew that the buckets were linearly distributed.
  DCHECK_LE(ranges(0), value);
  DCHECK_GT(ranges(bucket_count()), value);
  size_t under = 0;
  size_t over = bucket_count();
  size_t mid;

  do {
    DCHECK_GE(over, under);
    mid = under + (over - under) / 2;
    if (mid == under) break;
    if (ranges(mid) <= value)
      under = mid;
    else
      over = mid;
  } while (true);

  DCHECK_LE(ranges(mid), value);
  CHECK_GT(ranges(mid + 1), value);
  return mid;
}

// Use the actual bucket widths (like a linear histogram) until the widths get
// over some transition value, and then use that transition width.  Exponentials
// get so big so fast (and we don't expect to see a lot of entries in the large
// buckets), so we need this to make it possible to see what is going on and
// not have 0-graphical-height buckets.
double Histogram::GetBucketSize(Count current, size_t i) const {
  DCHECK_GT(ranges(i + 1), ranges(i));
  static const double kTransitionWidth = 5;
  double denominator = ranges(i + 1) - ranges(i);
  if (denominator > kTransitionWidth)
    denominator = kTransitionWidth;  // Stop trying to normalize.
  return current / denominator;
}

void Histogram::ResetRangeChecksum() {
  range_checksum_ = CalculateRangeChecksum();
}

const std::string Histogram::GetAsciiBucketRange(size_t i) const {
  std::string result;
  if (kHexRangePrintingFlag & flags_)
    StringAppendF(&result, "%#x", ranges(i));
  else
    StringAppendF(&result, "%d", ranges(i));
  return result;
}

// Update histogram data with new sample.
void Histogram::Accumulate(Sample value, Count count, size_t index) {
  sample_.Accumulate(value, count, index);
}

bool Histogram::ValidateBucketRanges() const {
  // Standard assertions that all bucket ranges should satisfy.
  DCHECK_EQ(0, ranges_[bucket_count_ + 1]);
  DCHECK_EQ(0, ranges_[0]);
  DCHECK_EQ(declared_min(), ranges_[1]);
  DCHECK_EQ(declared_max(), ranges_[bucket_count_ - 1]);
  DCHECK_EQ(kSampleType_MAX, ranges_[bucket_count_]);
  return true;
}

uint32_t Histogram::CalculateRangeChecksum() const {
  DCHECK_EQ(0, ranges_[bucket_count_ + 1]);
  uint32_t checksum =
      static_cast<uint32_t>(bucket_count_ + 1);  // Seed checksum.
  for (size_t index = 0; index < bucket_count(); ++index)
    checksum = Crc32(checksum, ranges(index));
  return checksum;
}

void Histogram::Initialize() {
  sample_.Resize(*this);
  if (declared_min_ < 1) declared_min_ = 1;
  if (declared_max_ > kSampleType_MAX - 1) declared_max_ = kSampleType_MAX - 1;
  DCHECK_LE(declared_min_, declared_max_);
  DCHECK_GT(bucket_count_, 1u);
  CHECK_LT(bucket_count_, kBucketCount_MAX);
  size_t maximal_bucket_count = declared_max_ - declared_min_ + 2;
  DCHECK_LE(bucket_count_, maximal_bucket_count);
}

// We generate the CRC-32 using the low order bits to select whether to XOR in
// the reversed polynomial 0xedb88320L.  This is nice and simple, and allows us
// to keep the quotient in a uint32_t.  Since we're not concerned about the
// nature of corruptions (i.e., we don't care about bit sequencing, since we are
// handling memory changes, which are more grotesque) so we don't bother to
// get the CRC correct for big-endian vs little-ending calculations.  All we
// need is a nice hash, that tends to depend on all the bits of the sample, with
// very little chance of changes in one place impacting changes in another
// place.
uint32_t Histogram::Crc32(uint32_t sum, Histogram::Sample range) {
  const bool kUseRealCrc = true;  // TODO(jar): Switch to false and watch stats.
  if (kUseRealCrc) {
    union {
      Histogram::Sample range;
      unsigned char bytes[sizeof(Histogram::Sample)];
    } converter;
    converter.range = range;
    for (size_t i = 0; i < sizeof(converter); ++i)
      sum = kCrcTable[(sum & 0xff) ^ converter.bytes[i]] ^ (sum >> 8);
  } else {
    // Use hash techniques provided in ReallyFastHash, except we don't care
    // about "avalanching" (which would worsten the hash, and add collisions),
    // and we don't care about edge cases since we have an even number of bytes.
    union {
      Histogram::Sample range;
      uint16_t ints[sizeof(Histogram::Sample) / 2];
    } converter;
    DCHECK_EQ(sizeof(Histogram::Sample), sizeof(converter));
    converter.range = range;
    sum += converter.ints[0];
    sum = (sum << 16) ^ sum ^ (static_cast<uint32_t>(converter.ints[1]) << 11);
    sum += sum >> 11;
  }
  return sum;
}

//------------------------------------------------------------------------------
// Private methods

double Histogram::GetPeakBucketSize(const SampleSet& snapshot) const {
  double max = 0;
  for (size_t i = 0; i < bucket_count(); ++i) {
    double current_size = GetBucketSize(snapshot.counts(i), i);
    if (current_size > max) max = current_size;
  }
  return max;
}

//------------------------------------------------------------------------------
// Methods for the Histogram::SampleSet class
//------------------------------------------------------------------------------

Histogram::SampleSet::SampleSet() : counts_(), sum_(0), redundant_count_(0) {}

Histogram::SampleSet::~SampleSet() {}

void Histogram::SampleSet::Resize(const Histogram& histogram) {
  size_t oldSize = counts_.Length();
  counts_.SetLength(histogram.bucket_count());

  for (size_t i = oldSize; i < histogram.bucket_count(); ++i) counts_[i] = 0;
}

void Histogram::SampleSet::Accumulate(Sample value, Count count, size_t index) {
  DCHECK(count == 1 || count == -1);
  counts_[index] += count;
  redundant_count_ += count;
  sum_ += static_cast<int64_t>(count) * value;
  DCHECK_GE(counts_[index], 0);
  DCHECK_GE(sum_, 0);
  DCHECK_GE(redundant_count_, 0);
}

Count Histogram::SampleSet::TotalCount() const {
  Count total = 0;
  for (Counts::const_iterator it = counts_.begin(); it != counts_.end(); ++it) {
    total += *it;
  }
  return total;
}

void Histogram::SampleSet::Add(const SampleSet& other) {
  DCHECK_EQ(counts_.Length(), other.counts_.Length());
  sum_ += other.sum_;
  redundant_count_ += other.redundant_count_;
  for (size_t index = 0; index < counts_.Length(); ++index)
    counts_[index] += other.counts_[index];
}

//------------------------------------------------------------------------------
// LinearHistogram: This histogram uses a traditional set of evenly spaced
// buckets.
//------------------------------------------------------------------------------

LinearHistogram::~LinearHistogram() {}

Histogram* LinearHistogram::FactoryGet(Sample minimum, Sample maximum,
                                       size_t bucket_count, Flags flags,
                                       const int* buckets) {
  Histogram* histogram(NULL);

  if (minimum < 1) minimum = 1;
  if (maximum > kSampleType_MAX - 1) maximum = kSampleType_MAX - 1;

  LinearHistogram* linear_histogram =
      new LinearHistogram(minimum, maximum, bucket_count);
  linear_histogram->InitializeBucketRangeFromData(buckets);
  linear_histogram->SetFlags(flags);
  histogram = linear_histogram;

  DCHECK_EQ(LINEAR_HISTOGRAM, histogram->histogram_type());
  DCHECK(histogram->HasConstructorArguments(minimum, maximum, bucket_count));
  return histogram;
}

Histogram::ClassType LinearHistogram::histogram_type() const {
  return LINEAR_HISTOGRAM;
}

void LinearHistogram::Accumulate(Sample value, Count count, size_t index) {
  sample_.Accumulate(value, count, index);
}

void LinearHistogram::SetRangeDescriptions(
    const DescriptionPair descriptions[]) {
  for (int i = 0; descriptions[i].description; ++i) {
    bucket_description_[descriptions[i].sample] = descriptions[i].description;
  }
}

LinearHistogram::LinearHistogram(Sample minimum, Sample maximum,
                                 size_t bucket_count)
    : Histogram(minimum >= 1 ? minimum : 1, maximum, bucket_count) {}

LinearHistogram::LinearHistogram(TimeDelta minimum, TimeDelta maximum,
                                 size_t bucket_count)
    : Histogram(minimum >= TimeDelta::FromMilliseconds(1)
                    ? minimum
                    : TimeDelta::FromMilliseconds(1),
                maximum, bucket_count) {}

double LinearHistogram::GetBucketSize(Count current, size_t i) const {
  DCHECK_GT(ranges(i + 1), ranges(i));
  // Adjacent buckets with different widths would have "surprisingly" many (few)
  // samples in a histogram if we didn't normalize this way.
  double denominator = ranges(i + 1) - ranges(i);
  return current / denominator;
}

const std::string LinearHistogram::GetAsciiBucketRange(size_t i) const {
  int range = ranges(i);
  BucketDescriptionMap::const_iterator it = bucket_description_.find(range);
  if (it == bucket_description_.end()) return Histogram::GetAsciiBucketRange(i);
  return it->second;
}

bool LinearHistogram::PrintEmptyBucket(size_t index) const {
  return bucket_description_.find(ranges(index)) == bucket_description_.end();
}

//------------------------------------------------------------------------------
// This section provides implementation for BooleanHistogram.
//------------------------------------------------------------------------------

Histogram* BooleanHistogram::FactoryGet(Flags flags, const int* buckets) {
  Histogram* histogram(NULL);

  BooleanHistogram* tentative_histogram = new BooleanHistogram();
  tentative_histogram->InitializeBucketRangeFromData(buckets);
  tentative_histogram->SetFlags(flags);
  histogram = tentative_histogram;

  DCHECK_EQ(BOOLEAN_HISTOGRAM, histogram->histogram_type());
  return histogram;
}

Histogram::ClassType BooleanHistogram::histogram_type() const {
  return BOOLEAN_HISTOGRAM;
}

void BooleanHistogram::AddBoolean(bool value) { Add(value ? 1 : 0); }

BooleanHistogram::BooleanHistogram() : LinearHistogram(1, 2, 3) {}

void BooleanHistogram::Accumulate(Sample value, Count count, size_t index) {
  // Callers will have computed index based on the non-booleanified value.
  // So we need to adjust the index manually.
  LinearHistogram::Accumulate(!!value, count, value ? 1 : 0);
}

//------------------------------------------------------------------------------
// FlagHistogram:
//------------------------------------------------------------------------------

Histogram* FlagHistogram::FactoryGet(Flags flags, const int* buckets) {
  Histogram* h(nullptr);

  FlagHistogram* fh = new FlagHistogram();
  fh->InitializeBucketRangeFromData(buckets);
  fh->SetFlags(flags);
  size_t zero_index = fh->BucketIndex(0);
  fh->LinearHistogram::Accumulate(0, 1, zero_index);
  h = fh;

  return h;
}

FlagHistogram::FlagHistogram() : BooleanHistogram(), mSwitched(false) {}

Histogram::ClassType FlagHistogram::histogram_type() const {
  return FLAG_HISTOGRAM;
}

void FlagHistogram::Accumulate(Sample value, Count count, size_t index) {
  if (mSwitched) {
    return;
  }

  mSwitched = true;
  DCHECK_EQ(value, 1);
  LinearHistogram::Accumulate(value, 1, index);
  size_t zero_index = BucketIndex(0);
  LinearHistogram::Accumulate(0, -1, zero_index);
}

void FlagHistogram::AddSampleSet(const SampleSet& sample) {
  DCHECK_EQ(bucket_count(), sample.size());
  // We can't be sure the SampleSet provided came from another FlagHistogram,
  // so we take the following steps:
  //  - If our flag has already been set do nothing.
  //  - Set our flag if the following hold:
  //      - The sum of the counts in the provided SampleSet is 1.
  //      - The bucket index for that single value is the same as the index
  //      where we
  //        would place our set flag.
  //  - Otherwise, take no action.

  if (mSwitched) {
    return;
  }

  if (sample.sum() != 1) {
    return;
  }

  size_t one_index = BucketIndex(1);
  if (sample.counts(one_index) == 1) {
    Accumulate(1, 1, one_index);
  }
}

void FlagHistogram::Clear() {
  Histogram::Clear();

  mSwitched = false;
  size_t zero_index = BucketIndex(0);
  LinearHistogram::Accumulate(0, 1, zero_index);
}

//------------------------------------------------------------------------------
// CountHistogram:
//------------------------------------------------------------------------------

Histogram* CountHistogram::FactoryGet(Flags flags, const int* buckets) {
  Histogram* h(nullptr);

  CountHistogram* fh = new CountHistogram();
  fh->InitializeBucketRangeFromData(buckets);
  fh->SetFlags(flags);
  h = fh;

  return h;
}

CountHistogram::CountHistogram() : LinearHistogram(1, 2, 3) {}

Histogram::ClassType CountHistogram::histogram_type() const {
  return COUNT_HISTOGRAM;
}

void CountHistogram::Accumulate(Sample value, Count count, size_t index) {
  size_t zero_index = BucketIndex(0);
  LinearHistogram::Accumulate(value, 1, zero_index);
}

void CountHistogram::AddSampleSet(const SampleSet& sample) {
  DCHECK_EQ(bucket_count(), sample.size());
  // We can't be sure the SampleSet provided came from another CountHistogram,
  // so we at least check that the unused buckets are empty.

  const size_t indices[] = {BucketIndex(0), BucketIndex(1), BucketIndex(2)};

  if (sample.counts(indices[1]) != 0 || sample.counts(indices[2]) != 0) {
    return;
  }

  if (sample.counts(indices[0]) != 0) {
    Histogram::AddSampleSet(sample);
  }
}

}  // namespace base